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1. Introduction

We consider the model with discrete innovations introduced in [1] and studied in [2–9].
In this model the state of the economy is determined by a set of operating technologies,
a collection of funds corresponding to these technologies, and a set of known, but as
yet not implemented technologies. To introduce a new technology, expenditures of the
already utilized types of funds are required. As a result of these expenditures, the new
technology at the next instant of time will be introduced into action with a certain initial
reserve of new funds.

We consider a single-product economy which deals with two production factors: labor
L and funds K . The time is assumed to be discrete and the amount of labor is constant and
equal to unity. The state of the economy is determined by a set of operating technologies,
a collection of funds corresponding to these technologies and a set of known, but as yet
not implemented technologies.

A technology is a pair ( f ,v) where f is a production function of two variables K , L
and v ∈ [0,1). Possessing at time t funds K and labor resources L, the economy utilizing
the technology ( f ,v) will produce during a unit time interval, a product in the amount
of f (K ,L). Moreover, at time t + 1 the economy will still have in its possession the used
old funds in the amount of vK .

To introduce a new technology, expenditures of the already utilized types of funds are
required. As a result of these expenditures, the new technology at the next instant of time
will be introduced into action with a certain initial reserve of the new funds.

Let I = {0,1, . . .} and {( f i,vi) : i∈ I} be the set of all technologies which can be utilized
in the production process. At time t ∈ I the state of the economy is given in the form

(
It0,Itn,

(
Ki
t ,C

i
t

) (
i∈ It0

))
, (1.1)
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2 Existence of trajectories

where It0 is a finite set of numbers (indices) of technologies introduced by the time t, Itn
is the set of numbers of technologies which are available in principle but not introduced,
and Ki

t ,C
i
t ≥ 0 are the funds and consumption of the ith type available at time t which cor-

respond to the technology with the number i. We will assume that at time t, the following
information is available:

(
Ki
)
,
(
si j
) (

i∈ Itn, j ∈ Itn∪ It0
)
, (1.2)

where si j ≥ 0 is the expenditure of the jth funds required for introduction of the ith
technology and Ki > 0 is the initial amount of the ith fund which is obtained at the initial
time of utilization of the ith technology. At time t + 1 the economy may pass over to the
state

(
It+1

0 ,It+1
n ,

(
Ki
t+1,Ci

t+1

) (
i∈ It+1

0

))
(1.3)

for which

It0 ⊂ It+1
0 ⊂ It0∪ Itn,

It+1
0 \ It0 ⊂

{
i∈ Itn : si j = 0∀ j ∈ Itn

} (1.4)

and the numbers Lit ≥ 0, i∈ It0 are determined such that

∑

i∈It0
Lit ≤ 1,

K
j
t+1 ≥ v jK

j
t ∀ j ∈ It0,

Ki
t+1 = Ki, Ci

t+1 = 0, i∈ It+1
0 \ It0,

K
j
t+1− v jK

j
t +C

j
t+1 +

∑

i∈It+1
0 \It0

si j ≤ f j
(
K

j
t ,L

j
t

) ∀ j ∈ It0.

(1.5)

(We assume here that the result of a summation over an empty set equals zero.) Note that
in the model under consideration the newly produced product is used for consumption
and expenditures related to an introduction of new technologies. Sometimes the state of
the economy at time t will be written in the form

(
It0,Itn,

(
Ki
t ,C

i
t,L

i
t

) (
i∈ It0

))
, (1.6)

where (Lit) (i ∈ It0) is the distribution of labor resources at time t. We do it in the case
when some description of this distribution is required. When describing a trajectory of
the model we would also include into its description the corresponding sequence of dis-
tributions of labor resources, most often only in the case when some information about
these resources is required. However, in any case a definite sequence of distributions of
labor resources is always associated with a trajectory of the model.

Denote by Rl
+ the cone of elements of the Euclidean space Rl with nonnegative co-

ordinates. Below all the technologies under consideration ( f ,v) will assume to be such
that f : R2

+ → R+ be a continuous, superlinear (superadditive, positively homogeneous)
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function,

f (0,1)= f (1,0)= 0,

f (x,1) < f (λx,1) < λ f (x,1) for each λ > 1 and each x > 0,
(1.7)

and there exists X ∈ R+ such that f (1,X) > 1− v.
Let ( f ,v) be a technology. It is easy to see that there exists a unique number x( f ,v) > 0

such that

f
(
x( f ,v),1

)= (1− v)x( f ,v). (1.8)

For x0 > 0 the inequality f (x0,1) > (1− v)x0 holds if and only if x0 < x( f ,v) and the
sequence

xt = vxt−1 + f
(
xt−1,1

)
, t = 1,2, . . . (1.9)

converges to x( f ,v) as t→∞. Evidently x( f ,v) is a characteristic of the technology ( f ,v)
which evaluates its production capabilities.

