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We describe the sets on which difference of solutions of the gas dynamics equation satisfy
some special conditions. By virtue of nonlinearity of the equation the sets depend on the
solution gradient quantity. We show double-ended estimates of the given sets and some
properties of these estimates.
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1. Main results

Consider the gas dynamics equation

n∑

c=1

∂

∂xi

(
σ
(|∇ f |) fxi

)= 0, (1.1)

where

σ(t)=
(

1− γ− 1
2

t2
)1/(γ−1)

. (1.2)

Here γ is a constant, −∞ < γ < +∞. This equation describes the velocity potential of a
steady-state flow of ideal gas in the adiabatic process. In the case n = 2 the parameter γ
characterizes the flow of substance. For different values γ it can be a flow of gas, fluid,
plastic, electric or chemical field in different mediums, and so forth (see, e.g., [1, Section
2], [2, Section 15, Chapter IV]). For γ = 1± 0 we assume

σ(t)= exp
{
− 1

2
t2
}
. (1.3)
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2 Some elementary inequalities in gas dynamics equation

The case of γ =−1 is known as the minimal surface equation (Chaplygin’s gas):

div

⎛
⎝ ∇ f√

1 + |∇ f |2

⎞
⎠= 0. (1.4)

For γ =−∞, (1.1) becomes the Laplace equation.
In general, a solution of (1.1) with a function σ of variables (x1, . . . ,xn) is called σ-

harmonic function. Such functions were studied in many works (see., e.g., [3, 4] and liter-
ature quoted therein).

We set Ωγ =Rn for γ ≤ 1,

Ωγ =
{
ξ ∈Rn : |ξ| <

√
2

γ− 1

}
for γ > 1. (1.5)

The following inequalities were crucial in previous analysis of solutions to (1.1) for
γ =−1 (see [5–9]):

c1

n∑

i=1

(
ξi−ηi

)2 ≤
n∑

i=1

(
σ
(|ξ|)ξi− σ

(|η|)ηi
)(
ξi−ηi

)
, ξ,η ∈Ωγ, (1.6)

n∑

i=1

(
σ
(|ξ|)ξi− σ

(|η|)ηi
)2 ≤ c2

n∑

i=1

(
σ
(|ξ|)ξi− σ

(|η|)ηi
)(
ξi−ηi

)
, ξ,η ∈Ωγ. (1.7)

Here ξ = (ξ1,ξ2, . . . ,ξn), η = (η1,η2, . . . ,ηn) and c1 > 0, c2 > 0 are constants not depend-
ing on ξ and η.

In general, the latter inequalities are valid only on subsets of Ωγ ×Ωγ with c1 and c2

depending on these subsets. The purpose of the present paper is to describe that depen-
dence.

Introduce the sets

�γ
(
c1
)= {

(ξ,η)∈Ωγ ×Ωγ : ξ,η satisfy (1.6)
}

, (1.8)

�γ
(
c2
)= {

(ξ,η)∈Ωγ ×Ωγ : ξ,η satisfy (1.7)
}
. (1.9)

Generally, the sets �γ(c1) and �γ(c2) have a complicated structure. We will describe
them by comparing with canonical sets of the “simplest form.”

We set Σγ = {x ∈R : x ≥ 0} for γ ≤ 1 and

Σγ =
{
x ∈R : 0≤ x <

√
2

γ− 1

}
for γ > 1. (1.10)
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For every γ ∈R, define the functions I−γ and I+
γ on Σγ ×Σγ by

I−γ (x, y)=
⎧
⎪⎨
⎪⎩

xσ(x)− yσ(y)
x− y

if x �= y,

σ(x) + σ ′(x)x if x = y,

I+
γ (x, y)=

⎧
⎪⎨
⎪⎩

xσ(x) + yσ(y)
x+ y

if x2 + y2 > 0,

1 if x = y = 0.

(1.11)

Note that the functions I−γ and I+
γ are continuous on the closing of Σγ ×Σγ and they

are infinitely differentiable at each inner point of Σγ ×Σγ.
For arbitrary ε ≥ 0 we put W−

γ (ε) = {(ξ,η) ∈ Ωγ ×Ωγ : I−γ (|ξ|,|η|) ≥ ε}, W+
γ (ε) =

{(ξ,η)∈Ωγ×Ωγ : I+
γ (|ξ|,|η|)≥ ε}, V−

γ (ε)={(ξ,η)∈Ωγ×Ωγ : I−γ (|ξ|,|η|)≤ ε}, V+
γ (ε)=

{(ξ,η)∈Ωγ ×Ωγ : I+
γ (|ξ|,|η|)≤ ε}.

Also we will need the sets Dγ = {(ξ,ξ)∈Ωγ ×Ωγ}, Qγ = {(ξ,η)∈Ωγ ×Ωγ : ξσ(|ξ|)=
ησ(|η|)}.

The main result of our paper are the following theorems.

Theorem 1.1. For every γ ∈R,

(
W−

γ (ε)∪Dγ
)⊂�γ(ε)⊂ (

W+
γ (ε)∪Dγ

) ∀ε ∈ (0,1),

�γ(ε)=Dγ ∀ε ∈ [1,+∞).
(1.12)

Theorem 1.2. (a) If γ ∈ (−∞,−1], then

(
V+
γ (ε)∪Dγ

)⊂�γ(ε)⊂ (
V−
γ (ε)∪Dγ

) ∀ε ∈ (0,1), (1.13)

�γ(ε)=R2n ∀ε ∈ [1,+∞). (1.14)

(b) If γ ∈ (−1,+∞), then

(
V+
γ (ε)∩W−

γ (0)
)⊂�γ(ε)⊂ (

V−
γ (ε)∪Qγ

) ∀ε ∈ (0,1),

W−
γ (0)⊂�γ(ε) ∀ε ∈ [1,+∞).

(1.15)

Relation (1.14) was first proved for γ = −1 and ε = 1 in [5] and later repeatedly in
[6–9].

2. Properties of σ

Consider the equation

θ′(t)= ε, (2.1)
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where θ(t)= tσ(t) and ε is an arbitrary parameter. It is easy to verify that for γ �= 1, (2.1)
can be rewritten in the following form:

2
γ− 1

σ2−γ(t)− γ+ 1
γ− 1

σ(t) + ε = 0. (2.2)

For arbitrary ε ∈ (0,1) we set

rγ(ε)=
√√√√2

(
1− εγ−1

)

γ− 1
if γ �= 1,

r1(ε)=
√
−2lnε.

(2.3)

Observe that rγ(ε)∈ Σγ for every γ ∈R and every ε∈ (0,1).
The following assertions hold.

(1) Let γ ∈ R. Then the domain of σ is the set Σγ. Moreover, σ(0) = 1, σ(+∞) = 0

for γ ≤ 1 and σ(
√

2/(γ− 1))= 0 for γ > 1.
(2) For each γ ∈R we have

0 < σ(t)≤ 1 ∀t ∈ Σγ. (2.4)

(3) Let γ ∈R. Then σ ′(0)= 0 and

σ ′(t) < 0 ∀t > 0, t ∈ Σγ. (2.5)

(4) If γ ∈ (−∞,−1], then

θ′(0)= 1, θ′(+∞)= 0,

θ′(t) > 0 ∀t ∈ [0,+∞).
(2.6)

(5) If γ ∈ (−1,+∞), then

θ′(0)= 1, θ′
(√

2
γ+ 1

)
= 0,

θ′(t) > 0 ∀t ∈
(

0,

√
2

γ+ 1

)
,

θ′(t) < 0 ∀t >
√

2
γ+ 1

, t ∈ Σγ.

(2.7)
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Moreover,

θ′(+∞)= 0 if γ ∈ (−1,1],

θ′
(√

2
γ− 1

)
= 0 if γ ∈ (1,2),

θ′
(√

2
γ− 1

)
=−2 if γ = 2,

θ′
(√

2
γ− 1

− 0

)
=−∞ if γ ∈ (2,+∞).

