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Several variants of Cebysev’s inequality for two monotonic n-tuples and also k > 3 non-
negative n-tuples monotonic in the same direction are presented. Immediately after that
their refinements of Ostrowski’s type are given. Obtained results are used to prove gen-
eralizations of discrete Milne’s inequality and its converse in which weights satisfy condi-
tions as in the Jensen-Steffensen inequality.

Copyright © 2006 M. Klari¢i¢ Bakula et al. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In 2003 Mercer gave the following interesting variant of the discrete Jensen’s inequality
(see, e.g., [8, page 43]) for convex functions.

TueoreM 1.1 [4, Theorem 1]. If f is a convex function on an interval containing n-tuple
X = (X1,...,%y) such that 0 <x; < x3 < - -+ < x, and w = (wy,...,wy) is positive n-tuple
with X1, wi = 1, then

f<x1+x,,—zw,~xi> sf(x1)+f(xn)—2w,~f(xi). (1.1)
i=1 i=1
Two years later his result was generalized as it is stated below.

THEOREM 1.2 [1, Theorem 2]. Let [a,b] be an interval in R, a < b. Let x = (x1,...,x,) be a
monotonic n-tuple in [a,b]", and let w = (w1,...,wy,) be a real n-tuple such that

0<Wy<W,k=1,.,n-1), W,>0, (1.2)
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2 Variants of Cebysev’s inequality with applications

where Wy = Z, wilk =1,...,n). If function f : [ — R is convex, then
(a+b_—z ) < fla)+ f(b) -

As we can see, here the condition w; >0 (i = 1,...,n) is relaxed on the conditions (1.2)
as in the well-known Jensen-Steffensen inequality for sums (see, e.g, [8, page 57]).

(1.3)

Remark 1.3. Tt can be easily proved that for a real n-tuple w which satisfies (1.2) and for
any monotonic n-tuple x € [a,b]” the inequalities

ZW,‘X,‘ <b, (1.4)

mi=1

hold. From (1.4) we can also conclude thata+b — W% S wixi € [a,b].

In this paper we present “Mercer’s type” variants of several well-known inequalities.

In Section 2 we give generalizations of the discrete Ceby$ev’s inequality for two mono-
tonic n-tuples and also for k = 3 nonnegative n-tuples monotonic in the same direction,
in which weights w satisfy the conditions (1.2). Immediately after Mercer’s type variants
of those inequalities are presented. In Section 3 we give analogous variants of Pecari¢’s
generalizations of the discrete Ostrowski’s inequalities. In Section 4 we use results from
Section 2 to obtain generalizations of Milne’s inequality and its converse. Mercer’s type
variants of Milne’s inequality and its converse are also given.

2. Variants of Cebysev’s inequality

A classic result due to éebyéev (1882, 1883) is stated as follows. Let w be a nonnegative
n-tuple. If real n-tuples x = (xy,...,x,) and y = (y1,..., y») are monotonic in the same
direction, then

n n n n
ZwixiZwiyi < ZwiZwixiyi. (2.1)
i=1 i=1 i=1 i=1

If x and y are monotonic in opposite directions, the inequality (2.1) is reversed.
Although the proof of the following generalization of the inequality (2.1) has been
already known (see [6]) for the sake of clarity, we will briefly present it here.

THEOREM 2.1. Letw = (Wy,...,w,) be a real n-tuple such that (1.2) is satisfied. Then for any
real n-tuples X = (X1,...,%,), Y = (J1..., ¥u) monotonic in the same direction the inequality
(2.1) holds. If x and y are monotonic in opposite directions, (2.1) is reversed.

Proof. Using the well-known Abel’s identity it can be proved that the following identity
holds:

S S Wy z iwzy,

i=1  i=1

i [ZWkHWI(Xm —x1) (ke = y) + >, WiWe (= xi-1) (D1 — %)
k=11 I=1 I=k+1
(2.2)
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where Wy = >, w;. Suppose that x and y are monotonic in the same direction. Then
(i1 —xi) (yj1 = yj) =0 (2.3)

foralli,j € {1,...,n—1}. Furthermore, the conditions (1.2) on n-tuple w imply that also

Wi=0 (k=1,...,n), (2.4)
so from identity (2.2) we may conclude that
ZW,‘ZWI‘.X,‘)/,' - zwixiZwiyi > 0. (2.5)
i=1 =1 i=1 =1

If x and y are monotonic in opposite directions, we have

(xiv1 — xi) (yj+1—yj) <0 (2.6)

foralli,j € {1,...,n— 1}, so the reverse of (2.1) immediately follows.
This completes the proof. O

In the next theorem we give a Mercer’s type variant of the inequality (2.1).

