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We prove the following let α,β,a > 0, and b > 0 be real numbers, and let wj ( j = 1, . . . ,n;
n≥2) be positive real numbers with w1 +···+wn=1. The inequalities α

∑n
j=1wj/(1−paj )≤

∑n
j=1wj/(1− pj)

∑n
j=1wj/(1 + pj) ≤ β

∑n
j=1wj/(1− pbj ) hold for all real numbers pj ∈

[0,1) ( j = 1, . . . ,n) if and only if α ≤min(1,a/2) and β ≥max(1,(1−min1≤ j≤nwj/2)b).
Furthermore, we provide a matrix version. The first inequality (with α= 1 and a= 2) is
a discrete counterpart of an integral inequality published by E. A. Milne in 1925.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Motivated by an interesting paper of Rao [8], we proved in [1] the following double-
inequality for sums.

Proposition 1.1. Letwj ( j=1, . . . ,n; n≥2) be positive real numbers withw1 +···+wn= 1.
Then we have for all real numbers pj ∈ [0,1) ( j = 1, . . . ,n),

( n∑

j=1

wj

1− p2
j

)c1

≤
n∑

j=1

wj

1− pj

n∑

j=1

wj

1 + pj
≤
( n∑

j=1

wj

1− p2
j

)c2

, (1.1)

with the best possible exponents

c1 = 1, c2 = 2− min
1≤ j≤n

wj . (1.2)

The left-hand side of (1.1) (with c1 = 1) is a discrete version of an integral inequality
due to Milne [7]. Rao showed that (1.1) (with c1 = 1 and c2 = 2) is valid for all wj > 0
( j = 1, . . . ,n) with w1 + ···+wn = 1 and all pj ∈ (−1,1) ( j = 1, . . . ,n).

Double-inequality (1.1) admits the following matrix version; see [1, 8].

Proposition 1.2. Let wj ( j = 1, . . . ,n; n ≥ 2) be positive real numbers with w1 + ··· +
wn = 1 and let I be the unit matrix. Then we have for all families of commuting Hermitian
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matrices P1, . . . ,Pn with 0≤ Pj < I ( j = 1, . . . ,n),

( n∑

j=1

wj
(
I2−P2

j

)−1
)c1

≤
n∑

j=1

wj
(
I −Pj

)−1
n∑

j=1

wj
(
I +Pj

)−1 ≤
( n∑

j=1

wj
(
I2−P2

j

)−1
)c2

,

(1.3)

with the best possible exponents

c1 = 1, c2 = 2− min
1≤ j≤n

wj . (1.4)

In Section 2 we provide new bounds for
∑n

j=1wj/(1− pj)
∑n

j=1wj/(1 + pj), which are
closely related to those given in (1.1). It turns out that the new upper bound and the upper
bound in (1.1) cannot be compared. And in Section 3 we present a matrix analogue of
our discrete double-inequality.

2. Inequalities for sums

The following counterpart of Proposition 1.1 holds.

Theorem 2.1. Let α,β,a > 0, and b > 0 be real numbers. Further, let wj ( j = 1, . . . ,n; n≥ 2)
be positive real numbers with w1 + ···+wn = 1. The inequalities

α
n∑

j=1

wj

1− paj
≤

n∑

j=1

wj

1− pj

n∑

j=1

wj

1 + pj
≤ β

n∑

j=1

wj

1− pbj
(2.1)

hold for all real numbers pj ∈ [0,1) ( j = 1, . . . ,n) if and only if

α≤min(1,a/2), β ≥max
(

1,
(

1− min
1≤ j≤n

wj/2
)
b
)
. (2.2)

Proof. Let w = min1≤ j≤nwj and c = 2/(2−w). First, we suppose that β ≥ max(1,b/c).
Since

max(1,b/c)≥ 1− pb

1− pc
(0≤ p < 1), (2.3)

we obtain

β
n∑

j=1

wj

1− pbj
≥

n∑

j=1

wj

1− pcj
. (2.4)

To prove the right-hand side of (2.1) we may assume that

0≤ pn ≤ pn−1 ≤ ··· ≤ p1 < 1. (2.5)
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We define

F
(
p1, . . . , pn

)=
n∑

j=1

wj

1− pcj
−

n∑

j=1

wj

1− pj

n∑

j=1

wj

1 + pj
,

Fq(p)= F
(
p, . . . , p, pq+1, . . . , pn

)
, 1≤ q ≤ n− 1, pq+1 < p < 1.

