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Firstly, we will show the following extension of the results on powers of p-hyponormal
and log-hyponormal operators: let n and m be positive integers, if T is p-hyponormal for
p ∈ (0,2], then: (i) in case m ≥ p, (Tn+m∗

Tn+m)(n+p)/(n+m) ≥ (Tn∗Tn)(n+p)/n and
(TnTn∗)(n+p)/n ≥ (Tn+mTn+m∗

)(n+p)/(n+m) hold, (ii) in case m < p, Tn+m∗
Tn+m ≥

(Tn∗Tn)(n+m)/n and (TnTn∗)(n+m)/n ≥ Tn+mTn+m∗
hold. Secondly, we will show an estima-

tion on powers of p-hyponormal operators for p > 0 which implies the best possibility
of our results. Lastly, we will show a parallel estimation on powers of log-hyponormal
operators as follows: let α > 1, then the following hold for each positive integer n and m:
(i) there exists a log-hyponormal operator T such that (Tn+m∗

Tn+m)nα/(n+m) �≥ (Tn∗Tn)α,
(ii) there exists a log-hyponormal operator T such that (TnTn∗)α �≥ (Tn+mTn+m∗

)nα/(n+m).

Copyright © 2006 C. Yang and J. Yuan. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, let H be a complex Hilbert space and B(H) be the algebra of all bounded
linear operators in H , and a capital letter mean an element of B(H). An operator T is said
to be positive (in symbol: T ≥ 0) if (Tx,x)≥ 0 for any x ∈H , and an operator T is said to
be strictly positive (in symbol: T > 0) if T is positive and invertible.

An operator T is said to be p-hyponormal for p > 0 if (T∗T)p ≥ (TT∗)p, where T∗

is the adjoint operator of T . An invertible operator T is said to be log-hyponormal if
log(T∗T)≥ log(TT∗). If p = 1, T is called hyponormal and if p = 1/2, T is called semi-
hyponormal. It is clear that every p-hyponormal operator is q-hyponormal for 0 < q ≤ p
by the celebrated Löwner-Heinz theorem and every invertible p-hyponormal operator for
p > 0 is log-hyponormal since log t is an operator monotone function. log-hyponormality
is sometimes regarded as 0-hyponormal since (Xp− 1)/p→ logX as p→ 0 for X > 0.

Recently, Furuta-Yanagida [6] showed the following results on powers of p-hyponor-
mal operators with p ∈ (0,1] which is a generalization of Aluthge-Wang [1].
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2 Powers of p- and log-hyponormal operators

Theorem 1.1 [6]. Let T be a p-hyponormal operator for p ∈ (0,1]. Then

(
Tn∗Tn

)(p+1)/n ≥ ··· ≥ (T2∗T2)(p+1)/2 ≥ (T∗T)p+1
,

(
TT∗

)p+1 ≥ (T2T2∗)(p+1)/2 ≥ ··· ≥ (TnTn∗)(p+1)/n
(1.1)

hold for all positive integer n.

Very recently, Ito [8] showed that Theorem 1.1 holds for p > 0.

Theorem 1.2 [8]. If T is p-hyponormal for p ∈ (k− 1,k] where k is a positive integer, then

(
T1+m∗

T1+m)(1+p)/(1+m) ≥ (T∗T)1+p
,

(
TT∗

)1+p ≥ (T1+mT1+m∗)(1+p)/(1+m)
(1.2)

hold for all positive integer m such that m≥ p,

T1+m∗
T1+m ≥ (T∗T)1+m

,
(
TT∗

)1+m ≥ T1+mT1+m∗
(1.3)

hold for all positive integer m such that m< p.

Yamazaki [13] also showed the following Theorem 1.3 which is a parallel result to
Theorems 1.1 and 1.2.

Theorem 1.3 [13]. If T is log-hyponormal, then

(
Tn+1∗Tn+1)n/(n+1) ≥ Tn∗Tn, TnTn∗ ≥ (Tn+1Tn+1∗)n/(n+1)

(1.4)

hold for all positive integer n.

We can rewrite Theorem 1.3 into the following easily.