(2.8)

(6) If γ ∈ (−∞,−1]∪ [2,+∞), then θ′′(0)= 0 and

θ′′(t) < 0 ∀t > 0, t ∈ Σγ. (2.9)

(7) If γ ∈ (−1,2), then

θ′′(0)= 0, θ′′
(√

6
γ+ 1

)
= 0,

θ′′(t) < 0 ∀t ∈
(

0,

√
6

γ+ 1

)
,

θ′′(t) > 0 ∀t >
√

6
γ+ 1

, t ∈ Σγ.

(2.10)

(8) For every γ ∈R and every ε ∈ (0,1), (2.1) has a unique positive solution sγ(ε)∈
(0,rγ(ε)) and

θ′(t) > ε ∀t ∈ [
0,sγ(ε)

)
, θ′(t) < ε ∀t > sγ(ε), t ∈ Σγ. (2.11)

Moreover, for every γ >−1 and ε ∈ (0,1),

sγ(ε) <

√
2

γ+ 1
. (2.12)

(9) Let γ ∈R. Then for all x, y ∈ Σγ, x2 + y2 > 0,

I−γ (x, y)≤ I+
γ (x, y) < 1. (2.13)
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Proof. The proof of assertions (1)–(7) follows from the equalities

σ ′(t)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−t
(

1− γ− 1
2

t2
)(2−γ)/(γ−1)

if γ �= 1,

−t exp
{
− 1

2
t2
}

if γ = 1,

θ′(t)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1− γ+ 1

2
t2
)(

1− γ− 1
2

t2
)(2−γ)/(γ−1)

if γ �= 1,

(
1− t2

)
exp

{
− 1

2
t2
}

if γ = 1,

θ′′(t)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−t
(

3− γ+ 1
2

t2
)(

1− γ− 1
2

t2
)(3−2γ)/(γ−1)

if γ �= 1,

t
(
t2− 3

)
exp

{
− 1

2
t2
}

if γ = 1.

(2.14)

Let γ ∈R and ε ∈ (0,1). Suppose that sγ(ε)∈ Σγ satisfies (2.1). We have

σ
(
rγ(ε)

)= ε = θ′
(
sγ(ε)

)= σ
(
sγ(ε)

)
+ sγ(ε)σ ′

(
sγ(ε)

)
< σ

(
sγ(ε)

)
. (2.15)

From this sγ(ε) < rγ(ε). Next, using assertions (4)–(7), we obtain assertion (8).
We prove assertion (9). Let x, y ∈ Σγ, x2 + y2 > 0. If x = y, then

I−γ (x, y)= σ(x) + xσ ′(x) < σ(x)= I+
γ (x, y) < 1. (2.16)

Suppose that x > y. Since

σ(x) < σ(y), (2.17)

we obtain

I−γ (x, y)= xσ(x)− yσ(y)
x− y

≤ xσ(x)− yσ(x)
x− y

= σ(x)

= xσ(x) + yσ(x)
x+ y

≤ xσ(x) + yσ(y)
x+ y

= I+
γ (x, y)

<
xσ(y) + yσ(y)

x+ y
= σ(y)≤ 1.

(2.18)

The case x < y is analogous. �

3. Properties of W−
γ (ε), W+

γ (ε), V−
γ (ε), and V+

γ (ε)

Here we study the sets W−
γ (ε), W+

γ (ε), V−
γ (ε) and V+

γ (ε).
We say that a set G⊂ Rn is linearly connected if any pair of points x, y ∈G can be joined

on D by an arc.
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The following assertions hold.
(1) W−

γ (ε)=W+
γ (ε)=∅ for every γ ∈R and ε > 1.

(2) W−
γ (1)=W+

γ (1)= {0} for every γ ∈R.
(3) W−

γ (0)=R4 for every γ ≤−1.
(4) W+

γ (0)=Ωγ ×Ωγ for every γ ∈R.
(5) W−

γ (ε)⊂W+
γ (ε) for every γ ∈R and ε ∈ (0,1).

(6) V−
γ (ε)=V+

γ (ε)=Ωγ ×Ωγ for every γ ∈R and ε ≥ 1.
(7) V−

γ (0)=∅ for every γ ≤−1.
(8) V+

γ (0)=∅ for every γ ∈R.
(9) V+

γ (ε)⊂V−
γ (ε) for every γ ∈R and ε ∈ (0,1).

(10) The set W−
γ (ε) is linearly connected for every γ ∈R and ε ∈ (0,1).

(11) The set W−
γ (0) is linearly connected for every γ >−1.

(12) The set W+
γ (ε) is linearly connected for every γ ∈R and ε ∈ (0,1).

(13) For every γ ∈R and ε ∈ (0,1), we have

{
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ sγ(ε),|η| ≤ sγ(ε)

}⊂W−
γ (ε). (3.1)

Here sγ(ε) is a unique positive solution of (2.1).
(14) For every γ ∈R and ε ∈ (0,1), we have

W−
γ (ε)⊂ {

(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ rγ(ε),|η| ≤ rγ(ε)
}
. (3.2)

(15) If γ >−1, then

{
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤

√
2

γ+ 1
, |η| ≤

√
2

γ+ 1

}
⊂W−

γ (0). (3.3)

(16) For every γ ∈R and ε ∈ (0,1), we have

{
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ rγ(ε), |η| ≤ rγ(ε)

}⊂W+
γ (ε). (3.4)

(17) For every γ ∈R and ε ∈ (0,1), we have

V−
γ (ε)⊂ {

(ξ,η)∈Ωγ ×Ωγ : |ξ| ≥ sγ(ε) or |η| ≥ sγ(ε)
}
. (3.5)

(18) For every γ ∈R and ε ∈ (0,1), we have

{
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≥ rγ(ε) or |η| ≥ rγ(ε)

}⊂V−
γ (ε). (3.6)

(19) If γ >−1, then

V−
γ (0)⊂

{
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≥

√
2

γ+ 1
or |η| ≥

√
2

γ+ 1

}
. (3.7)

(20) For every γ ∈R and ε ∈ (0,1), we have

V+
γ (ε)⊂ {

(ξ,η)∈Ωγ ×Ωγ : |ξ| ≥ rγ(ε) or |η| ≥ rγ(ε)
}
. (3.8)
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Proof of assertions (1)–(9). The proof follows from assertions (4) and (9) of Section 2.
�

Proof of assertions (10)–(12). We prove assertion (10). Fix γ ∈R, ε ∈ (0,1), and a nonzero
point ζ = (ξ,η) ∈W−

γ (ε). To prove the statement, it is sufficient to show that W−
γ (ε)

contains the segment �= {(ξt,ηt) : 0≤ t ≤ 1} with the endpoints 0 and ζ .
Indeed, let ζ ′,ζ ′′ ∈W−

γ (ε) be arbitrary. Let �′, �′′ be the segments with the endpoints
0, ζ ′ and 0, ζ ′′, respectively. Denote by �′ ∪�′′ the double curve which consists of two
segments �′ and �′′. Then this double curve will join the points ζ ′, ζ ′′ and it will lie on
W−

γ (ε).
Assume that Iγ(x, y)≥ ε. As above, for the case x > y we obtain

ε ≤ I−γ (x, y)≤ σ(x) < σ(y). (3.9)

From this x, y ∈ [0,rγ(ε)]. The case x < y is analogous. Suppose that x = y. Then

ε ≤ I−γ (x, y)= θ′(x)= σ(x) + xσ ′(x)≤ σ(x)= σ(y), (3.10)

and consequently x, y ∈ [0,rγ(ε)]. Thus if Iγ(x, y)≥ ε, then x, y ∈ [0,rγ(ε)].
Further we will need the function

μ(x)= x
(
σ(x)− ε

)
. (3.11)

It is easy to see that for all x, y ∈ [0,rγ(ε)], x �= y,

I−γ (x, y)= ε⇐⇒ μ(x)= μ(y). (3.12)