(2.6)

Differentiation leads to

(
1− p2

)2

Wq
F′q(p)= cpc−1

(
1− p2

1− pc

)2

− 2pWq +
n∑

j=q+1

wj

(
(1− p)2

1− pj
− (1 + p)2

1 + pj

)

, (2.7)

where Wq =w1 + ···+wq. Using

(1− p)2

1− pj
− (1 + p)2

1 + pj
≥ (1− p)2− (1 + p)2 for j = q+ 1, . . . ,n, (2.8)

we get

(
1− p2

)2

Wq
F′q(p)≥ cpc−1

(
1− p2

1− pc

)2

− 4p+ 2pWq

≥ cpc−1

(
1− p2

1− pc

)2

− 4c−1p =G(c, p), say.

(2.9)

Let

E(r,s;x, y)=
(
s

r

xr − yr

xs− ys

)1/(r−s)
(2.10)

be the extended mean of order (r,s) of x, y > 0. Then we have

G(c, p)= 4c−1pc−1(E(2,c; p,1)
)4−2c− 4c−1p. (2.11)

Since 1 < c < 2 and E(r,s;x, y) increases with increase in either r or s (see [4]), we obtain

E(2,c; p,1)≥ E(2,1; p,1)= p+ 1
2

> p1/2. (2.12)

From (2.11) and (2.12) we conclude that G(c, p) > 0. This implies that Fq is strictly in-
creasing on [pq+1,1). Hence, we get

F
(
p1, . . . , pn

)= F1
(
p1
)≥ F1

(
p2
)= F2

(
p2
)≥ F2

(
p3
)

≥ ··· ≥ Fn−1
(
pn−1

)≥ Fn−1
(
pn
)= 1

1− pcn
− 1

1− p2
n
≥ 0.

(2.13)

Combining (2.4) and (2.13) it follows that the inequality on the right-hand side of (2.1)
is valid.
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Next, let α≤min(1,a/2). Applying

min(1,a/2)≤ 1− pa

1− p2

(
0≤ p < 1

)
(2.14)

and the first inequality of (1.1) (with c1 = 1) we conclude that the left-hand side of (2.1)
holds for all real numbers pj ∈ [0,1) ( j = 1, . . . ,n).

It remains to show that the validity of (2.1) implies (2.2). We set p1 = ··· = pn = p ∈
(0,1). Then the left-hand side of (2.1) leads to

α≤ 1− pa

1− p2
. (2.15)

We let p tend to 0 and obtain α≤ 1. And, if p tends to 1, then (2.15) yields α≤ a/2. Let
w =wk with k ∈ {1, . . . ,n}. We set pj = 0 (1≤ j ≤ n; j �= k) and pk = p ∈ (0,1). Then the
right-hand side of (2.1) is equivalent to

(
1−w+w/(1− p)

)(
1−w+w/(1 + p)

)

1−w+w/
(
1− pb

) ≤ β. (2.16)

If p tends to 0, then 1≤ β. And, if p tends to 1, then we get (1−w/2)b≤ β. �

Remarks 2.2. (i) We define for b > 0,

H(b)=max
(
1,(1−w/2)b

) n∑

j=1

wj

1− pbj
, (2.17)

where wj > 0 ( j = 1, . . . ,n), w1 + ··· + wn = 1, w = min1≤ j≤nwj , and pj ∈ [0,1) ( j =
1, . . . ,n). If 0 < b < 2/(2−w), then

H′(b)=
n∑

j=1

wj p
b
j log

(
pj
)

(
1− pbj

)2 ≤ 0. (2.18)

And, if b > 2/(2−w), then

H′(b)= (1−w/2)
n∑

j=1

wj
(
1− pbj

)2

(
1− pbj + pbj log

(
pbj
))≥ 0. (2.19)

This implies that H is decreasing on (0,2/(2− w)] and increasing on [2/(2− w),∞).
Hence: if (2.2) holds, then the function

H∗(β,b)= β
n∑

j=1

wj

1− pbj
(2.20)

satisfies H∗(β,b) ≥H∗(1,2/(2−w)). This means that the expression on the right-hand
side of (2.1) attains its smallest value if β = 1 and b = 2/(2−w). Similarly, we obtain: if
(2.2) holds, then the expression on the left-hand side of (2.1) attains its largest value if
α= 1 and a= 2.