Theorem 1.4. If T is log- hyponormal, then

(
Tn+m∗

Tn+m)n/(n+m) ≥ Tn∗Tn, TnTn∗ ≥ (Tn+mTn+m∗)n/(n+m)
(1.5)

hold for all positive integer n and m.

In fact, if m> 1, then by Theorem 1.3 we have

∣
∣Tn+m

∣
∣2(n+m−1)/(n+m) ≥ ∣∣Tn+m−1

∣
∣2

, . . . ,
∣
∣Tn+2

∣
∣2(n+1)/(n+2) ≥ ∣∣Tn+1

∣
∣2

,

∣
∣Tn+1

∣
∣2n/(n+1) ≥ ∣∣Tn

∣
∣2

,

∣
∣Tn∗∣∣2 ≥ ∣∣Tn+1∗∣∣2n/(n+1)

,

∣
∣Tn+1∗∣∣2 ≥ ∣∣Tn+2∗∣∣2(n+1)/(n+2)

, . . . ,
∣
∣Tn+m−1∗∣∣2 ≥ ∣∣Tn+m∗∣∣2(n+m−1)/(n+m)

,

(1.6)
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so that
(
Tn+m∗

Tn+m)n/(n+m) ≥ (Tn+m−1∗Tn+m−1)n/(n+m−1) ≥ ··· ≥ (Tn+1∗Tn+1)n/(n+1) ≥ Tn∗Tn,

TnTn∗ ≥ (Tn+1Tn+1∗)n/(n+1) ≥ ··· ≥ (Tn+m−1Tn+m−1∗)n/(n+m−1) ≥ (Tn+mTn+m∗)n/(n+m)

(1.7)

hold by Löwner-Heinz inequality.
In this paper, we will show Theorem 2.1, the parallel result to Theorem 1.4, stated

below which is an extension of Theorems 1.1 and 1.2. We will also show an estimation
on powers of p-hyponormal operators for p > 0 which implies the best possibility of
Theorem 2.1 and discuss the best possibility of Theorem 1.4.

2. An extension of Theorems 1.1 and 1.2

Theorem 2.1. If T is p-hyponormal for p ∈ (k− 1,k] where k is a positive integer, then
(i) in case k = 1,2,

(
Tn+m∗

Tn+m)(n+p)/(n+m) ≥ (Tn∗Tn
)(n+p)/n

, (2.1)
(
TnTn∗)(n+p)/n ≥ (Tn+mTn+m∗)(n+p)/(n+m)

(2.2)

hold for all positive integer n and m such that m≥ p;
(ii) in case k = 2,3,

Tn+m∗
Tn+m ≥ (Tn∗Tn

)(n+m)/n
, (2.3)

(
TnTn∗)(n+m)/n ≥ Tn+mTn+m∗

(2.4)

hold for all positive integer n and m such that m< p.

Corollary 2.2. Let n and m be positive integers, if T is p-hyponormal for p ∈ (k− 1,k],
then

(i) in case k = 1,2 and m≥ p,

(
Tn+m∗

Tn+m)(n+p)/(n+m) ≥ ··· ≥ (Tn+k∗Tn+k)(n+p)/(n+k) ≥ (Tn∗Tn
)(n+p)/n

, (2.5)
(
TnTn∗)(n+p)/n ≥ (Tn+k∗Tn+k)(n+p)/(n+k) ≥ ··· ≥ (Tn+mTn+m∗)(n+p)/(n+m)

; (2.6)

(ii) in case k = 3,

(
Tn+2∗Tn+2)(n+1)/(n+2) ≥ Tn+1∗Tn+1 ≥ (Tn∗Tn

)(n+1)/n
, (2.7)

(
TnTn∗)(n+1)/n ≥ Tn+1Tn+1∗ ≥ (Tn+2Tn+2∗)(n+1)/(n+2)

. (2.8)

Remark 2.3. In case p ∈ (0,1], Theorem 1.1 follows from Corollary 2.2(i) by taking k = 1
and n= 1.