THEOREM 2.2. Let n = 2 and let w be a real n-tuple such that (1.2) is satisfied. Let [a,b]
and [c,d] be intervals in R, where a < b, ¢ < d. Then for any real n-tuples x € [a,b]" and
y € [¢,d]" monotonic in the same direction,

1< 1< 1<
+b— — iXi +d— — ivi| <ac+bd— — iXiVi. 2.7
(a Wnizlwx><c Wnizlwy> ac Wni:zlwxy (2.7)
Ifx and'y are monotonic in opposite directions, the inequality (2.7) is reversed.

Proof. Without any loss of generality we may suppose that n-tuples x and y are both
monotonically decreasing (in other cases the proof is similar). We define (n + 2)-tuples
W = (W, W), X = (X155 X040), and Y = (V... Vigo) @S

_ r_ Wi ’ _ Wn ’ =1
w —1, Wz——m,...,wrﬁl——m, Wpir = 1,
’ 4 4 r
x; =b, Xy = XiserisXinpy = Xns Xy = G, (2.8)
! ’ ’ 7
Y1 =4, V2= Ve Vw1 = Yo Ynt2 =€

Obviously, x" and y" are both monotonically decreasing and we have
0<W/<1 (k=1,..,n+1), Wi,=1, (2.9)

so we may apply Theorem 2.1 on (1 +2)-tuples w', x’, and y’ to obtain

n+2 n+2 n+2

n+2
D wixi D wiyi < > wi D> wixlyl (2.10)
i i=1 =1

i=1

from which we can easily get (2.7). O



4 Variants of Cebysev’s inequality with applications

Cebysev’s inequality can be generalized for k > 3 nonnegative n-tuples monotonic in
the same direction with nonnegative weights w (see, e.g., [8, page 198]). Here we give an
analogous generalization of Cebysev’s inequality for k > 3 nonnegative n-tuples in which

« _»

weights w satisfy the conditions (1.2). Partial order “<” on R¥ here is defined as

(K15 sXk) < (V1o s Vk) S XIS YIA -+ AXk < Ve (2.11)
In order to simplify our results, we will consider only weights w with sum 1.

THEOREM 2.3. Let n = 2 and let w be a real n-tuple such that
0<Wi=<1l (k=1,...,n-1), W, =1. (2.12)
Letk =2 andlet I < [0,+00)k. Then for any xV,...,x" € I such that
V<o <x® o x(V >0 >x0) (2.13)

the following holds:

(2.14)

||::]>v

k n ( ) n

[ Z ! Z

Proof. The proof of (2.14) is by induction on k. The case k = 2 follows from Theorem 2.1.
Suppose that (2.14) is valid for all , 2 < I < k. We have

n

k
() _G)
= > wi [ [, (2.15)

j=1 =1

||:]+

and we know that

£ ) roE 0 )

I Z Tzo, 0 2wk =0, Z Wix = (2.16)

i=1j=1 j=1 i=1
(see Remark 1.3). We define nonnegative n-tuple y as

k (j)
yi=[]x" G=1...n). (2.17)

It can be easily seen that y is monotonic in the same sense as (xM,...,x"), that is, y is

monotonic in the same sense as (x,(:l,...,x,((i)l), so we may apply (2.1) and our induction
hypothesis in (2.15) to obtain

" ) n ko " ‘ ,
Z il xf]) - z anxgj)xl(c]:l = (Z anxfj)) (ZW xz(ffl)

(2.18)

so by induction the result holds. O
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In the next theorem we give a Mercer’s type variant of (2.14).

THEOREM 2.4. Let n > 2 and let w be a real n-tuple such that (2.12) is satisfied. Let k > 2
and letI = [ay,b1] X - - - X [ag, br] C [0,+00)k, Then for anyx“),...,x(”) € I such that

V<o <x® o xD > .o >x0) (2.19)

the following holds:
k n . ,
a;+b; — w‘xf]) <|lai+||bi— > w; xf]). (2.20)

Proof. Suppose that x < ... <x(" We define vectors E(j) € [0,+00)k (j=1,...,n+2)
and weights w’ as

eV —a, &=t (i=1,...,k),

f(j)zx(j_l) (j=2,...,n+1), (2.21)
wy =1, W) = —Wi,eot, Wiy = W, Wy = L.
Obviously, we have f(l) <... < f("”) and
0=<W;<1 (k=1,...,n+1), W,., =1 (2.22)

We can apply Theorem 2.3 on £ (j = 1,...,n+2) and w’ to obtain
k n+2 ) n+2 k )
[T wie” < S wimwi [187, (2.23)
j=1

i=1j=1 i=1

from which (2.20) immediately follows. If x(!) > - - - > x") the proof is similar. O

3. Variants of Pecari¢’s inequalities

In 1984 Pectari¢ proved several generalizations of the discrete Ostrowski’s inequalities.
Here we give two of them which are interesting to us because they are refinements of
Theorem 2.1.