H. Alzer and A. Kovačec 5

(ii) The upper bounds given in (1.1) with c2 = 2−w and (2.1) with β = 1, b = 2/(2−
w) cannot be compared. To prove this we set p1 = ··· = pn = p ∈ (0,1) and denote by
R1(p) and R2(p) the expressions on the right-hand side of (1.1) and (2.1), respectively.
Then we get

R1(p)=
(

1
1− p2

)c2

, R2(p)= 1
1− pb

. (2.21)

First, we show that R1(p) > R2(p) in the neighbourhood of 1. Let

Δ(p)= R1(p)−R2(p), ϕ(p)= (1− pb
)
Δ(p). (2.22)

Since c2 > 1, b > 1 we have

lim
p→1

ϕ(p)= lim
p→1

bpb−1

2pc2
(
1− p2

)c2−1 − 1=∞. (2.23)

This implies that ϕ and Δ are positive in the neighbourhood of 1.

Next, we show that R1(p) < R2(p) in the neighbourhood of 0. Let

σ(p)= Δ
(
p1/2). (2.24)

We obtain σ(0)= 0 and since 0 < b/2 < 1 we get

lim
p→0

σ ′(p)= lim
p→0

⎛

⎝ c2

(1− p)c2+1
− b

2
pb/2−1 1

(
1− pb/2

)2

⎞

⎠=−∞. (2.25)

This implies that σ and Δ attain negative values in the neighbourhood of 0.
(iii) The two-parameter mean value family defined in (2.10) has been the subject of

intensive research. The main properties are studied in [4–6], where also historical remarks
and references can be found.

3. Matrix inequalities

We now provide a matrix analogue of Theorem 2.1. The reader who wants to have a
proper understanding of the following theorem and its proof needs a general knowledge
of matrix theory. We refer to the monographs [2, 3].

Theorem 3.1. Let α,β,a > 0, and b > 0 be real numbers. Further, let wj ( j = 1, . . . ,n; n≥ 2)
be positive real numbers with w1 + ···+wn = 1. The inequalities

α
n∑

j=1

wj
(
I −Pa

j

)−1 ≤
n∑

j=1

wj
(
I −Pj

)−1
n∑

j=1

wj
(
I +Pj

)−1 ≤ β
n∑

j=1

wj
(
I −Pb

j

)−1
(3.1)

hold for all families of commuting Hermitian matrices P1, . . . ,Pn, satisfying 0≤ Pj < I in the
Löwner ordering, if and only if

α≤min(1,a/2), β ≥max
(

1,
(

1− min
1≤ j≤n

wj/2
)
b
)
. (3.2)
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Proof. First, we assume that (3.2) is valid. Since the Pj commute, there exists a nonsingu-
lar matrix S such that S−1PjS = diag(. . . ,λl j , . . .), where λ1 j , . . . ,λnj are the eigenvalues of
Pj . By definition of the positive semidefinite ordering (Löwner ordering) it follows that
Pj < I implies 0 ≤ λl j < 1 for l = 1, . . . ,n. So the expressions given in (3.1) make sense.
Denoting by L, M, and R the matrices on the left-hand side, in the middle, and on the
right-hand side of (3.1), respectively, we get

S−1LS= diag

(

. . . ,α
n∑

j=1

wj

1− λal j
, . . .

)

, S−1MS= diag

(

. . . ,
n∑

j=1

wj

1− λl j

n∑

j=1

wj

1 + λl j
, . . .

)

,

S−1RS= diag

(

. . . ,β
n∑

j=1

wj

1− λbl j
, . . .

)

.

(3.3)

Applying Theorem 2.1 we obtain S−1LS≤ S−1MS≤ S−1RS, and hence L≤M ≤ R.
Next, we suppose that (3.1) holds for all families of commuting Hermitian matrices

P1, . . . ,Pn, satisfying 0≤ Pj < I . We proceed in analogy with the proof of Theorem 2.1: put
P1 = ··· = Pn = diag(p, . . . , p) with p ∈ (0,1). Then the left-hand side of (3.1) leads to an
inequality for scalar matrices (i.e., multiples of the identity I), namely,

α
1

1− pa
I ≤ 1

1− p
I · 1

1 + p
I. (3.4)

Considering a pair of corresponding diagonal entries we conclude that this inequality is
equivalent to (2.15). Tending with p to 0 and 1, respectively, we get α≤min(1,a/2). Next,
let w =wk, where k ∈ {1, . . . ,n}. We set Pj = 0 for j �= k and Pk = pI . Then the right-hand
side of (3.1) yields

(
(1−w)I +

(
w/(1− p)

)
I
) · ((1−w)I +

(
w/(1 + p)

)
I
)≤ β

(
(1−w)I +

(
w/
(
1− pb

))
I
)
.

(3.5)

Again, this is an inequality for scalar matrices and it suffices to consider diagonal entries.
This leads to (2.16). We let p tend to 0 and 1, respectively, and obtain the second of the
inequalities (3.2). �
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