In case k = 1,2,3 and p ∈ (k− 1,k], Theorem 1.2 follows from Theorem 2.1 by taking
n= 1.

We need the following results to show Theorem 2.1.



4 Powers of p- and log-hyponormal operators

(1, 1)

q = 1

(1 + r)q = p + r

p = q

(1, 0)
(0,−r)

p

q

Figure 2.1 The best possible domain for Furuta inequality.

Theorem 2.4 (Furuta inequality [3] call it FI simply). If A≥ B ≥ 0, then for each r ≥ 0,
(i)

(
Br/2ApBr/2)1/q ≥ (Br/2BpBr/2)1/q

, (2.9)

(ii)

(
Ar/2ApAr/2)1/q ≥ (Ar/2BpAr/2)1/q

(2.10)

hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p+ r.

FI yields the following famous Löwner-Heinz inequality by putting r = 0 in (i) or (ii)
of FI. It was shown by Tanahashi [11] that the domain drawn for p, q and r in Figure 2.1
is the best possible for FI.

Theorem 2.5 Löwner-Heinz (Löner-Heinz inequality [7, 10] call it L-H simply). Let 1≥
α≥ 0. Then A≥ B ≥ 0⇒ Aα ≥ Bα.

Lemma 2.6 [5]. Let α∈ R and X be invertible. Then (X∗X)α = X∗(XX∗)α−1X holds, espe-
cially in case α≥ 1 Lemma 2.6 holds without invertibility of X .

Theorem 2.7 [2, 4, 5, 9]. Let A,B ≥ 0 such that Aα ≥ Bα for α > 0. Then for each q ≥ 0 and
t ≥ 0 the following hold.

(1) ft,q(s)= (At/2BsAt/2
)(q+t)/(s+t)

is decreasing for s≥ q ≥ 0.

(2) gt,q(s)= (Bt/2AsBt/2
)(q+t)/(s+t)

is increasing for s≥ q ≥ 0.

Theorem 2.8 [13]. Let T be a p-hyponormal operator for p ∈ (0,1]. Then

(
Tn∗Tn

)1/n ≥ ··· ≥ (T2∗T2)1/2 ≥ T∗T ,

TT∗ ≥ (T2T2∗)1/2 ≥ ··· ≥ (TnTn∗)1/n
(2.11)

hold for all positive integer n.
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Lemma 2.9. If T is p-hyponormal for p ∈ (k− 1,k] where k is a positive integer, then

(∣∣T∗
∣
∣
∣
∣Tn+m

∣
∣2∣∣T∗

∣
∣)(n+1+p)/(n+1+m) ≥ ∣∣T∗∣∣∣∣Tn+m

∣
∣2(n+p)/(n+m)∣∣T∗

∣
∣, (2.12)

(|T|∣∣Tn+m∗∣∣2|T|)(n+1+p)/(n+1+m) ≤ |T|∣∣Tn+m∗∣∣2(n+p)/(n+m)|T| (2.13)

hold for all positive integer n and m such that m≥ k. If k = 1,2 in addition, then

∣
∣T∗

∣
∣
∣
∣Tn

∣
∣2(n+p)/n∣∣T∗

∣
∣≥ (∣∣T∗∣∣∣∣Tn

∣
∣2∣∣T∗

∣
∣)(n+1+p)/(n+1)

, (2.14)

|T|∣∣Tn∗∣∣2(n+p)/n|T| ≤ (|T||Tn∗∣∣2|T|)(n+1+p)/(n+1) (2.15)

hold for all positive integer n.