The technology ( f ,v) is associated with a dynamic model of the economy whose tra-
jectory is a sequence (Kt,Ct), t = 0,1, . . . , where Kt,Ct ≥ 0 are the funds and consumption
available at time t which satisfy

Kt+1− vKt ≥ 0,

Kt+1− vKt +Ct+1 ≤ f
(
Kt,1

) (1.10)

for all t = 0,1, . . . .
It is easy to see that for any model trajectory (Kt,Ct), t = 0,1, . . . we have

limsup
t→∞

(
vKt + f

(
Kt,1

))≤ x( f ,v),

limsup
t→∞

Kt ≤ x( f ,v).
(1.11)

Moreover, for any initial state of the model (K0,C0) with K0 > 0 there exists a trajectory
(Kt,Ct), t = 0,1, . . . such that Kt → x( f ,v) as t→∞.

Let X = (Kt,Ct) (t ∈ I) be a model trajectory. Set

w(X)= limsup
T→∞

T−1
T−1∑

t=0

Ct. (1.12)

Evidently w(X)≤ x( f ,v). Set

w( f ,v)= sup
{
w(X) : X is a model trajectory

}
. (1.13)

The number w( f ,v) is a characteristic of the technology ( f ,v) which evaluates its con-
sumption capabilities.

It is easy to verify that the following result is true.
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Proposition 1.1. There exists a number h( f ,v)∈ (0,1) such that

lim
x→∞

(
h( f ,v) f (1,x)

)∈ (1− v,∞],
(
1−h( f ,v)

)
f
(
x
(
h( f ,v) f ,v

)
,1
)=w( f ,v) > 0.

(1.14)

2. The main result

Consider the model with discrete innovations introduced in Section 1. We assume that
for each i, j ∈ I

si j > 0 if and only if i= j + 1 (2.1)

and that

s(i+1)i < f i
(
x
(
f i,vi

)
,1
)

(2.2)

for each i∈ I .

Remark 2.1. Let i∈ I and the ith technology be introduced at time t0. Assume that Ki <
x( f i,vi). This inequality means that the initial amount of the ith fund is less than the
characteristic of the technology ( f i,vi) which evaluates its production capabilities. It is
easy to see that for each instant of time t > t0, Ki

t < x( f i,vi) and f i(Ki
t ,1) < f i(x( f i,vi),1).

Therefore the inequality (2.2) is necessary for implementation of the (i+ 1)th technology.

It is well known that for a model with a finite number of technologies all trajectories
are bounded. For the model with discrete innovations a finite number of technologies
can be introduced by time t, where t = 0,1, . . . , but the set of all technologies which can
be utilized in the production process is infinite. In [2] we established the existence of tra-
jectories of the model with discrete innovations on which consumption tends to infinity
if the set {w( f i,vi) : i∈ I} is unbounded and if

sup
{
s(i+1)i( f i

(
x
(
f i,vi

)
,1
))−1

: i∈ I
}
< 1. (2.3)

In this paper we will establish the following result.

Theorem 2.2. Let

sup
{
w
(
f i,vi

)
: i∈ I

}=∞,
(
I0

0 ,I0
n ,
(
Ki

0,Ci
0

) (
I ∈ I0

0

)) (2.4)

be an initial state of the economy and let

p = sup
{
i : i∈ I0

0

}
, K

p
0 > 0. (2.5)

Then there exists a model trajectory

(
It0,Itn,

(
Ki

0,Ci
0

) (
i∈ It0

))
(t ∈ I), (2.6)
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such that

T−1
T∑

t=1

sup
{
Ci
t : i∈ It0

}−→∞ as T −→∞ (2.7)

and that for each t > 0, sup{Ci
t : i∈ It0} > 0.

3. Proof of Theorem 2.2

We may assume without loss of generality that for any instant of time t and any state of
the model

(
Ĩ t0, Ĩ tn,

(
K̃ i
t , C̃

t
i

) (
I ∈ Ĩ t0

))
, (3.1)

the following relation holds:

Ĩ tn =
{

max
{
i : i∈ Ĩ t0

}
+ 1
}
. (3.2)

In view of this assumption we omit below the notation Itn in describing the state of the
model. Clearly, we may also assume without loss of generality that

I0
0 = {p}. (3.3)

For i∈ I we set

w(i)=w
(
f i,vi

)
, h(i)= h

(
f i,vi

)
, x(i)= x

(
f i,vi

)
,

Λ(i)= x
(
h
(
f i,vi

)
f i,vi

)
.

