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We investigate some properties of non-Archimedean integration which is defined by Kim.
By using our results in this paper, we can give an answer to the problem which is intro-
duced by I.-C. Huang and S.-Y. Huang in 1999.

Copyright © 2006 Lee-Chae Jang et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Throughout this paper Zp,Qp, andCp will, respectively, denote the ring of p-adic rational
integers, the field of p-adic rational numbers, and the completion of algebraic closure of
Qp. Let vp be the normalized exponential valuation of Cp with |p|p = p−vp(p) = p−1.

Let p be a fixed prime number and let l be a fixed integer with (p, l)= 1. We set

X = lim←−
N

(
Z/lpNZ

)
,

X∗ =
⋃

0<a<lp
(a,p)=1

(
a+ lpZp

)
,

a+ lpNZp =
{
x ∈ X | x ≡ a

(
mod lpN

)}
,

(1.1)

where a∈ Z lies in 0≤ a < lpN (cf. [3, 4]).
For any positive integer N , we set

μ1
(
a+ lpNZp

)= 1
lpN

(1.2)

and this can be extended to a distribution on X (see [3, 9]).
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2 A note on Euler number and polynomials

This distribution yields an integral for nonnegative integer m:

∫

X
xmdμ1(x)= Bm, (1.3)

where Bm are called usual Bernoulli numbers (cf. [8]).
The Euler numbers Em are defined by the generating function in the complex number

field as follows:

2
et + 1

=
∞∑

m=0

Em
tm

m!

(|t| < π
)

(1.4)

where we use the technique method notation by replacing Em by Em (m ≥ 0), symbolli-
cally (cf. [3, 5, 7, 9, 10]).

The Bernoulli numbers with order k, B(k)
n , were defined by

(
t

et − 1

)k
=

∞∑

n=0

B(k)
n

tn

n!
(cf. [5, 10]). (1.5)

Let u be algebraic in complex number field. Then Frobenius-Euler numbers were de-
fined by

1−u

et −u
=

∞∑

n=0

Hn(u)
tn

n!
(cf. [5]). (1.6)

By (1.4) and (1.6), note that Hn(−1)= En.
In this paper, we will give the interesting formulae for sums of products of Euler num-

bers ( = Frobenius-Euler numbers ) by using p-adic Euler integration which is defined in
[3, 5, 8–10]. Our result is an answer to the problem which is introduced by I.-C. Huang
and S.-Y. Huang in [2, page 179].

2. Sums of products of Euler numbers

Let u∈ Cp with |1−u f |p ≥ 1 for each positive integer f . Then the p-adic Euler measure
was defined by

Eu(x)= Eu
(
x+dpNZp

)= udp
N−x

1−udpN
, (cf. [3, 5]). (2.1)

Now, we define Euler polynomials with order n by

(
u

1−u

)m
H(m)

n (u,x)=
∫

X
···

∫

X︸ ︷︷ ︸
m times

(
x+ x1 + ···+ xm

)n
dEu

(
x1
)···dEu

(
xm
)
. (2.2)
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In the case x = 0, we use the following notations:

H(k)
n (u,0)=H(k)

n (u), H(1)
n (u)=Hn(u) (cf. [3, 9]). (2.3)

In [3], the following formula can be found:

∫

Zp

xndEu(x)= u

1−u
Hn(u). (2.4)

By (2.2) and (2.4), we easily see that limk→1H
(k)
n (u)=Hn(u).

For any positive integer m, H(m)
n (u,x) can be written by

H(m)
n (u,x)=

n∑

j=0

(
n

j

)

xn− jH(m)
j (u). (2.5)

We may now mention the following formulae which are easy to prove:

(
u

1−u

)m
H(m)

n (u,x)= ln
l−1∑

l1,...,lm=0

uml−∑m
i=1 li

(
1−ul

)mH(m)
n

(
ul,

x+ l1 + ···+ lm
l

)
, (2.6)

where

l−1∑

l1,...,lm=0

=
l−1∑

l1=0

l−1∑

l2=0

···
l−1∑

lm=0

. (2.7)

By using (2.2) and multinomial coefficients, We obtain the following theorem.

Theorem 2.1. For α1,α2, . . . ,αm ∈ Cp and positive integers n, m,

H(m)
n

(
u,α1 +α2 + ···+αm

)=
∑

i1,...,im
n=i1+···+im

(
n

i1, . . . , im

)

Hi1

(
u,α1

)
Hi2

(
u,α2

)···Him

(
u,αm

)
,

(2.8)

where
(

n
i1,...,im

)
is the multinomial coefficient.

Remark 2.2. The above theorem is an answer to the problem which was introduced in [2,
page 179].

Remark 2.3. Note thatHn(−1)=∑n
k=0

(
n+1
k

)
2kBk, where Bk are the kth ordinary Bernoulli

numbers.

Remark 2.4. By using Volkenborn integral, it was well known that

t

et − 1
=

∞∑

n=0

∫

Zp

xndμ1(x)
tn

n!
(cf. [3, 7, 10]). (2.9)



4 A note on Euler number and polynomials

In [1, 9], note that

(
t

et − 1

)k
=

∞∑

n=0

∫∫

X
···

∫

X︸ ︷︷ ︸
k times

(
x+ x1 + ···+ xk

)n
dμ1

(
x1
)
dμ1

(
x2
)···dμ1

(
xk
) tn

n!
. (2.10)

The Bernoulli polynomials with order k, B(k)
n (x), were defined by

B(k)
n (x)=

∫∫

X
···

∫

X︸ ︷︷ ︸
k times

(
x+ x1 + ···+ xk

)n
dμ1

(
x1
)
dμ1

(
x2
)···dμ1

(
xk
)

(cf. [7, 9, 10]).

(2.11)

In the case x = 0, we write B(k)
n (0)= B(k)

n (cf. [9]).
In [2], the authors proved the formulae of sums of products of Bernoulli numbers

of higher order by using theory of residues. By using the properties of invariant p-adic
integrals in this paper, we can also give the same formulae on the sums of products for

B(k)
n in [2]. Let χ be a Dirichlet character with conductor f . We set p∗ = p for p ≥ 2,

and p∗ = 4 for p = 2. Let f̄ = ( f , p∗) be denoted by the least common multiple of the
conductor f of χ and p∗.

Now, we define the generalized Bernoulli numbers of higher order with χ as

B(m)
n,χ =

∫

X
···

∫

X
χ
(
x1 + ···+ xm

)(
x1 + ···+ xm

)n
dμ1

(
x1
)···dμ1

(
xm
)
. (2.12)

We easily get in (2.12)

B(m)
n,χ = ln−m

l−1∑

x1,...,xm=0

B(m)
n

(
x1 + ···+ xm

l

)
χ
(
x1 + ···+ xm

)
, (2.13)

where Bn,χ is the generalized ordinary Bernoulli number with χ.
By (2.12), we have

B(m)
n,χ = lim

ρ→∞
1

(
f̄ pρ

)m
∑

1≤x1≤ f̄ pρ

···
∑

1≤xm≤ f̄ pρ

χ
(
x1 + ···+ xm

)(
x1 + ···+ xm

)n
. (2.14)

The investigation of these numbers is left to the interested reader.
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