Proof of Lemma 2.9. Put γ =min{1, p}, then

(
Tn∗Tn

)γ/n ≥ ··· ≥ (T2∗T2)γ/2 ≥ (T∗T)γ ≥ (TT∗)γ ≥ (T2T2∗)γ/2 ≥ ··· ≥ (TnTn∗)γ/n

(2.16)

holds by Theorem 2.8, p-hyponormality of T and L-H. �

Proof of (2.12). Since (|Tn+m|2/(n+m))γ ≥ (|T∗|2)γ by (2.16), then for each t ≥ 0 and q ≥ 0,
gt,q(s)= (|T∗|t|Tn+m|2s/(n+m)|T∗|t)(q+t)/(s+t) is increasing for s≥ q ≥ 0 by Theorem 2.7(2).
Then by taking α= γ, t = 1, q = n+ p and s= n+m we have

(∣∣T∗
∣
∣
∣
∣Tn+m

∣
∣2∣∣T∗

∣
∣)(n+1+p)/(n+1+m)

= (∣∣T∗∣∣∣∣Tn+m
∣
∣2(n+m)/(n+m)∣∣T∗

∣
∣)(n+1+p)/(n+1+m)

= g1,n+p(n+m)

≥ g1,n+p(n+ p)

= (∣∣T∗∣∣∣∣Tn+m
∣
∣2(n+p)/(n+m)∣∣T∗

∣
∣)(n+p+1)/(n+p+1)

= ∣∣T∗∣∣∣∣Tn+m
∣
∣2(n+p)/(n+m)∣∣T∗

∣
∣.

(2.17)

�

Proof of (2.13). Since (|T|2)γ ≥ (|Tn+m∗|2/(n+m))γ by (2.16), similar to the proof of (2.12),
(2.13) holds by taking α= γ, t = 1, q = n+ p and s= n+m in Theorem 2.7(1). �

Proof of (2.14). If k = 1,2, then p ∈ (0,1] or p ∈ (1,2], thus γ + n ≥ γ + 1 ≥ p. So that
(1 +n/γ)((1 +n)/p)≥ 1/γ+n/γ holds. �

On the other hand, by applying (ii) of Theorem 2.4 to |Tn|2γ/n and |T∗|2γ for (1 +
n/γ)((1 +n)/p)≥ 1/γ+n/γ, we have

∣
∣Tn

∣
∣2p/n = ∣∣Tn

∣
∣(2γ/n)(p/γ)

≥
(∣
∣Tn

∣
∣(2γ/n)(n/2γ)∣∣T∗

∣
∣2γ(1/γ)∣∣Tn

∣
∣(2γ/n)(n/2γ)

)p/(n+1)

= (∣∣Tn
∣
∣
∣
∣T∗

∣
∣2∣∣Tn

∣
∣)p/(n+1)

,

(2.18)
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so that

∣
∣T∗

∣
∣
∣
∣Tn

∣
∣2(n+p)/n∣∣T∗

∣
∣= ∣∣T∗∣∣∣∣Tn

∣
∣
∣
∣Tn

∣
∣2p/n∣∣Tn

∣
∣
∣
∣T∗

∣
∣

≥ ∣∣T∗∣∣∣∣Tn
∣
∣(
∣
∣Tn

∣
∣
∣
∣T∗

∣
∣2∣∣Tn

∣
∣)p/(n+1)∣∣Tn

∣
∣
∣
∣T∗

∣
∣

= (∣∣T∗∣∣∣∣Tn
∣
∣2∣∣T∗

∣
∣)(n+1+p)/(n+1)

.

(2.19)

Proof of (2.15). Since |T|2γ ≥ |Tn∗|2γ/n by (2.16), similar to the proof of (2.14), (2.15)
holds by Lemma 2.6 and taking p1 = 1/γ, r1 = n/γ and q1 = (1 +n)/p in Theorem 2.4(i).

�

Proof of Theorem 2.1. Let T = U|T| be the polar decomposition of T . Then it is well
known that the polar decomposition of T∗ is T∗ =U∗|T∗|. �

Proof of (2.1). In case k = 1,2.
(i) We will prove that the following (2.20) holds for all positive integer n by induction:

(
Tn+k∗Tn+k)(n+p)/(n+k) ≥ (Tn∗Tn

)(n+p)/n
. (2.20)

Firstly, we prove that (2.20) holds for n= 1, that is, in case k = 1, p ∈ (0,1], then

(
T2∗T2)(1+p)/2 ≥ (T∗T)p+1

(2.21)

and in case k = 2, p ∈ (1,2], then

(
T3∗T3)(1+p)/3 ≥ (T∗T)p+1

. (2.22)

