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Several variants of Čebyšev’s inequality for two monotonic n-tuples and also k ≥ 3 non-
negative n-tuples monotonic in the same direction are presented. Immediately after that
their refinements of Ostrowski’s type are given. Obtained results are used to prove gen-
eralizations of discrete Milne’s inequality and its converse in which weights satisfy condi-
tions as in the Jensen-Steffensen inequality.
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1. Introduction

In 2003 Mercer gave the following interesting variant of the discrete Jensen’s inequality
(see, e.g., [8, page 43]) for convex functions.

Theorem 1.1 [4, Theorem 1]. If f is a convex function on an interval containing n-tuple
x = (x1, . . . ,xn) such that 0 < x1 ≤ x2 ≤ ··· ≤ xn and w = (w1, . . . ,wn) is positive n-tuple
with

∑n
i=1wi = 1, then

f

(

x1 + xn−
n∑

i=1

wixi

)

≤ f
(
x1
)

+ f
(
xn
)−

n∑

i=1

wi f
(
xi
)
. (1.1)

Two years later his result was generalized as it is stated below.

Theorem 1.2 [1, Theorem 2]. Let [a,b] be an interval in R, a < b. Let x = (x1, . . . ,xn) be a
monotonic n-tuple in [a,b]n, and let w = (w1, . . . ,wn) be a real n-tuple such that

0≤Wk ≤Wn(k = 1, . . . ,n− 1), Wn > 0, (1.2)
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where Wk =
∑k

i=1wi(k = 1, . . . ,n). If function f : [a,b]→R is convex, then

f

(

a+ b− 1
Wn

n∑

i=1

wixi

)

≤ f (a) + f (b)− 1
Wn

n∑

i=1

wi f
(
xi
)
. (1.3)

As we can see, here the condition wi > 0 (i= 1, . . . ,n) is relaxed on the conditions (1.2)
as in the well-known Jensen-Steffensen inequality for sums (see, e.g, [8, page 57]).

Remark 1.3. It can be easily proved that for a real n-tuple w which satisfies (1.2) and for
any monotonic n-tuple x ∈ [a,b]n the inequalities

a≤ 1
Wn

n∑

i=1

wixi ≤ b, (1.4)

hold. From (1.4) we can also conclude that a+ b− 1
Wn

∑n
i=1wixi ∈ [a,b].

In this paper we present “Mercer’s type” variants of several well-known inequalities.
In Section 2 we give generalizations of the discrete Čebyšev’s inequality for two mono-

tonic n-tuples and also for k ≥ 3 nonnegative n-tuples monotonic in the same direction,
in which weights w satisfy the conditions (1.2). Immediately after Mercer’s type variants
of those inequalities are presented. In Section 3 we give analogous variants of Pečarić’s
generalizations of the discrete Ostrowski’s inequalities. In Section 4 we use results from
Section 2 to obtain generalizations of Milne’s inequality and its converse. Mercer’s type
variants of Milne’s inequality and its converse are also given.

2. Variants of Čebyšev’s inequality

A classic result due to Čebyšev (1882, 1883) is stated as follows. Let w be a nonnegative
n-tuple. If real n-tuples x = (x1, . . . ,xn) and y = (y1, . . . , yn) are monotonic in the same
direction, then

n∑

i=1

wixi

n∑

i=1

wiyi ≤
n∑

i=1

wi

n∑

i=1

wixi yi. (2.1)

If x and y are monotonic in opposite directions, the inequality (2.1) is reversed.
Although the proof of the following generalization of the inequality (2.1) has been

already known (see [6]) for the sake of clarity, we will briefly present it here.

Theorem 2.1. Let w = (w1, . . . ,wn) be a real n-tuple such that (1.2) is satisfied. Then for any
real n-tuples x = (x1, . . . ,xn), y = (y1, . . . , yn) monotonic in the same direction the inequality
(2.1) holds. If x and y are monotonic in opposite directions, (2.1) is reversed.

Proof. Using the well-known Abel’s identity it can be proved that the following identity
holds:

n∑

i=1

wi

n∑

i=1

wixi yi−
n∑

i=1

wixi

n∑

i=1

wiyi

=
n−1∑

k=1

⎡

⎣
k−1∑

l=1

Wk+1Wl
(
xl+1− xl

)(
yk+1− yk

)
+

n∑

l=k+1

WlWk
(
xl − xl−1

)(
yk+1− yk

)
⎤

⎦ ,

(2.2)
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where Wk =
∑n

i=k wi. Suppose that x and y are monotonic in the same direction. Then

(
xi+1− xi

)(
yj+1− yj

)≥ 0 (2.3)

for all i, j ∈ {1, . . . ,n− 1}. Furthermore, the conditions (1.2) on n-tuple w imply that also

Wk ≥ 0 (k = 1, . . . ,n), (2.4)

so from identity (2.2) we may conclude that

n∑

i=1

wi

n∑

i=1

wixi yi−
n∑

i=1

wixi

n∑

i=1

wiyi ≥ 0. (2.5)

If x and y are monotonic in opposite directions, we have

(
xi+1− xi

)(
yj+1− yj

)≤ 0 (2.6)

for all i, j ∈ {1, . . . ,n− 1}, so the reverse of (2.1) immediately follows.
This completes the proof. �

In the next theorem we give a Mercer’s type variant of the inequality (2.1).