TaEOREM 3.1 [7, Theorem 3]. Let x = (x1,...,X,) and y = (y1,...,yn) be real n-tuples
monotonic in the same direction and let w = (wy,...,wy) be a real n-tuple such that

0<Wir=<W, (k=1,...,n—1). (3.1)
If m and r are nonnegative real numbers such that
|xke1 —xk| =m, |y — | =27 (k=1,...,n—1), (3.2)
then

T(x,y;w) = mrT(e,esw) = 0, (3.3)
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where

T(x,y;w Z Wi Z WiXi)i — z WiXi Z WiYis
i=1 i=1 i=1 i=1 (34)
e=(0,1,...,n—1).
Ifx and y are monotonic in opposite directions, then
T(x,y;w) < —mrT(e,e;w) < 0. (3.5)
THEOREM 3.2 [7, Theorem 4]. Let x and y be real n-tuples such that

| X —xk| <M, |y —y| <R (k=1,...,n—1) (3.6)

hold for some nonnegative real numbers M and R, and let w be a real n-tuple such that (3.1)
is valid. Then

| T(x,y;w)| < MRT(e,e;w). (3.7)
In the next two theorems we give Mercer’s type variants of Theorems 3.1 and 3.2 which

are refinements of Theorem 2.2.

THEOREM 3.3. Let n > 2 and let w be a real n-tuple such that (2.12) is valid. Let [a,b], [c,d]
beintervalsin R, wherea < b, c < d. Letx= (x1,...,%,) € [a,b]" andy= (y1,..., yu) € [c,d]"
be monotonic n-tuples, and let m and r be nonnegative real numbers such that

min x; —a > m, b— maxx; > m,
1<i<n 1<i<n
i — x| =m (k=1,...,n—1),
(3.8)
min y; —c>r, d—maxy;>r,
1<i<n 1<i<n
| Vi1 —yk| =7 (k=1,...,n—1).
If x and y are monotonic in the same direction, then
T“(x,y;w) > mr[TN“(f,f;w) +2n] >0, (3.9)
where
~ n n n
T(x,y;w) = ac+bd — Zw,-xiyi - <a+ b— Zwix,) <c+d - Zwiyi),
i=1 i=1 i=1 (3.10)

f=(1,...,n) €[1,n]".
Ifx and'y are monotonic in opposite directions, then

T(x,y;w) < —mr[T(f,£;w) +2n] < 0. (3.11)
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Proof. Suppose that n-tuples x and y are both monotonically decreasing (if x and y are
monotonically increasing, the proof is similar). We define (1 + 2)-tuples w' = (w,...,

Wr,1+2)a x = (x;:---)x;l+2)’ andY’ = ()’i»--a)/éu) as

! _ 1 ’ _ ’ _ ’ _
wy =1, Wy = —Wis.o; Wy = — W, Wy =1,

7 7 !
Xy = X1ee s Xpp] = Xn» Xpio = 4, (3.12)

b,
A Y= Yoeo V1 =V Y2 =¢

/
X1
!
1=

Obviously, X" and y” are both monotonically decreasing and we have

0=<W;=<1 (k=1,...,n+1), W, =1,

| X — x| =m, |y =l =r (k=1,..,n+1). (3.13)
From Theorem 3.1 we have
T(x',y'sw') >mrT(e,e';5w') >0, (3.14)
where
e =(0,1,...,n+1). (3.15)

From that we immediately obtain

ac+bd - > wix;y; - <a+b—zwix,-) (C+d—zwiyi>

i=1 i=1 i=1

n+2 n+2
Zmr[Zw{(i (Zw z—l) ] (3.16)
i=1

= mr [n+1 Zw,z —(n+1—Zwl>z]z ,

that is,
T(x,y;w) > mr[TN“(f,f;w) +2n] = 0. (3.17)

If n-tuples x and y are monotonic in opposite directions, the proof is similar. O