In case k = 1, p ∈ (0,1], since (T∗T)p ≥ (TT∗)p, by applying (i) of Theorem 2.4 to
(T∗T)p and (TT∗)p for (1 + (1/p))((1 + 1)/(1 + p))≥ 1/p+ 1/p, we have

(
T1+1∗T1+1)(1+p)/(1+1) = (U∗∣∣T∗

∣
∣T∗T

∣
∣T∗

∣
∣U
)(1+p)/(1+1)

=U∗
((∣∣T∗

∣
∣2p)1/2p(|T|2p)1/p(∣∣T∗

∣
∣2p)1/2p

)(1+p)/(1+1)
U

≥U∗(∣∣T∗
∣
∣2p)(1+p)/p

U

=U∗∣∣T∗
∣
∣2(1+p)

U

= |T|2(1+p)

= (T∗T)1+p
,

(2.23)

so that (2.21) is proved.
In case k = 2, if T is p-hyponormal for p ∈ (1,2], then T is hyponormal (i.e.,

1-hyponormal) by L-H; thusT2∗T2≥(T∗T)2 by (2.21), so (T2∗T2)p/2≥(T∗T)p≥(TT∗)p

by p-hyponomality of T and L-H for p/2∈ (0,1], we have the following by applying (i)
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of Theorem 2.4 to (T2∗T2)p/2 and (TT∗)p for (1 + 1/p)((1 + 2)/(1 + p))≥ 2/p+ 1/p:

(
T1+2∗T1+2)(1+p)/(1+2) = (U∗∣∣T∗

∣
∣T2∗T2

∣
∣T∗

∣
∣U
)(1+p)/(1+2)

=U∗
((∣∣T∗

∣
∣2p)1/2p(∣∣T2

∣
∣p)2/p(∣∣T∗

∣
∣2p)1/2p

)(1+p)/(1+2)
U

≥U∗(∣∣T∗
∣
∣2p)(1+p)/p

U

=U∗∣∣T∗
∣
∣2(1+p)

U

= ∣∣T∣∣2(1+p)

= (T∗T)1+p
,

(2.24)

so that (2.22) is proved.
Secondly, assumed that (2.20) holds for 1, . . . ,n(≥ 1). We will prove that (2.20) holds

for n+ 1.
In fact, we have

(
Tn+1+k∗Tn+1+k)(n+1+p)/(n+1+k) = (T∗∣∣Tn+k

∣
∣2
T
)(n+1+p)/(n+1+k)

= (U∗∣∣T∗
∣
∣
∣
∣Tn+k

∣
∣2∣∣T∗

∣
∣U
)(n+1+p)/(n+1+k)

=U∗(∣∣T∗
∣
∣
∣
∣Tn+k

∣
∣2∣∣T∗

∣
∣)(n+1+p)/(n+1+k)

U

≥U∗∣∣T∗
∣
∣
∣
∣Tn+k

∣
∣2(n+p)/(n+k)∣∣T∗

∣
∣U by (2.12)

≥U∗∣∣T∗
∣
∣
∣
∣Tn

∣
∣2(n+p)/(n)∣∣T∗

∣
∣U by induction

≥U∗(∣∣T∗
∣
∣
∣
∣Tn

∣
∣2∣∣T∗

∣
∣)(n+1+p)/(n+1)

U by (2.14)

= (T∗∣∣Tn
∣
∣2
T
)(n+1+p)/(n+1)

= (Tn+1∗Tn+1)(n+1+p)/(n+1)
,

(2.25)

so that it is proved that (2.20) (i.e., case m= k of (2.1)) holds for n+ 1.
(ii) We will prove that (2.1) holds for m> k.
If k = 1, p ∈ (0,1], then m> 1 and by (2.20) we have

(
Tn+m∗

Tn+m)(n+m−1+p)(n+m) ≥ (Tn+m−1∗Tn+m−1)(n+m−1+p)/(n+m−1)
, . . . ,

(
Tn+2∗Tn+2)(n+1+p)/(n+2) ≥ (Tn+1∗Tn+1)(n+1+p)/(n+1)