Define the monotonicity intervals of μ. Since

μ′(x)= θ′(x)− ε, (3.13)

from assertion (8) of Section 2 it follows that the function μ is strictly increasing on
[0,sγ(ε)] and strictly decreasing on [sγ(ε),rγ(ε)]. Moreover,

μ(0)= μ
(
rγ(ε)

)= 0. (3.14)

Note that if I−γ (x, y) = ε and x = y, then x = y = sγ(ε). Consequently for each x ∈
[0,rγ(ε)] there is a unique number y ∈ [0,rγ(ε)], satisfying (3.12). Therefore there exists
the function g : [0,rγ(ε)]→ [0,rγ(ε)] such that for all x, y ∈ [0,rγ(ε)],

I−γ (x, y)= ε⇐⇒ y = g(x). (3.15)

In addition

sγ(ε) < g(x)≤ rγ(ε) if x ∈ [
0,sγ(ε)

)
,

0≤ g(x) < sγ(ε) if x ∈ (
sγ(ε),rγ(ε)

]
,

(3.16)
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as well as

g(0)= rγ(ε), g
(
sγ(ε)

)= sγ(ε), g
(
rγ(ε)

)= 0. (3.17)

Note that the function I−γ (x, y) is infinitely differentiable at each point of [0,rγ(ε)]×
[0,rγ(ε)]. Fix arbitrary x0, y0 ∈ [0,rγ(ε)], x0 �= y0, satisfying (3.15). We have

∂

∂x
I−γ
(
x0, y0

)= θ′
(
x0
)(
x0− y0

)− (
θ
(
x0
)− θ

(
y0
))

(
x0− y0

)2 = θ′
(
x0
)− ε

x0− y0
�= 0,

∂

∂y
I−γ
(
x0, y0

)= θ′
(
y0
)(
y0− x0

)− (
θ
(
y0
)− θ

(
x0
))

(
y0− x0

)2 = θ′
(
y0
)− ε

y0− x0
�= 0.

(3.18)

Using the implicit function theorem, we obtain

g′
(
x0
)=−

[
∂

∂y
I−γ
(
x0,g

(
x0
))]−1[ ∂

∂x
I−γ
(
x0,g

(
x0
))]= θ′

(
x0
)− ε

θ′
(
g
(
x0
))− ε

. (3.19)

By assertion (8) of Section 2, (3.16), it follows that

g′
(
x0
)
< 0. (3.20)

Thus the function y = g(x) is strictly decreasing on [0,rγ(ε)].
We prove that the segment � lies in W−

γ (ε).
Indeed, assume that |ξ| ≤ |η| and for some t ∈ (0,1),

I−γ
(|ξt|,|ηt|) < ε. (3.21)

Then there is a number t0 ∈ (0,1) such that

I−γ
(∣∣ξt0

∣∣,
∣∣ηt0

∣∣)= ε (3.22)

and hence |ηt0| = g(|ξt0|).
Since 0 < rγ(ε)= g(0) and I−γ (0,0)= 1 > ε, we have |η| ≤ g(|ξ|). We deduce

g
(|ξ|)
t0

≤ g
(∣∣ξt0

∣∣)

t0
= |η| ≤ g

(|ξ|). (3.23)

From this t0 ≥ 1 and we arrive at a contradiction. The case |ξ| > |η| is analogous. Thus
W−

γ (ε) contains �.
The proof of assertion (11) is analogous.
Now we prove assertion (12). We fix γ ∈R, ε ∈ (0,1), and a nonzero point ζ = (ξ,η)∈

W+
γ (ε). As above, to prove this statement, it is sufficient to show that W+

γ (ε) contains the
segment �. We have

I+
γ

(|ξt|,|ηt|)= |ξ|σ(|ξt|) + |η|σ(|ηt|)
|ξ|+ |η| >

|ξ|σ(|ξ|)+ |η|σ(|η|)
|ξ|+ |η| ≥ ε (3.24)

for all t ∈ (0,1). Thus W+
γ (ε) contains �. �
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Proof of assertions (13), (15), (17), and (19). Let

(ξ,η)∈ {
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ sγ(ε),|η| ≤ sγ(ε)

}
. (3.25)

By assertion (8) of Section 2 it follows that

θ′
(|ξ|)≥ ε, θ′

(|η|)≥ ε. (3.26)

Suppose that |ξ| = |η|. We have

I−γ
(|ξ|,|η|)= θ′

(|ξ|)= θ′
(|η|)≥ ε. (3.27)

From this (ξ,η)∈W−
γ (ε).

Assume that |ξ| < |η|. Using the well-known Lagrange mean value theorem, we obtain

I−γ
(|ξ|,|η|)= θ′(c), |ξ| < c < |η|. (3.28)

By assertion (8) of Section 2,

θ′(c) > ε. (3.29)

Therefore (ξ,η)∈W−
γ (ε). The case |ξ| > |η| is analogous.

The proof of assertion (15) is analogous. Assertion (17) follows from assertion (13),
and assertion (19) follows from assertion (15). �

Proof of assertions (14) and (18). Let (ξ,η)∈W−
γ (ε). Assume that |ξ| = |η|. We have

ε ≤ I−γ
(|ξ|,|η|)= θ′

(|ξ|)= σ
(|ξ|)+ |ξ|σ ′(|ξ|)≤ σ

(|ξ|)= σ
(|η|). (3.30)

Then the inequalities

σ
(|ξ|)= σ

(|η|)≥ ε (3.31)

imply

|ξ| = |η| ≤ rγ(ε). (3.32)

Hence

(ξ,η)∈ {
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ rγ(ε),|η| ≤ rγ(ε)

}
. (3.33)

Now we assume that |ξ| > |η|. We have

ε ≤ I−γ
(|ξ|,|η|)= |ξ|σ

(|ξ|)−|η|σ(|η|)
|ξ|− |η| ≤ |ξ|σ

(|ξ|)−|η|σ(|ξ|)
|ξ|− |η| = σ

(|ξ|) < σ
(|η|).

(3.34)

From this

(ξ,η)∈ {
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ rγ(ε),|η| ≤ rγ(ε)

}
. (3.35)
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The case |ξ| < |η| is analogous.
Assertion (18) follows from assertion (14). �

Proof of assertions (16) and (20). Let

(ξ,η)∈ {
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ rγ(ε),|η| ≤ rγ(ε)

}
. (3.36)

Then

σ
(|ξ|)≥ ε, σ

(|η|)≥ ε. (3.37)

Suppose |ξ| = |η|. Then

I+
γ

(|ξ|,|η|)= σ
(|ξ|)≥ ε. (3.38)

Hence (ξ,η)∈W+
γ (ε).

Assume that |ξ| > |η|. We have

I+
γ

(|ξ|,|η|)= |ξ|σ
(|ξ|)+ |η|σ(|η|)
|ξ|+ |η| ≥ |ξ|σ

(|ξ|)+ |η|σ(|ξ|)
|ξ|+ |η| = σ

(|ξ|)≥ ε. (3.39)

From this (ξ,η)∈W+
γ (ε). The case |ξ| < |η| is analogous.