(3.4)

Set p0 = p. By (2.4) there exists a strictly increasing sequence of integers pi ∈ I , i= 0,1, . . .
such that

w
(
pi+1

)≥ 2w
(
pi
) ∀i∈ I. (3.5)

For each i∈ I set

K̃ i =min
{

4−1Λ(i), Ki
}
. (3.6)

Let i∈ I . Set

Γ(i,0)= K̃ i, Γ(i, p+ 1)= viΓ(i, p) + f i
(
Γ(i, p),1

)
, p ∈ I. (3.7)

It follows from (2.2) and (3.7) that there is a natural number q(i) > 2 such that

s(i+1)i < f i
(
Γ
(
i,q(i)− 1

)
,1
)
. (3.8)

Lemma 3.1. Let τ ∈ I , (Iτ0 , (Ki
τ ,Ci

τ) (i∈ Iτ0 )) be a state of the economy at time τ and let

j =max
{
i : i∈ Iτ0

}
, K

j
τ ≥ K̃ j . (3.9)
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Then there exists a model trajectory

(
It0,
(
Ki
t ,C

i
t

) (
i∈ It0

)) (
t = τ, . . . ,τ + q( j)

)
, (3.10)

such that

I
τ+q( j)
0 = Iτ0 ∪{ j + 1}, K

j+1
τ+q( j) = K j+1,

C
j
t > 0, t = τ + 1, . . . ,τ + q( j).

(3.11)

Proof. Set

l = s( j+1) j( f j
(
Γ
(
j,q( j)− 1

)
,1
))−1

. (3.12)

For t = τ, . . . ,τ + q( j)− 2 we set

It+1
0 = It0 = Iτ0 ,

Lit = 0, i∈ Iτ0 \ { j}, L
j
t = 1,

Ci
t+1 = 0, Ki

t+1 = viKi
t , i∈ Iτ0 \ { j}.

K
j
t+1 = v jK

j
t + f j

(
K

j
t , (1 + l)/2

)
,

C
j
t+1 = f j

(
K

j
t ,1
)− f j

(
K

j
t , (1 + l)/2

)
.

(3.13)

Clearly the states of the trajectory at times t = τ, . . . ,τ + q( j)− 1 are well defined and

C
j
t > 0, t = τ + 1, . . . ,τ + q( j)− 1. (3.14)

We show that

f j
(
K

j
τ+q( j)−1,1

)
> s( j+1) j . (3.15)

First we show by induction that for t = 0, . . . ,q( j)− 1,

K
j
t+τ ≥ Γ( j, t)(1 + l)/2. (3.16)

In view of (3.9) and (3.6) the inequality (3.16) is valid for t = 0. Assume that (3.16) holds
with an integer t satisfying

0≤ t < q( j)− 1. (3.17)

It follows from (3.13), (3.16) and (3.7) that

K
j
t+1+τ = v jK

j
t+τ + f j

(
K

j
t+τ , (1 + l)/2

)

≥ v jΓ( j, t)(1 + l)/2 +
(
(1 + l)/2

)
f j
(
Γ( j, t),1

)

≥ ((1 + l)/2
)
Γ( j, t+ 1).

(3.18)



Alexander J. Zaslavski 7

Therefore (3.16) is true for all t = 0, . . . ,q( j)− 1 and

K
j
τ+q( j)−1 ≥

(
(1 + l)/2

)
Γ
(
j,q( j)− 1

)
. (3.19)

By (3.19), (3.12) and (3.8),

f j
(
K

j
τ+q( j)−1,1

)≥ f j
(
2−1(1 + l)Γ

(
j,q( j)− 1

)
,1
)

> 2−1(1 + l) f j
(
Γ
(
j,q( j)− 1

)
,1
)
> s( j+1) j .

(3.20)

Define the state of the economy at time τ + q( j) as follows:

I
τ+q( j)
0 = Iτ0 ∪{ j + 1}, Liτ+q( j)−1 = 0, i∈ Iτ0 \ { j},

L
j
τ+q( j)−1 = 1, Ci

τ+q( j) = 0, Ki
τ+q( j) = viKi

τ+q( j)−1, i∈ Iτ0 \ { j},
K

j
τ+q( j) = v jK

j
τ+q( j)−1, C

j
τ+q( j) = f j

(
K

j
τ+q( j)−1,1

)− s( j+1) j ,

K
j+1
τ+q( j) = K j+1, C

j+1
τ+q( j) = 0.