,

(
Tn+1∗Tn+1)(n+p)/(n+1) ≥ (Tn∗Tn

)(n+p)/n
,

(2.26)
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thus by L-H we have

(
Tn+m∗

Tn+m)(n+p)/(n+m) ≥ (Tn+m−1∗Tn+m−1)(n+p)/(n+m−1) ≥ ···

≥ (Tn+1∗Tn+1)(n+p)/(n+1) ≥ (Tn∗Tn
)(n+p)/n

.
(2.27)

If k = 2, T is p-hyponormal for p ∈ (1,2], then T is hyponormal (i.e., 1-hyponormal)
by L-H; thus

Tn+1∗Tn+1 ≥ (Tn∗Tn
)(n+1)/n

(2.28)

holds by case k = 1 and p = 1 of (2.20), so we have

Tn+m∗
Tn+m ≥ (Tn+m−1∗Tn+m−1)(n+m)/(n+m−1)

, . . . ,

Tn+3∗Tn+3 ≥ (Tn+2∗Tn+2)(n+3)/(n+2)
,

(
Tn+2∗Tn+2)(n+p)/(n+2) ≥ (Tn∗Tn

)(n+p)/n

(2.29)

by (2.28) and (2.20) (the last inequality holds by (2.20)), so that the following holds by
L-H:

(
Tn+m∗

Tn+m)(n+p)/(n+m) ≥ (Tn+m−1∗Tn+m−1)(n+p)/(n+m−1)

≥ ··· ≥ (Tn+2∗Tn+2)(n+p)/(n+2) ≥ (Tn∗Tn
)(n+p)/n

.
(2.30)

Consequently, the proof of (2.1) is complete by combining (i) and (ii). �

Proof of (2.2). The proof is similar to the proof of (2.1), so we omit it here. �

Proof of (2.3). If k = 2, we only need to show Tn+1∗Tn+1 ≥ (Tn∗Tn)(n+1)/n, this is just
(2.28), so that (2.3) holds for k = 2.

If k = 3, we need to show Tn+1∗Tn+1 ≥ (Tn∗Tn)(n+1)/n and Tn+2∗Tn+2 ≥ (Tn∗Tn)(n+2)/n.
In fact T is p-hyponormal for p ∈ (2,3], then T is 1-hyponormal by L-H ; thus
Tn+1∗Tn+1 ≥ (Tn∗Tn)(n+1)/n holds by case k = 1 and p = 1 of (2.1); similarly, T is p-
hyponormal for p ∈ (2,3], then T is 2-hyponormal by L-H; thus Tn+2∗Tn+2 ≥
(Tn∗Tn)(n+2)/n holds by case k = 2, p = 2 and m= 2 of (2.1), so that (2.3) holds. �

Proof of (2.4). The proof is similar to that of (2.3), so we omit it here. �

Proof of Corollary 2.2. We have (i) by the process of the proof of (2.1) and (2.2). (ii) is
obvious by case k = 3 of (2.3), (2.4) and L-H. �
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3. Estimation on powers of p-hyponormal and log-hyponormal operators

The following Theorem 3.1 which is an estimation on powers of p-hyponormal operators
for p > 0 implies the best possibility of Theorem 2.1.

Theorem 3.1. Let k, n and m be positive integers, p ∈ (k− 1,k] and α > 1.
(1) In case m≥ p the following hold.

(i) There exists a p-hyponormal operator T such that

(
Tn+m∗

Tn+m)(n+p)α/(n+m) �≥ (Tn∗Tn
)(n+p)α/n

. (3.1)

(ii) There exists a p-hyponormal operator T such that

(
TnTn∗)(n+p)α/n �≥ (Tn+mTn+m∗)(n+p)α/n+m

. (3.2)

(2) In case m< p the following hold.
(i) There exists a p-hyponormal operator T such that

(
Tn+m∗

Tn+m)α �≥ (Tn∗Tn
)(n+m)α/n

. (3.3)

(ii) There exists a p-hyponormal operator T such that

(
TnTn∗)(n+m)α/n �≥ (Tn+mTn+m∗)α

. (3.4)

The following Theorem 3.2 which is a parallel result to Theorem 3.1 implies the best
possibility of Theorem 1.4.