Assertion (20) follows from assertion (16). �

4. Proofs of main theorems

Introduce the sets Hγ = {(ξ,η) ∈ Ωγ ×Ωγ : |ξ| = |η|,ξ �= η}, Gγ = {(ξ,η) ∈ Ωγ ×Ωγ :
|ξ| �= |η|}, U−

γ = {(ξ,η) ∈ Ωγ × Ωγ : I−γ (|ξ|,|η|) < 0}, U+
γ = {(ξ,η) ∈ Ωγ × Ωγ : I−γ

(|ξ|,|η|) > 0}, Pγ = {(ξ,η) ∈ Ωγ × Ωγ : |ξ|σ(|ξ|) = |η|σ(|η|), ξσ(|ξ|) �= ησ(|η|)},
F+
γ (ε) = (V+

γ (ε)∩U+
γ )∪Qγ ∪ (V+

γ (ε)∩ Pγ), F−γ (ε) = (V−
γ (ε)∩U+

γ )∪Qγ ∪ (V+
γ (ε)∩ Pγ)

∪ (V+
γ (ε)∩U−

γ ).
For any ξ,η ∈Rn, their inner product is denoted by 〈ξ,η〉. Obviously inequalities (1.6)

and (1.7) with some constant ε > 0 can be written as

ε|ξ −η|2 ≤ 〈
σ
(|ξ|)ξ − σ

(|η|)η,ξ −η
〉

, (4.1)
∣∣σ
(|ξ|)ξ − σ

(|η|)η∣∣2 ≤ ε
〈
σ
(|ξ|)ξ − σ

(|η|)η,ξ −η
〉

, (4.2)

respectively. Let ϕ be the angle between the vectors ξ and η. Then

|ξ −η|2 = |ξ|2 + |η|2− 2|ξ||η|cosϕ,

〈
σ
(|ξ|)ξ − σ

(|η|)η,ξ −η
〉= σ

(|ξ|)|ξ|2 + σ
(|η|)|η|2− (

σ
(|ξ|)+ σ

(|η|))|ξ||η|cosϕ,

∣∣σ
(|ξ|)ξ − σ

(|η|)η∣∣2 = σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2− 2σ
(|ξ|)σ(|η|)|ξ||η|cosϕ.

(4.3)
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We set

Υ(ϕ)= |ξ|2 + |η|2− 2|ξ||η|cosϕ,

Φ(ϕ)= σ
(|ξ|)|ξ|2 + σ

(|η|)|η|2− (
σ
(|ξ|)+ σ

(|η|))|ξ||η|cosϕ,

Ψ(ϕ)= σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2− 2σ
(|ξ|)σ(|η|)|ξ||η|cosϕ.

(4.4)

Proof of Theorem 1.1. Fix γ ∈ R and ε > 0. It is clear that inequality (4.1) holds for all
(ξ,η)∈Dγ.

Let (ξ,η)∈�γ(ε)∩Hγ. In this case inequality (4.1) is rewritten in the form

ε ≤ σ
(|ξ|)= σ

(|η|). (4.5)

Obviously

�γ(ε)∩Hγ =W+
γ (ε)∩Hγ. (4.6)

Using assertion (5) of Section 3, we see that

(
W−

γ (ε)∩Hγ
)⊂ (

�γ(ε)∩Hγ
)⊂ (

W+
γ (ε)∩Hγ

)
. (4.7)

Let (ξ,η)∈Gγ. Then Υ(ϕ) > 0 and after simple calculations we find

∂

∂ϕ

(
Φ(ϕ)
Υ(ϕ)

)
=
(
σ
(|η|)− σ

(|ξ|))(|ξ|2−|η|2)|ξ||η|sinϕ
Υ2(ϕ)

. (4.8)

It is clear that

(
σ
(|η|)− σ

(|ξ|))(|ξ|2−|η|2) > 0. (4.9)

Therefore

min
ϕ∈[0,π]

(
Φ(ϕ)
Υ(ϕ)

)
= Φ(0)

Υ(0)

= σ
(|ξ|)|ξ|2 + σ

(|η|)|η|2− (
σ
(|ξ|)+ σ

(|η|))|ξ||η|
(|ξ|− |η|)2 = I−γ

(|ξ|,|η|),

max
ϕ∈[0,π]

(
Φ(ϕ)
Υ(ϕ)

)
= Φ(π)

Υ(π)

= σ
(|ξ|)|ξ|2 + σ

(|η|)|η|2 +
(
σ
(|ξ|)+ σ

(|η|))|ξ||η|
(|ξ|+ |η|)2 = I+

γ

(|ξ|,|η|).
(4.10)

Thus for all (ξ,η)∈Gγ,

I−γ
(|ξ|,|η|)≤

〈
σ
(|ξ|)ξ − σ

(|η|)η,ξ −η
〉

|ξ −η|2 ≤ I+
γ

(|ξ|,|η|). (4.11)
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This implies

(
W−

γ (ε)∩Gγ
)⊂ (

�γ(ε)∩Gγ
)⊂ (

W+
γ (ε)∩Gγ

)
. (4.12)

From this, by (4.7), and assertions (1), (2) of Section 3 we obtain (1.12). �

Proof of Theorem 1.2. (a) We fix γ ≤ −1 and ε > 0. It is clear that inequality (4.2) holds
for all (ξ,η)∈Dγ.

Let (ξ,η)∈�γ(ε)∩Hγ. In this case inequality (4.2) becomes

σ
(|ξ|)= σ

(|η|)≤ ε. (4.13)

Then

�γ(ε)∩Hγ =V+
γ (ε)∩Hγ. (4.14)

Using assertion (9) of Section 3, we see that

(
V+
γ (ε)∩Hγ

)⊂ (
�γ(ε)∩Hγ

)⊂ (
V−
γ (ε)∩Hγ

)
. (4.15)

Let (ξ,η)∈Gγ. Then by the inequality

Ψ(ϕ)≥ (
σ
(|ξ|)|ξ|− σ

(|η|)|η|)2
(4.16)

and by assertion (4) of Section 2, we conclude that Ψ(ϕ) > 0 for all ϕ∈ [0,π]. After simple
calculations, we obtain

∂

∂ϕ

(
Φ(ϕ)
Ψ(ϕ)

)
=
(
σ
(|ξ|)− σ

(|η|))(|ξ|2σ2
(|ξ|)−|η|2σ2

(|η|))|ξ||η|sinϕ
Ψ2(ϕ)

. (4.17)

By assertions (3) and (4) of Section 2, it follows that

(
σ
(|ξ|)− σ

(|η|))(|ξ|2σ2(|ξ|)−|η|2σ2(|η|)) < 0. (4.18)

Therefore

min
ϕ∈[0,π]

(
Φ(ϕ)
Ψ(ϕ)

)
= Φ(π)

Ψ(π)

= σ
(|ξ|)|ξ|2 + σ

(|η|)|η|2 +
(
σ
(|ξ|)+ σ

(|η|))|ξ||η|
σ2
(|ξ|)|ξ|2 + σ2

(|η|)|η|2 + 2σ
(|ξ|)σ(|η|)|ξ||η| =

1
I+
γ

(|ξ|,|η|) ,

max
ϕ∈[0,π]

(
Φ(ϕ)
Ψ(ϕ)

)
= Φ(0)

Ψ(0)

= σ
(|ξ|)|ξ|2 + σ

(|η|)|η|2− (
σ
(|ξ|)+ σ

(|η|))|ξ||η|
σ2
(|ξ|)|ξ|2 + σ2

(|η|)|η|2− 2σ
(|ξ|)σ(|η|)|ξ||η| =

1
I−γ
(|ξ|,|η|) .

(4.19)
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Thus for all (ξ,η)∈Gγ,

1
I+
γ

(|ξ|,|η|) ≤
〈
σ
(|ξ|)ξ − σ

(|η|)η,ξ −η
〉

∣∣σ
(|ξ|)ξ − σ

(|η|)η∣∣2 ≤ 1
I−γ
(|ξ|,|η|) . (4.20)

This implies that
(
V+
γ (ε)∩Gγ

)⊂ (
�γ(ε)∩Gγ

)⊂ (
V−
γ (ε)∩Gγ

)
. (4.21)

From this, by (4.15) and assertion (6) of Section 3, we obtain (1.13) and (1.14).
(b) We fix γ >−1 and ε > 0. It is clear that the inequality (4.2) holds for all (ξ,η)∈Qγ.