(3.21)

It is easy to see that the state of the economy at time τ + q( j) is well defined. Lemma 3.1
is proved. �

Lemma 3.2. Let τ,k ∈ I and let

(
It0,
(
Ki
t ,C

i
t

) (
i∈ It0

))
(t = 0, . . . ,τ) (3.22)

be a model trajectory. Assume that

pk =max
{
i : i∈ Iτ0

}
, (3.23)

K
pk
τ ≥ 4−1Λ

(
pk
)
. (3.24)

Then there exists a model trajectory

(
It0,
(
Ki
t ,C

i
t

) (
i∈ It0

))
(t = τ, . . . ,τ + S) (3.25)

with an integer S≥ 1 and an integer T ∈ [1,S) such that

max
{
i : i∈ Iτ+S

0

}= pk+1,

K
pk+1
τ+S ≥ 4−1Λ

(
pk+1

)
,

sup
{
Ci
t : i∈ It0

}
> 0, t = τ + 1, . . . ,τ + S,

C
pk
t ≥ 4−1w(pk), t = τ + 1, . . . ,τ +T ,

Q−1
Q∑

t=1

sup
{
Ci
t : i∈ It0

}≥ 16−1w
(
f pk ,vPk

)

(3.26)

for each Q = T + τ + 1, . . . ,τ + S.
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Proof. Set a0 = Kpk+1 and

at+1 = vpk+1at + f pk+1
(
ak,1

)
h
(
f pk+1 ,vpk+1

)
(3.27)

for t ∈ I . Clearly

lim
t→∞at =Λ

(
pk+1

)
. (3.28)

There is a natural number τ0 such that

aτ0 ≥ 2−1Λ
(
pk+1

)
. (3.29)

Set

q̄ =
pk+1−1∑

j=pk
q( j),

T = q̄+ τ0 + τ, S= T + q̄+ τ0.

(3.30)

First we define the states of the trajectory at times t = τ + 1, . . . ,τ +T as follows:

It0 = Iτ0 ,

Lit−1 = 0, i∈ Iτ0 \
{
pk
}

, L
pk
t−1 = 1,

Ki
t = viKi

t−1, Ci
t = 0, i∈ Iτ0 \

{
pk
}

,

K
pk
t = vpkK

pk
t−1 +h

(
f pk ,vpk

)
f pk
(
K

pk
t−1,1

)
,

C
pk
t =

(
1−h

(
pk
))

f pk
(
K

pk
t−1,1

)
.

(3.31)

Using (3.24) and (3.31) we can show by induction that

K
pk
t ≥ 4−1Λ

(
pk
)
, C

pk
t ≥ 4−1w

(
pk
)
, t = τ + 1, . . . ,τ +T. (3.32)

In view of Lemma 3.1, (3.23), (3.31), and (3.32), there exists a model trajectory

(
It0,
(
Ki
t ,C

i
t

) (
i∈ It0

))
(

t = τ +T , . . . ,τ +T +
pk+1−1∑

j=pk
q( j)

)

, (3.33)

such that

pk+1 ∈ I
τ+T+q̄
0 , K

pk+1

τ+T+q̄ = Kpk+1 ,

sup
{
Ci
t : i∈ It0

}
> 0, t = τ +T + 1, . . . ,τ +T + q̄,

pk+1 =max I
τ+T+q̄
0 .

(3.34)
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Now we define the states of the economy at time t = τ +T + q̄+ 1, . . . ,τ + S as follows:

It0 = I
τ+T+q̄
0 ,

Lit−1 = 0, Ci
t = 0, Ki

t = viKi
t−1, i∈ I

τ+T+q̄
0 \ {pk+1

}
,

L
pk+1

t−1 = 1,

K
pk+1
t = vpk+1K

pk+1

t−1 +h
(
pk+1

)
f pk+1

(
K

pk+1

t−1 ,1
)
,

C
pk+1
t = (1−h

(
pk+1

))
f pk+1

(
K

pk+1

t−1 ,1
)
.

(3.35)

(3.35), (3.29), (3.27), and (3.30) imply that

K
pk+1
τ+S = aτ0 ≥ 2−1Λ

(
pk+1

)
. (3.36)

In order to complete the proof of the lemma we need only to show that (3.26) is valid for
Q = τ + 1 +T , . . . ,τ + S.