Theorem 3.2. Let α > 1. Then the following hold for each positive integer n and m.
(i) There exists a log-hyponormal operatorT such that (Tn+m∗

Tn+m)nα/(n+m) �≥(Tn∗Tn)α.
(ii) There exists a log-hyponormal operatorT such that (TnTn∗)α �≥(Tn+mTn+m∗

)nα/(n+m).

We need the following results to show Theorems 3.1 and 3.2.

Theorem 3.3 [12, 14]. Let δ > 0, p > 0, r > 0, and q > 0. If 0 < q < 1 or (δ + r)q < p + r,
then the following assertions hold.

(i) There exist positive invertible operators A and B on R2 such that

Aδ ≥ Bδ ,
(
Br/2ApBr/2)1/q �≥ B(p+r)/q. (3.5)

(ii) There exist positive invertible operators A and B on R2 such that

Aδ ≥ Bδ , A(p+r)/q �≥ (Ar/2BpAr/2)1/q
. (3.6)
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Theorem 3.4 [14]. Let p > 0, r > 0, and q > 0. If rq < p + r, then the following assertions
hold.

(i) There exist positive invertible operators A and B on R2 such that

logA≥ logB,
(
Br/2ApBr/2)1/q �≥ B(p+r)/q. (3.7)

(ii) There exist positive invertible operators A and B on R2 such that

logA≥ logB, A(p+r)/q �≥ (Ar/2BpAr/2)1/q. (3.8)

Lemma 3.5. For positive operators A and B on H , define an operator T on
⊕∞

k=−∞Hk where
Hk
∼=H as follows:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

. . . 0

B1/2 0

B1/2 (0)

A1/2 0

A1/2 0
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.9)

where (·) shows the place of the (0,0) matrix element. Then the following assertions hold.
(i) T is p-hyponormal for p > 0 if and only if Ap ≥ Bp.

(ii) T is log-hyponormal if and only if A and B are invertible and logA≥ logB.
Furthermore, the following assertions hold for β > 0 and any positive integer n and m:
(iii) (Tn+m∗

Tn+m)β/(n+m) ≥ (Tn∗Tn)β/n if and only if

(
Bl/2An+m−lBl/2)β/(n+m) ≥ (Bl/2An−lBl/2)β/n holds for l = 1,2, . . . ,n− 1.
(
Bl/2An+m−lBl/2)β/(n+m) ≥ Bβ holds for l = n,n+ 1, . . . ,n+m− 1.

(3.10)

(iv) (TnTn∗)β/n ≥ (Tn+mTn+m∗
)β/(n+m) if and only if

(
Aj/2Bn− jAj/2)β/n ≥ (Aj/2Bn+m− jAj/2)β/(n+m)

holds for j = 1,2, . . . ,n− 1.

Aβ ≥ (Aj/2Bn+m− jAj/2)β/(n+m)
holds for j = n,n+ 1, . . . ,n+m− 1.

(3.11)
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Proof. By easy calculation, we have

T∗T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
B

B
(A)

A
A

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, TT∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
B

B
(B)

A
A

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.12)

so that (i) is obvious by comparing the two (0,0) elements of (T∗T)p and (TT∗)p, sim-
ilarly, (ii) is obvious by comparing the two (0,0) elements of logT∗T and logTT∗. Fur-
thermore, the following hold for n≥ 2:

Tn∗Tn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
Bn

Bn

B(n−1)/2AB(n−1)/2

. . .
Bl/2An−lBl/2

. . .
B1/2An−1B1/2

(
An
)

An

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.13)

so that we have (iii) by comparing the corresponding elements of (Tn+m∗
Tn+m)β/(n+m)

and (Tn∗Tn)β/n,

TnTn∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
Bn
(
Bn
)

A1/2Bn−1A1/2

. . .
Aj/2Bn− jAj/2

. . .
A(n−1)/2BA(n−1)/2

An

An

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.14)
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so that we have (iv) by comparing the corresponding elements of (TnTn∗)β/n and
(Tn+mTn+m∗

)β/(n+m). �

Proof of Theorem 3.1. Put p1 = m > 0, r1 = n > 0, q1 = (n + m)/(n + p0)α where p0 =
min{p,m}, and δ = p > 0, then we have q1 < 1 when m < p; (δ + r1)q1 = (n + p)((n +
m)/(n+ p)α) < n+m= p1 + r1 when m≥ p.