By assertion (5) of Section 2, Qγ �=Dγ.
Let (ξ,η)∈�γ(ε)∩Pγ. Similarly we establish that Pγ �=Hγ. We have

Ψ(ϕ)= σ2(|ξ|)|ξ|2 + σ2(|η|)|η|2− 2σ
(|ξ|)σ(|η|)|ξ||η|cosϕ= 2σ2(|ξ|)|ξ|2(1− cosϕ),

Φ(ϕ)= σ
(|ξ|)|ξ|2 + σ

(|η|)|η|2− (
σ
(|ξ|)+ σ

(|η|))|ξ||η|cosϕ

= σ
(|ξ|)|ξ|2 + σ

(|ξ|)|ξ||η|− σ
(|ξ|)|ξ||η|cosϕ− σ

(|ξ|)|ξ|2 cosϕ

= σ
(|ξ|)|ξ|(|ξ|+ |η|)(1− cosϕ).

(4.22)

It is easy to see that cosϕ �= 1. Indeed, if cosϕ = 1, then ξσ(|ξ|) = ησ(|η|). Next, we
find

Ψ(ϕ)
Φ(ϕ)

= 2|ξ|σ(|ξ|)
|ξ|+ |η| = I+

γ

(|ξ|,|η|). (4.23)

Thus inequality (4.2) assumes the form

I+
γ

(|ξ|,|η|)≤ ε. (4.24)

Then

�γ(ε)∩Pγ =V+
γ (ε)∩Pγ. (4.25)

Let (ξ,η) ∈ U+
γ . By assertion (3) of Section 2 we find that inequality (4.18) is valid.

Therefore inequalities (4.20) are true. Hence
(
V+
γ (ε)∩U+

γ

)⊂ (
�γ(ε)∩U+

γ

)⊂ (
V−
γ (ε)∩U+

γ

)
. (4.26)

Consider the remaining case (ξ,η) ∈ U−
γ . Observe that the set U−

γ is not empty. It is
easy to see that

(
σ
(|ξ|)− σ

(|η|))(|ξ|2σ2(|ξ|)−|η|2σ2(|η|)) > 0. (4.27)

Hence for all (ξ,η)∈U−
γ ,

1
I−γ
(|ξ|,|η|) ≤

〈
σ
(|ξ|)ξ − σ

(|η|)η,ξ −η
〉

∣∣σ
(|ξ|)ξ − σ

(|η|)η∣∣2 ≤ 1
I+
γ

(|ξ|,|η|) , (4.28)
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which implies that

(
�γ(ε)∩U−

γ

)⊂ (
V+
γ (ε)∩U−

γ

)
. (4.29)

From this, by (4.25) and (4.26),

F+
γ (ε)⊂�γ(ε)⊂ F−γ (ε). (4.30)

It is not hard to establish that

W−
γ (0)⊂ (

Pγ ∪Qγ ∪U+
γ

)
,

(
Pγ ∪Qγ ∪U+

γ ∪U−
γ

)=Ωγ ×Ωγ. (4.31)

Then, using assertion (9) of Section 3, we find

(
V+
γ (ε)∩W−

γ (0)
)⊂ F+

γ (ε), F−γ (ε)⊂ (
V−
γ (ε)∪Qγ

)
. (4.32)

From this, by assertion (6) of Section 3 we obtain (1.15). �

5. Properties of xγ(ε)

For every γ ∈R and ε∈ (0,1) we set

Xγ(ε)= {
x ∈ Σγ : ∃y ∈ Σγ,I+

γ (x, y)≥ ε
}

,

xγ(ε)= sup
x
Xγ(ε).

(5.1)

If xγ(ε)∈ Σγ, then the following relations are true:

W+
γ (ε)⊂ {

(ξ,η)∈Ωγ ×Ωγ : |ξ| ≤ xγ(ε),|η| ≤ xγ(ε)
}

,

{
(ξ,η)∈Ωγ ×Ωγ : |ξ| ≥ xγ(ε) or |η| ≥ xγ(ε)

}⊂V+
γ (ε).

(5.2)

For every γ ∈R we will study the function xγ(ε) of variable ε. Let γ ∈R and ε ∈ (0,1).
Then

I+
γ

(
0,rγ(ε)

)= σ
(
rγ(ε)

)= ε, (5.3)

where rγ(ε) is defined in Section 2. From this, rγ(ε) ∈ Xγ(ε). Therefore for every γ ∈ R
the function xγ(ε) is defined everywhere on (0,1). Moreover, for every γ ∈R,

rγ(ε)≤ xγ(ε) ∀ε ∈ (0,1). (5.4)

As above, let sγ(ε) be a unique positive solution of (2.1) for every γ ∈R and ε ∈ (0,1).
For γ > 1 we put

ε̂γ = max
y∈[0,

√
2/(γ−1)]

I+
γ

(√
2

γ− 1
, y

)
. (5.5)
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The function xγ(ε) has the following properties.
(1) Let γ > 1. Then

xγ(ε)=
√

2
γ− 1

∀ε ∈ (
0, ε̂γ

]
, (5.6)

xγ(ε) <

√
2

γ− 1
∀ε ∈ (

ε̂γ,1
)
. (5.7)

(2) Let

γ ∈ (−∞,1], ε ∈ (0,1), (5.8)

or

γ ∈ (1,+∞), ε ∈ (
ε̂γ,1

)
. (5.9)

Then xγ(ε)∈ Σγ and

I+
γ

(
xγ(ε),sγ(ε)

)= ε. (5.10)

(3) For every γ > 1 we have

lim
ε→ε̂γ+0

xγ(ε)=
√

2
γ− 1

. (5.11)

(4) The function xγ(ε) is strictly decreasing on (0,1) for γ ≤ 1 and strictly decreasing
on (ε̂γ,1) for γ > 1. Moreover,

x′γ(ε)= xγ(ε) + sγ(ε)

θ′
(
xγ(ε)

)− ε
< 0 (5.12)

for every γ and ε, satisfying (5.8) or (5.9).
(5) (a) If γ ∈ (−∞,1], then the function xγ(ε)∈ C∞(0,1).

(b) If γ ∈ (1,2], then the function xγ(ε)∈ C∞((0, ε̂γ)∪ (ε̂γ,1)) and it is continuous
at the point ε̂γ;

(c) If γ ∈ (2,3], then the function xγ(ε)∈ C∞((0, ε̂γ)∪ (ε̂γ,1)) and it has the con-
tinuous derivative at the point ε̂γ;

(d) If γ ∈ (3,+∞], then the function xγ(ε) ∈ C∞((0, ε̂γ)∪ (ε̂γ,1)) and it has the
second continuous derivative at the point ε̂γ.

(6) For every γ ∈R we have

lim
ε→1−0

xγ(ε)= 0. (5.13)

(7) For every γ ≤ 1 we have

lim
ε→0+

xγ(ε)= +∞. (5.14)
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(8) (a) If γ ∈ (−∞,−1), then

lim
ε→0+

xγ(ε)ε−α = 0 for every α <
γ− 1

2
. (5.15)

(b) If γ =−1, then

lim
ε→0+

xγ(ε)ε= 2. (5.16)

(c) If γ ∈ (−1,1), then

lim
ε→0+

xγ(ε)ε=
(
γ+ 1

2

)(γ+1)/(2γ−2)

. (5.17)

(d) If γ = 1, then

lim
ε→0+

xγ(ε)ε= exp
{
− 1

2

}
. (5.18)

(9) For every γ ∈R we have

lim
ε→1−0

xγ(ε)

(1− ε)α
= +∞ for every α >

1
2
. (5.19)

Proof of property (1). Let γ > 1. We set

α(y)= I+
γ

(√
2

γ− 1
, y

)
= θ(y)

y +
√

2/(γ− 1)
. (5.20)

It is easy to see that the function α(y) is positive on (0,
√

2/(γ− 1)) and it is continuous

on [0,
√

2/(γ− 1)]. Therefore there exists

ε̂γ = max
y∈[0,

√
2/(γ−1)]

α(y) > 0. (5.21)