Assume that τ +T < Q ≤ τ + S. It follows from (3.32) and (3.30) that

Q−1
Q∑

t=1

sup
{
Ci
t : i∈ It0

}

≥ (τ + S)−1
τ+T∑

t=τ+1

sup
{
Ci
t : i∈ It0

}

≥ (τ + S)−14−1Tw
(
pk
)

≥ (T + 2T)−1Tw
(
pk
)
/4≥ 12−1w

(
pk
)
.

(3.37)

Lemma 3.2 is proved. �

Completion of the proof of Theorem 2.2. Consider a sequence {bt}∞t=0 ⊂ R1 defined by

b0 = K
p
0 , bt+1 = vpbt +h(p) f p

(
bt,1

)
, t ∈ I. (3.38)

It is not difficult to see that

lim
t→∞bt =Λ(p). (3.39)

There is an integer t0 ≥ 1 such that

bt0 ≥ 2−1Λ(p). (3.40)

Define a trajectory

(
It0,
(
Ki
t ,C

i
t

) (
i∈ It0

)) (
t = 0, . . . ,4t0

)
. (3.41)
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For t = 1, . . . ,4t0 we set

It0 = I0
0 , Lit−1 = 0, Ci

t = 0,

Ki
t = viKi

t−1, i∈ I0
0 \ {p}, L

p
t−1 = 1,

K
p
t = vpK

p
t−1 +h(p) f p

(
K

p
t−1,1

)
, C

p
t =

(
1−h(p)

)
f p
(
K

p
t−1,1

)
.

(3.42)

It follows from (3.42) and (3.40) that

K
p
t ≥ 2−1Λ(p), t = t0, . . . ,4t0,

C
p
t ≥ 2−1w(p), t = t0 + 1, . . . ,4t0.

(3.43)

Applying Lemma 3.2 by induction we construct a model trajectory

(
It0,
(
Ki
t ,C

i
t

) (
I ∈ It0

))
(t ∈ I) (3.44)

and strictly increasing sequences of natural numbers {Tk}∞k=1, {τk}∞k=0 such that

τ0 = 4t0, τk−1 < Tk < τk, k = 1,2, . . . (3.45)

and that for each integer k ≥ 0 we have

max
{
i : i∈ Iτk0

}= pk,

K
pk
τk ≥ 4−1Λ

(
pk
)
,

sup
{
Ci
t : i∈ It0

}
> 0, t = τk + 1, . . . ,τk+1,

C
pk
t ≥ 4−1w

(
pk
)
, t = τk + 1, . . . ,Tk+1,

Q−1
Q∑

t=1

sup
{
Ci
t : i∈ It0

}≥ 16−1w
(
pk
)
,

Q= Tk+1 + 1, . . . ,τk+1.

(3.46)

It follows from (3.46), (3.45) and (3.42) that

sup
{
Ci
t : i∈ It0

}
> 0, t ∈ I \ {0}. (3.47)

We will show that

T−1
T∑

t=1

sup
{
Ci
t : i∈ IT0

}−→ as T −→∞. (3.48)

By (3.45) and (3.43) for each integer T ∈ [2t0,τ0]

T−1
T∑

t=1

sup
{
Ci
t : i∈ It0

}≥ (4t0
)−1

t02−1w
(
p0
)≥ 8−1w

(
p0
)
. (3.49)

Let k ≥ 0 be an integer and assume that an integer

T ∈ (τk,Tk+1
]
. (3.50)
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It follows from (3.46), and (3.49) that

T−1
T∑

t=1

sup
{
Ci
t : i∈ It0

}

= T−1

[ τk∑

t=1

sup
{
Ci
t : i∈ It0

}
+

T∑

t=τk+1

sup
{
Ci
t : i∈ It0

}
]

≥ T−1

[

τk

τk∑

t=1

sup
{
Ci
t : i∈ It0

}
/τk +

(
T − τk

)
4−1w

(
pk
)
]

≥ T−1[τk/16−1w
(
pk
)

+
(
T − τk

)
4−1w

(
pk
)]≥ 16−1w

(
pk
)
.

(3.51)

Together with (3.46) this implies that for each natural number T ∈ (τk,τk+1]

T−1
T∑

t=1

sup
{
Ci
t : i∈ It0

}≥ 16−1w
(
pk
)
. (3.52)

Since w(pk)→∞ as k→∞, the inequality above completes the proof of the theorem.
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