By (i) of Theorem 3.3, there exist positive invertible operators A and B on R2 such that
Aδ ≥ Bδ and (Br1/2Ap1Br1/2)1/q1 �≥ B(p1+r1)/q1 , that is,

Ap ≥ Bp, (3.15)

(
Bn/2AmBn/2)(n+p0)α/(n+m) �≥ B(n+p0)α. (3.16)

Define an operator T on
⊕∞

k=−∞Hk where Hk
∼= R2 as (3.9). Then T is p-hyponormal by

(3.15) and (i) of Lemma 3.5, and (Tn+m∗
Tn+m)(n+p0)α/(n+m) �≥ (Tn∗Tn)(n+p0)α/n by (iii) of

Lemma 3.5 since the case l = n of (3.10) does not hold for β = (n+ p0)α by (3.16), so that
Theorems 3.1(1)(i) and 3.1(2)(i) hold.

By (ii) of Theorem 3.3, there exist positive invertible operators A and B on R2 such
that Aδ ≥ Bδ and A(p1+r1)/q1 �≥ (Ar1/2Bp1Ar1/2)1/q1 , that is,

Ap ≥ Bp, (3.17)

A(n+p0)α �≥ (An/2BmAn/2)(n+p0)α/(n+m)
. (3.18)

Define an operator T on
⊕∞

k=−∞Hk where Hk
∼= R2 as (3.9). Then T is p-hyponormal by

(3.17) and (i) of Lemma 3.5, and (TnTn∗)(n+p0)α/n �≥ (Tn+mTn+m∗
)(n+p0)α/(n+m) by (iv) of

Lemma 3.5 since the case j = n of (3.11) does not hold for β = (n+ p0)α by (3.18), so that
Theorems 3.1(1)(ii) and 3.1(2)(ii) hold. �

Proof of Theorem 3.2. Put p1 =m > 0, r1 = n > 0, q1 = (n+m)/nα, then we have r1q1 =
(n+m)/α < n+m= p1 + r1.

By (i) of Theorem 3.4, there exist positive invertible operators A and B on R2 such that

logA≥ logB (3.19)

and (Br12Ap1Br1/2)1/q1 �≥ B(p1+r1)/q1 , that is,

(
Bn/2AmBn/2)nα/(n+m) �≥ Bnα (3.20)

Define an operator T on
⊕∞

k=−∞Hk where Hk
∼= R2 as (3.9). Then T is log-hyponormal by

(3.19) and (ii) of Lemma 3.5, and (Tn+m∗
Tn+m)nα/(n+m) �≥ (Tn∗Tn)nα/n by (iii) of Lemma

3.5 since the case l = n of (3.10) does not hold for β = nα by (3.20), so that Theorem 3.2(i)
holds.
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By (ii) of Theorem 3.4, there exist positive invertible operators A and B on R2 such
that

logA≥ logB (3.21)

and A(p1+r1)/q1 �≥ (Ar1/2Bp1Ar1/2)1/q1 , that is,

Anα �≥ (An/2BmAn/2)nα/(n+m)
. (3.22)

Define an operator T on
⊕∞

k=−∞Hk where Hk
∼= R2 as (3.9). Then T is log-hyponormal by

(3.21) and (ii) of Lemma 3.5, and (TnTn∗)nα/n �≥ (Tn+mTn+m∗
)nα/(n+m) by (iv) of

Lemma 3.5 since the case j = n of (3.11) does not hold for β = nα by (3.22), so that
Theorem 3.2 (ii) and holds. �
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