Next,

α(y)≤ y

y +
√

2/(γ− 1)
< 1 ∀y ∈

[
0,

√
2

γ− 1

]
. (5.22)

Hence ε̂γ < 1. Therefore for every ε ∈ (0, ε̂γ] the equation

α(y)= ε (5.23)

has at the least one solution y0 ∈ (0,
√

2/(γ− 1)). Otherwise the equation does not have
any solution.
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Fix ε ∈ (0, ε̂γ] and x ∈ Σγ. Let y0 ∈ Σγ be a solution of (5.23). We have

ε = α
(
y0
)= θ

(
y0
)

y0 +
√

2/(γ− 1)
≤ θ(x) + θ

(
y0
)

x+ y0
= I+

γ

(
x, y0

)
. (5.24)

From this x ∈ Xγ(ε). Hence Xγ(ε)= Σγ for all ε ∈ (0, ε̂γ]. This proves (5.6).
Now we prove (5.7). Fix ε ∈ (ε̂γ,1). Suppose that

xγ(ε)=
√

2
γ− 1

. (5.25)

Then for arbitrary n∈N there exists a number xn ∈ Xγ(ε) such that

√
2

γ− 1
− 1
n
< xn. (5.26)

Moreover,

lim
n→∞xn =

√
2

γ− 1
(5.27)

and for arbitrary n∈N there exists yn ∈ Σγ satisfying the inequality

I+
γ

(
xn, yn

)≥ ε, (5.28)

which implies

θ
(
xn
)− εxn ≥ εyn− θ

(
yn
)
. (5.29)

Further, we have

α
(
yn
)= θ(yn)

yn +
√

2/(γ− 1)
≤ ε̂γ ∀n∈N. (5.30)

Then

θ
(
yn
)≤ ε̂γ

(
yn +

√
2

γ− 1

)
∀n∈N. (5.31)

Using (5.29), for all n∈N we deduce

θ
(
xn
)− εxn ≥ εyn− θ

(
yn
)

≥ εyn− ε̂γ

(
yn +

√
2

γ− 1

)
≥−ε̂γ

√
2

γ− 1
.

(5.32)
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Letting n→∞ in the inequality

θ
(
xn
)− εxn ≥−ε̂γ

√
2

γ− 1
, (5.33)

we see that ε ≤ ε̂γ and we arrive at a contradiction. �

Further we will need the following lemma.

Lemma 5.1. If (5.8) or (5.9) holds, then xγ(ε) ∈ Σγ and there exists a number yγ(ε) ∈ Σγ

such that

I+
γ

(
xγ(ε), yγ(ε)

)= ε. (5.34)

Proof. Show that the set Xγ(ε) is compact for every γ and every ε satisfying (5.8) or (5.9).
Introduce the set

Zγ(ε)= {
(x, y)∈ Σγ ×Σγ : I+

γ (x, y)≥ ε
}
. (5.35)

Let π :R2 →R,π(x, y)= x be natural projection. It is clear that π(Zγ(ε))= Xγ(ε).
Assume that (5.8) holds. The set Zγ(ε) is closed since the function I+

γ (x, y) is contin-
uous. The set Zγ(ε) is bounded. Indeed, we can find a sequence Zγ(ε) � (xn, yn) →∞.
Assume that xn→∞. Then for the bounded subsequence of {yn} we have

ε ≤ I+
γ

(
xn, yn

)= xnσ
(
xn
)

+ ynσ
(
yn
)

xn + yn
≤ xnσ

(
xn
)

+ yn
xn

. (5.36)

The right part of this inequality tends to zero as n→∞. Thus we obtain a contradiction
to (5.8). For an unbounded subsequence of {yn} we have

ε ≤ I+
γ

(
xn, yn

)≤ σ
(
xn
)

+ σ
(
yn
)
. (5.37)

The right part of this inequality tends to zero as n→∞. Again we obtain a contradiction
to (5.8). Hence Zγ(ε) is bounded. Therefore Zγ(ε) is compact. Because the mapping π is
continuous, the set Xγ(ε)= π(Zγ(ε)) is compact too.

Assume that (5.9) holds. By (5.7) it follows that Zγ(ε) ⊂ Σγ ×Σγ. Here Zγ(ε) denotes
the closure of Zγ(ε). Since the function I+

γ (x, y) is continuous, Zγ(ε) is compact. Therefore
Xγ(ε) is compact too.

Similarly we establish that the set

Xγ(ε)= {
x ∈ Σγ : ∃y ∈ Σγ,I+

γ (x, y)= ε
}

(5.38)

is compact for every γ and ε satisfying (5.8) or (5.9).
We fix γ and ε satisfying (5.8) or (5.9). Prove that

max
x

Xγ(ε)=max
x

Xγ(ε). (5.39)
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We set

a=max
x

Xγ(ε), b=max
x

Xγ(ε). (5.40)

Obviously, a ≥ b. Show that a ≤ b. Since a ∈ Xγ(ε), there exists a number y0 ∈ Σγ such
that

I+
γ

(
a, y0

)≥ ε. (5.41)

Assume that

I+
γ

(
a, y0

)= ε. (5.42)

Then a∈ Xγ(ε) and hence a≤ b.
Now we assume

I+
γ

(
a, y0

)
> ε. (5.43)

For γ ≤ 1 we have

lim
x→+∞I

+
γ

(
x, y0

)= 0. (5.44)

Since the function I+
γ (x, y) is continuous, there exists a number x′ > a such that

I+
γ

(
x′, y0

)= ε. (5.45)

Then x′ ∈ Xγ(ε). Hence a < x′ ≤ b and we arrive at a contradiction. For γ > 1 we have

I+
γ

(√
2

γ− 1
, y0

)
≤ ε̂γ < ε. (5.46)

Then there exists a number x′ ∈(a,
√

2/(γ− 1)) satisfying (5.45). Hence x′ ∈ Xγ(ε). There-
fore a < x′ ≤ b and we arrive at a contradiction.

Thus we establish that

xγ(ε)=max
x

Xγ(ε) (5.47)

and arrive at the desired result. �

Proof of properties (2)–(5). Fix γ and ε0 satisfying (5.8) or (5.9). By Lemma 5.1 the num-
ber xγ(ε0)∈ Σγ and there exists a number yγ(ε0)∈ Σγ such that

I+
γ

(
xγ
(
ε0
)
, yγ

(
ε0
))= ε0. (5.48)

We set

F(x, y,ε)= I+
γ (x, y)− ε. (5.49)
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Observe that the function F(x, y,ε) is C∞-differentiable in some neighborhood U ⊂ R3

of the point p0 = (xγ(ε0), yγ(ε0),ε0) and F(p0)= 0. We have

∂F

∂x

(
p0
)= θ′

(
xγ
(
ε0
))− I+

γ

(
xγ
(
ε0
)
, yγ

(
ε0
))

xγ
(
ε0
)

+ yγ
(
ε0
) = θ′

(
xγ
(
ε0
))− ε0

xγ
(
ε0
)

+ yγ
(
ε0
) . (5.50)

By assertion (8) of Section 2, 0 < sγ(ε0) < rγ(ε0). Therefore the inequality rγ(ε0) ≤ xγ(ε0)
yields

∂F

∂x

(
p0
)
< 0. (5.51)

By the well-known implicit function theorem, there exist a 3-dimensional interval I =
Ix × Iy × Iε ⊂U and a function f ∈ C∞(Iy × Iε) such that for all (x, y,ε)∈ Ix × Iy × Iε,

F(x, y,ε)= 0⇐⇒ x = f (y,ε). (5.52)

Here

Ix =
{
x ∈R :

∣∣x− xγ
(
ε0
)∣∣ < a

}
, Iy =

{
y ∈R :

∣∣y− yγ
(
ε0
)∣∣ < b

}
,

Iε =
{
ε ∈R :

∣∣ε− ε0
∣∣ < c

}
.