THEOREM 3.4. Let n > 2 and let w be a real n-tuple such that (2.12) is valid. Let [a,b], [c,d]
be intervals in R, where a < b, c < d. Let X = (x1,...,%,) € [a,0]", y = (y1,..., ¥n) € [c,d]"
and let M and R be nonnegative real numbers such that

|x1 —al <M, |b—x,| <M,
| %1 —xk| <M (k=1,...,n—1),

3.18
|y1—c| <R, |d—yn| <R, (3.18)

| Y1 — k| <R (k=1,...,n—1).
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Then
| T(x,y;w)| < MR[T(f,f;w) +2n] <0. (3.19)

Proof. Similarly as in Theorem 3.3. g

COROLLARY 3.5. Let n = 2 and let [a,b] be an interval in R where a < b. Then for all x =

(x15...,%,) € [a,b]",

n n 2
[na2+nb2—i§xi2—%(na+nb—i=21x,~> } m > m?, (3.20)
where
m= Oskrr}ignwrl |xi—xj |, X0 = a, Xpi1 = b. (3.21)
Proof. Directly from Theorem 3.3. O

COROLLARY 3.6. LetX = (X1,...,%1), Y = (¥15.-.> ¥n), M and R be defined as in Theorem 3.4.
Then

nac + nbd — Zx,y, n(na-i—nb zx,> (nc+nd—2yi> ‘ < WMR
i=1 i=1 i1
(3.22)

Proof. Directly from Theorem 3.4. O

The above results are variants of some Lupag’ results [3].

4. Applications: inequality of Milne and its converse

In 1925 Milne [5] obtained the following interesting integral inequality for positive func-
tions f and g which are integrable on [a, b]:

J o x)fg(x) J [f(x)+g(x) dx<J f(x) deg (4.1)

In 2000 Rao [9] combined Milne’s inequality and the well-known inequality between
arithmetic and geometric means to obtain the following double inequality for sums.

ProposiTiON 4.1. Letn > 2 and letw; >0 (i = 1,2,...,n) be real numbers with >;_, w; = 1.
Then for all real numbers p; € (=1,1) (i =1,...,n),

n n n n 2
Wi wi wi
; 3‘<gl—pi><;1+pi>s(;1—pf)' (42

Two years later Alzer and Kovacec obtained the following refinement of (4.2).
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THEOREM 4.2 [2, Theorem 1]. Letn = 2 andletw; >0 (i = 1,2,...,n) be real numbers with
Z?:l w; = 1. Then for all real numbers p; € [0,1) (i=1,...,n),

(,ill—p,>a (Z )(ilf},)sélzg)ﬁ (4.3)

with the best possible exponents

a=1, B =2— min w; (4.4)

l<i<n

We note here that the crucial step in the proof of Theorem 4.2 was performed by using
a discrete variant of the Cebysev’s inequality (see, e.g., [8, page 197]) which itself was gen-
eralized in Section 2. This enables us to give the following generalization of Theorem 4.2.

THEOREM 4.3. Let n > 2 and let w = (wy,...,wy) be a real n-tuple such that (2.12) is sat-
isfied. Then for all @ € (—o0,1], f € [2 — min;<j<, Wi, +00) and for all monotonic n-tuples
P= (pl)-'-apn) € [0)1)7[}

@1—1),) (2 )(Z ) (illiv’pl)ﬂ (4.5)

with the best possible exponents

a=1, B=2—min W, (4.6)

1<i<n

Proof. We follow the idea of the proof given in [2]. Suppose that 1 > p; = p, = --- =
Pn = 0. It can be easily seen that

1 1 1
< < <...< <1,
1+p1 1+p2 1+pn
! > 1 > > ! >1 (4.7)
l-p1 1—-py T l-pn :
1 1 1
5 > 5> > 1,
l=pi 1-p3 1_Pn
so in this case (see Remark 1.3) we know that
n " n n "
1 1
>1, 0, > 1. (4.8)
,Zzll pi Z T+pi ;l—p%

Let w = min; <;<, W;. We define function f: [0,1)" — R as

f(p1se-spu) = (Z—W)log<z livip2> —log(z livip) —log<z 1?})) (4.9)
i=1 !

i=1 i ! i=1

For fixed k € {1,...,n — 1} we define function f;:[0,1) — R as

Je(p) = f(pseas s Prrts-o s Pi).- (4.10)
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Let p € [pr+1,1). We have

N WiD
fi(p) = (1= p2) ABC’ (4.11)
where
5 1-p? = 1-p S 1+p
A=Wi+ D> wi—>—>, B=Wi+ > w , C=Wi+ > w ,
i=k+1 1- ; i=k+1 Il_p" i=k+1 11+pi
(4.12)
D=A[(1-p)B—(1+p)C]+2(2—w)pBC. (4.13)
We define n-tuples x = (x1,...,%,) and y = (y1,..., ¥») with
xi=1, }’izl (i=1,...,k),
1- 1 4.14
vi= L =P o, (4.19)
l—p,' 1+p,‘
which are obviously monotonic in opposite directions. From Theorem 2.1 we have
n n n
(Zwixi) <zwiyi> = Zwixiyi, (4.15)
i-1 i=1 i=1

that is, BC > A, and from Remark 1.3 we know that A, B, and C are all positive. This
enables us to conclude that