(5.53)

Moreover,

∂ f

∂y

(
yγ
(
ε0
)
,ε0

)=−[F′x(p0)
]−1[

F′y
(
p0
)]=−θ′

(
yγ
(
ε0
))− ε0

θ′
(
xγ
(
ε0
))− ε0

,

∂ f

∂ε

(
yγ
(
ε0
)
,ε0

)=−[F′x
(
p0
)]−1

[F′ε
(
p0
)]= xγ

(
ε0
)

+ yγ
(
ε0
)

θ′
(
xγ
(
ε0
))− ε0

.

(5.54)

It is easy to see that at the point yγ(ε0) the function x = f (y,ε0) reaches a maximum
on Iy . Therefore

∂ f

∂y

(
yγ
(
ε0
)
,ε0

)= 0. (5.55)

From this

θ′
(
yγ
(
ε0
))= ε0. (5.56)

Hence yγ(ε0)= sγ(ε0) and property (2) is proved.
Further, we set

G(y,ε)= θ′(y)− ε. (5.57)

Observe that the function G(y,ε) is C∞-differentiable in some neighborhood V ⊂ R2 of
the point q0 = (sγ(ε0),ε0) and G(q0)= 0. By assertions (6)–(8) of Section 2 we have

∂G

∂y

(
q0
)= θ′′

(
sγ
(
ε0
))

< 0. (5.58)
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By the implicit function theorem, the function sγ(ε) is C∞-differentiable at the point ε0.
Therefore there is an interval

I′ε =
{
ε ∈R :

∣∣ε− ε0
∣∣ < c′

}⊂ Iε (5.59)

such that

sγ(ε)∈ Iy ∀ε ∈ I′ε . (5.60)

Hence for all (x,ε)∈ Ix × I′ε ,

F
(
x,sγ(ε),ε

)= 0⇐⇒ x = f
(
sγ(ε),ε

)
. (5.61)

We fix ε ∈ I′ε . Next,

x = f
(
sγ(ε),ε

)
(5.62)

and hence

F(x,sγ(ε),ε)= 0. (5.63)

Rewrite the latter equality in the form

μ(x)=−μ(sγ(ε)
)
, (5.64)

where

μ(t)= μ(t,ε)= θ(t)− tε. (5.65)

We have

μ′(t)= θ′(t)− ε. (5.66)

By assertion (8) of Section 2 we conclude that the function μ(t) is strictly increasing on
(0,sγ(ε)) and strictly decreasing on (sγ(ε),+∞)∩Σγ. Moreover, μ(0) = μ(rγ(ε)) = 0 and
by property (2), μ(xγ(ε))=−μ(sγ(ε)). Then it is not hard to check that x = xγ(ε). Thus

xγ(ε)= f
(
sγ(ε),ε

) ∀ε ∈ I′ε . (5.67)

Hence the function xγ(ε) is C∞-differentiable at the point ε0 and

x′γ
(
ε0
)= ∂ f

∂y

(
sγ
(
ε0
)
,ε0

)
s′γ
(
ε0
)

+
∂ f

∂ε

(
sγ
(
ε0
)
,ε0

)= ∂ f

∂ε

(
sγ
(
ε0
)
,ε0

)= xγ
(
ε0
)

+ sγ
(
ε0
)

θ′
(
xγ
(
ε0
))− ε0

< 0.

(5.68)

This proves property (4).
Let γ > 1. We show that

lim
ε→ε̂γ+0

xγ(ε)=
√

2
γ− 1

. (5.69)
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Let y0 ∈ Σγ be a solution of the equation

α(y)= ε̂γ. (5.70)

Here, as above,

α(y)= I+
γ

(√
2

γ− 1
, y

)
. (5.71)

Then

θ
(
y0
)

y0 +
√

2/(γ− 1)
= ε̂γ,

α′
(
y0
)=

θ′
(
y0
)(

y0 +
√

2/(γ− 1)
)
− θ

(
y0
)

(
y0 +

√
2/(γ− 1)

)2 = 0.

(5.72)

From this

θ
(
y0
)= θ′

(
y0
)
(
y0 +

√
2

γ− 1

)
. (5.73)

Using (5.72), we conclude that

θ′
(
y0
)= ε̂γ, (5.74)

that is, y0 = sγ(ε̂γ).
We rewrite the equality

I+
γ

(
xγ(ε),sγ(ε)

)= ε (5.75)

in the form

θ
(
xγ(ε)

)− xγ(ε)ε=−(θ(sγ(ε)
)− sγ(ε)ε

)
. (5.76)

Using (5.72), we obtain

lim
ε→ε̂γ+0

(
θ
(
xγ(ε)

)− xγ(ε)ε
)=−(θ(sγ(ε̂γ

))− sγ
(
ε̂γ
)
ε̂γ
)=−ε̂γ

√
2

γ− 1
. (5.77)



24 Some elementary inequalities in gas dynamics equation

Thus

lim
ε→ε̂+0

μ
(
xγ(ε),ε

)=−ε̂γ
√

2
γ− 1

. (5.78)

Suppose that (5.69) is not true. That is, for some sequence εi → ε̂γ + 0 of numbers the
inequality

xγ
(
εi
)≤

√
2

γ− 1
−m (5.79)

holds with some constant m> 0. Note that xγ(ε)∈ [rγ(ε),
√

(2/γ− 1)) for every ε ∈ (ε̂γ,1).
By assertion (8) of Section 2 it follows that the function μ(t) is strictly decreasing on

[rγ(ε),
√

(2/γ− 1)). We have

μ
(
xγ
(
εi
)
,εi
)≥ μ

(√
2

γ− 1
−m,εi

)
>−

(√
2

γ− 1
−m

)
εi. (5.80)

Letting εi → ε̂γ + 0, we obtain a contradiction to (5.78). Thus property (3) is proved.
Hence the function xγ(ε) is continuous at the point ε̂γ for every γ > 1.

For γ > 1 we have

Aγ = lim
ε→ε̂γ+0

xγ(ε)− xγ
(
ε̂γ
)

ε− ε̂γ
= lim

ε→ε̂γ+0
x′γ(ε)= lim

ε→ε̂γ+0

xγ(ε) + sγ(ε)

θ′
(
xγ(ε)

)− ε
. (5.81)

By assertion (5) of Section 2 and by property (3) we obtain

Aγ =−
√

2/(γ− 1) + sγ
(
ε̂γ
)

ε̂γ
< 0 for γ ∈ (1,2),

Aγ =−
√

2/(γ− 1) + sγ
(
ε̂γ
)

2 + ε̂γ
< 0 for γ = 2,

Aγ = 0 for γ ∈ (2,+∞).

(5.82)

Hence xγ(ε) is not differentiable at the point ε̂γ for γ ∈ (1,2] and it has the continuous
derivative at the point ε̂γ for γ ∈ (2,+∞).

For γ > 2 we have

Bγ = lim
ε→ε̂γ+0

x′γ(ε)− x′γ
(
ε̂γ
)

ε− ε̂γ
= lim

ε→ε̂γ+0

xγ(ε) + sγ(ε)
(
θ′
(
xγ(ε)

)− ε
)(
ε− ε̂γ

) . (5.83)
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Using L’Hospital rule and property (3), we find

lim
ε→ε̂γ+0

(
1− γ− 1

2
x2
γ(ε)

)(2−γ)/(γ−1)
(
ε− ε̂γ

)

= lim
ε→ε̂γ+0

ε− ε̂γ
(
1− (

(γ− 1)/2
)
x2
γ(ε)

)(γ−2)/(γ−1)

= lim
ε→ε̂γ+0

1

−(γ− 2)xγ(ε)x′γ(ε)
(
1− (

(γ− 1)/2
)
x2
γ(ε)

)−1/(γ−1)

=− 1
γ− 2

lim
ε→ε̂γ+0

σ
(
xγ(ε)

)(
θ′
(
xγ(ε)

)− ε
)

xγ(ε)
(
xγ(ε) + sγ(ε)

)

=− 1
γ− 2

lim
ε→ε̂γ+0

σ
(
xγ(ε)

)
θ′
(
xγ(ε)

)

xγ(ε)
(
xγ(ε) + sγ(ε)

)

=− 1
γ− 2

lim
ε→ε̂γ+0

(
1− (

(γ+ 1)/2
)
x2
γ(ε)

)(
1− (

(γ− 1)/2
)
x2
γ(ε)

)(3−γ)/(γ−1)

xγ(ε)
(
xγ(ε) + sγ(ε)

) .