D =2(1-p)B=—(1+p)C+22—-w)p

A
L ((=p) (1+p>2> (4.16)
=2p(2—w—Wy)+ wi( - )
p k i:%l 1—p,' 1+p,'

It can be easily seen that

(1-p)? (A+p)

—4p=(1-p)P—-(1+p)* <
= Py = (1+p) <1_Pk+1 1+ prs1

417
C_(=p? (+p)? (4.17)
T T l-py ltpy’
so we have
k n
. ((=p)* (1+p)?
izzlm(—4p)+i%1w,( —p  l+p > —4p, (4.18)
that is,
n _ 5 )
- Wi<(11—11)>)~ - (11:1;). >2‘4P+4PW1<- (4.19)
i=k+1 1 i
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From (4.19) and (4.16) we obtain

>2p (Wi —w) >0, (4.20)

=g

which implies that the function fi is increasing on [ pi+1,1). Using that fact we obtain

F(prseespn) = filpr) = fi(p2) = f2(p2) = fa(p3) = f3(p3)

Z"'an*I(Pn):*(I_W)log(l—pfl)zo, (4.21)

which implies

n n n 2—w
Wi Wi w;
(;1_Pi)<;1+l7i)s<;1—pf> ’ (4.22)

that is, the right inequality in (4.5) holds for § = 2 — min; <;<, W;. Since

Wi
11_pi2

> 1, (4.23)

M=

it is clear that it also holds for all § > 2 — min; <<, W;.

A similar argument as in [2] shows that § = 2 — min;<;<, W; gives the best upper
bound in (4.5): if Wy = min;<;<, Wj, we simply choose n-tuple p = (p1,...,pn) defined
as

Plz"':Pk:q, Pk+1:"':Pn:0, q€<0)1>7 (424)

and for such p and w we obtain that 5 must satisfy the condition § > 2 — W.
The left-hand side of (4.5) is a simple consequence of Theorem 2.1. If we define

1 1
Xi=_—— yi:l+p'
1

i (i=1....n), (4.25)

then n-tuples x = (xy,...,%,) and y = (y1,..., ¥») are monotonic in opposite directions,
so we have

VR

Wi 1w Loow
L < ! ! . (4.26)
11_pi2 (;1—}%)(;1-{—}%)

Furthermore, (4.23) implies

c Wi ¢ - Wi " Wi
(i=211_Pi2> §<;1_Pi><;1+pi> (4.27)

1

foralla < 1.
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The same argument as in [2] shows that « = 1 gives the best lower bound for (4.5). In
case 0 < p; < - -+ < p, <1 the proof is similar. O

In the next theorem we give a Mercer’s type variant of (4.5).

THEOREM 4.4. Let n = 2 and let w = (wy,...,wy) be a real n-tuple such that (2.12) is satis-
fied. Then for alla € (—co,1], B € [2,+00) and for all monotonic n-tuplesp = (p1,...,pn) €
[p,ql", where [p,q] < [0,1) and p < g,

1 o
(1_p2 1- q Zl_pz>

1 " 1 1 Loow
S(l—p Zl—pz><1+p+1+qizl+pi> (4.28)

1

with the best possible exponents
a=1, pB=2 (4.29)

Proof. Suppose that ¢ > p; > pr > - -+ > p, > p. We define (n+2)-tuples w' = (w},...,
W;l+2) andp’ = (Pll’--"P;Hz) € [0,1)" with

wy=1, W)= —Wi,eo s, Wiy = —W, W, =1,
, , , (4.30)
P1=9 p2 PioeoosPuvt = P> Pui2 =P
We have
0<W/<1 (k=1,.,n+1), Wo,=1, min Wy = 0. (4.31)
<i<n
From Remark 1.3 we know that
n+2 W’
=1, (4.32)
i=1 1- pi2

so the left side and the right side of (4.28) are well defined. If we apply Theorem 4.3 on
(n+2)-tuples w' and p’, we obtain

n+2 W o n+2 , n+ , n+2 W B
<§1—p1’2> S(;l—pl>(;1+p1) (l_zll_pzr2> > (4.33)

from which (4.28) immediately follows.
If p<p <---<py<q,the proof is similar. O
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