(5.84)

Then

Bγ = lim
ε→ε̂γ+0

xγ(ε) + sγ(ε)

θ′
(
xγ(ε)

)(
ε− ε̂γ

)

=−(γ− 2) lim
ε→ε̂γ+0

xγ(ε)
(
xγ(ε) + sγ(ε)

)2

(
1− (

(γ+ 1)/2
)
x2
γ(ε)

)2(
1− (

(γ− 1)/2)x2
γ(ε)

)(3−γ)/(γ−1) .

(5.85)

By property (3) we find

Bγ =−∞ for γ ∈ (2,3),

Bγ =−
(
1 + sγ

(
ε̂γ
))2

< 0 for γ = 3,

Bγ = 0 for γ ∈ (3,+∞).

(5.86)

Therefore the function xγ(ε) is not doubly differentiable at the point ε̂γ for γ ∈ (2,3] and
it has second continuous derivative at the point ε̂γ for γ ∈ (3,+∞). Thus property (5) is
proved. �

Proof of property (6). By assertion (8) of Section 2,

0 < sγ(ε) < rγ(ε) (5.87)

for every ε and γ satisfying (5.8) or (5.9). Letting ε→ 1− 0 we obtain

lim
ε→1−0

sγ(ε)= 0. (5.88)
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Show that

lim
ε→1−0

xγ(ε)= 0. (5.89)

Indeed, suppose that this is not true, that is, there will be a number ε0 ∈ (0,1) and a
sequence εi→ 1 (ε0 < εi < 1) such that the inequalities

m≤ xγ
(
εi
)≤ xγ

(
ε0
)

(5.90)

hold with some constant m> 0. We can consider that

lim
εi→1

xγ
(
εi
)= a∈ [

m,xγ
(
ε0
)]
. (5.91)

Using property (2), we have

1= lim
εi→1

εi = lim
εi→1

I+
γ

(
xγ
(
εi
)
,sγ
(
εi
))= I+

γ (a,0)= σ(a). (5.92)

Then a= 0 <m and we arrive at a contradiction. �

Proof of property (7). Letting ε→ 0+ in the inequality xγ(ε)≥ rγ(ε), we obtain (5.7). �

Proof of property (8). (a) Let γ <−1. By assertion (8) of Section 2,

0 < sγ(ε) < rγ(ε) ∀ε ∈ (0,1). (5.93)

From this

lim
ε→0+

sγ(ε)ε−α = 0 for every α <
γ− 1

2
. (5.94)

We set

ϑ(t)=
(

1− γ+ 1
2

t2

)(
1− γ− 1

2
t2

)−1

. (5.95)

Obviously

lim
t→+∞ϑ(t)= γ+ 1

γ− 1
. (5.96)

It is easy to see that the function ϑ(t) is strictly decreasing on [0,+∞). Therefore

ϑ(t) >
γ+ 1
γ− 1

∀t ≥ 0. (5.97)

Next, for all ε ∈ (0,1),

ε = θ′
(
sγ(ε)

)=
(

1− γ− 1
2

s2
γ(ε)

)(1/(γ−1))−1(
1− γ+ 1

2
s2
γ(ε)

)
> σ

(
sγ(ε)

) γ+ 1
γ− 1

. (5.98)
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From this

1 <
σ
(
sγ(ε)

)

ε
<
γ− 1
γ+ 1

(5.99)

for all ε ∈ (0,1). We note that the equality I+
γ (x, y)= ε can be written as

x

(
σ(x)
ε
− 1

)
= y

(
1− σ(y)

ε

)
. (5.100)

By (5.94) and (5.99) we obtain

0= lim
ε→0+

sγ(ε)ε−α
(
σ
(
sγ(ε)

)

ε
− 1

)
= lim

ε→0+
xγ(ε)ε−α

(
1− σ

(
xγ(ε)

)

ε

)
(5.101)

for each α < (γ− 1)/2.
Assume that there exits α < (γ− 1)/2 such that

lim
ε→0+

xγ(ε)ε−α �= 0. (5.102)

Then for some sequence εi→ 0 of positive numbers the inequality

xγ
(
εi
)
ε−αi ≥m (5.103)

holds with some constant m> 0. By (5.101) we find

lim
εi→0+

σ
(
xγ
(
εi
))

εi
= 1. (5.104)

By (5.103),

lim
εi→0+

σ
(
xγ
(
εi
))

εi
≤ lim

εi→0+

σ
(
mεαi

)

εi
= 0 (5.105)

and we arrive at a contradiction.
(b) Let γ =−1. We have

ε = θ′
(
sγ(ε)

)= (
1 + s2

γ(ε)
)−3/2

. (5.106)

Then

sγ(ε)=
√
ε−2/3− 1, σ

(
sγ(ε)

) = ε1/3. (5.107)

By property (7),

lim
ε→0+

θ
(
xγ(ε)

)= 1. (5.108)

We have

1= lim
ε→0+

(
θ
(
sγ(ε)

)− sγ(ε)ε
)= lim

ε→0+

(
xγ(ε)ε− θ

(
xγ(ε)

))
. (5.109)
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From this

lim
ε→0+

xγ(ε)ε= 2. (5.110)

(c) Let γ ∈ (−1,1). By property (7),

lim
ε→0+

θ
(
xγ(ε)

)= 0. (5.111)

Assertions (7) and (8) of Section 2 yield

lim
ε→0+

sγ(ε)=
√

2
γ+ 1

. (5.112)

Then, using (5.111), we obtain

(
γ+ 1

2

)(γ+1)/(2γ−2)

= θ

(√
2

γ+ 1

)
= lim

ε→0+

(
θ
(
sγ(ε)

)− sγ(ε)ε
)

= lim
ε→0+

(
xγ(ε)ε− θ

(
xγ(ε)

))= lim
ε→0+

xγ(ε)ε.

(5.113)

(d) The proof is analogous. �

Proof of property (9). Assume that γ > 1. Then

xγ(ε)≥ rγ(ε)=
√√√√2

(
1− εγ−1

)

γ− 1
. (5.114)

Using L’Hospital rule, we find

lim
ε→1−0

1− εγ−1

(1− ε)2α
= γ− 1

2α
lim
ε→1−0

εγ−2

(1− ε)2α−1
= +∞ (5.115)

for every α > 1/2. From this we obtain desired result. The case γ ≤ 1 is analogous. �
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458.

[9] S. Pigola, M. Rigoli, and A. G. Setti, Some remarks on the prescribed mean curvature equation on
complete manifolds, Pacific Journal of Mathematics 206 (2002), no. 1, 195–217.

V. A. Klyachin: Department of Mathematics,Volgograd State University,
Universitetsky Prospekt 100, 400062 Volgograd, Russia
E-mail address: klchnv@mail.ru

A. V. Kochetov: Department of Mathematics, Volgograd State University,
Universitetsky Prospekt 100, 400062 Volgograd, Russia
E-mail address: kochetov.alexey@mail.ru

V. M. Miklyukov: Department of Mathematics, Volgograd State University,
Universitetsky Prospekt 100, 400062 Volgograd, Russia
E-mail address: miklyuk@mail.ru

mailto:klchnv@mail.ru
mailto:kochetov.alexey@mail.ru
mailto:miklyuk@mail.ru

	1. Main results
	2. Properties of 
	3. Properties of W-(), W+(), V-(), and V+()
	4. Proofs of main theorems
	5. Properties of x()
	References