Theorem 2.2. Let n ≥ 2 and let w be a real n-tuple such that (1.2) is satisfied. Let [a,b]
and [c,d] be intervals in R, where a < b, c < d. Then for any real n-tuples x ∈ [a,b]n and
y ∈ [c,d]n monotonic in the same direction,

(

a+ b− 1
Wn

n∑

i=1

wixi

)(

c+d− 1
Wn

n∑

i=1

wiyi

)

≤ ac+ bd− 1
Wn

n∑

i=1

wixi yi. (2.7)

If x and y are monotonic in opposite directions, the inequality (2.7) is reversed.

Proof. Without any loss of generality we may suppose that n-tuples x and y are both
monotonically decreasing (in other cases the proof is similar). We define (n+ 2)-tuples
w′ = (w′1, . . . ,w′n+2), x′ = (x′1, . . . ,x′n+2), and y′ = (y′1, . . . , y′n+2) as

w′1 = 1, w′2 =−
w1

Wn
, . . . ,w′n+1 =−

wn

Wn
, w′n+2 = 1,

x′1 = b, x′2 = x1, . . . ,x′n+1 = xn, x′n+2 = a,

y′1 = d, y′2 = y1, . . . , y′n+1 = yn, y′n+2 = c.

(2.8)

Obviously, x′ and y′ are both monotonically decreasing and we have

0≤W ′
k ≤ 1 (k = 1, . . . ,n+ 1), W ′

n+2 = 1, (2.9)

so we may apply Theorem 2.1 on (n+ 2)-tuples w′, x′, and y′ to obtain

n+2∑

i=1

w′i x
′
i

n+2∑

i=1

w
′
i y
′
i ≤

n+2∑

i=1

w′i
n+2∑

i=1

w′i x
′
i y
′
i (2.10)

from which we can easily get (2.7). �
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Čebyšev’s inequality can be generalized for k ≥ 3 nonnegative n-tuples monotonic in
the same direction with nonnegative weights w (see, e.g., [8, page 198]). Here we give an
analogous generalization of Čebyšev’s inequality for k ≥ 3 nonnegative n-tuples in which
weights w satisfy the conditions (1.2). Partial order “≤” on Rk here is defined as

(
x1, . . . ,xk

)≤ (y1, . . . , yk
)⇐⇒ x1 ≤ y1∧···∧ xk ≤ yk. (2.11)

In order to simplify our results, we will consider only weights w with sum 1.

Theorem 2.3. Let n≥ 2 and let w be a real n-tuple such that

0≤Wk ≤ 1 (k = 1, . . . ,n− 1), Wn = 1. (2.12)

Let k ≥ 2 and let I ⊆ [0,+∞〉k. Then for any x(1), . . . ,x(n) ∈ I such that

x(1) ≤ ··· ≤ x(n) or x(1) ≥ ··· ≥ x(n), (2.13)

the following holds:

k∏

i=1

n∑

j=1

wjx
( j)
i ≤

n∑

j=1

wj

k∏

i=1

x
( j)
i . (2.14)

Proof. The proof of (2.14) is by induction on k. The case k = 2 follows from Theorem 2.1.
Suppose that (2.14) is valid for all l, 2≤ l ≤ k. We have

n∑

j=1

wj

k+1∏

i=1

x
( j)
i =

n∑

j=1

wj

k∏

i=1

x
( j)
i x

( j)
k+1, (2.15)

and we know that

k∏

i=1

n∑

j=1

wjx
( j)
i ≥ 0,

n∑

j=1

wj

k∏

i=1

x
( j)
i ≥ 0,

n∑

j=1

wjx
( j)
k+1 ≥ 0 (2.16)

(see Remark 1.3). We define nonnegative n-tuple y as

yj =
k∏

i=1

x
( j)
i ( j = 1, . . . ,n). (2.17)

It can be easily seen that y is monotonic in the same sense as (x(1), . . . ,x(n)), that is, y is

monotonic in the same sense as (x(1)
k+1, . . . ,x(n)

k+1), so we may apply (2.1) and our induction
hypothesis in (2.15) to obtain

n∑

j=1

wj

k+1∏

i=1

x
( j)
i =

n∑

j=1

wj

k∏

i=1

x
( j)
i x

( j)
k+1 ≥

⎛

⎝
n∑

j=1

wj

k∏

i=1

x
( j)
i

⎞

⎠

⎛

⎝
n∑

j=1

wjx
( j)
k+1

⎞

⎠

≥
⎛

⎝
k∏

i=1

n∑

j=1

wjx
( j)
i

⎞

⎠

⎛

⎝
n∑

j=1

wjx
( j)
k+1

⎞

⎠=
k+1∏

i=1

n∑

j=1

wjx
( j)
i ,

(2.18)

so by induction the result holds. �
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In the next theorem we give a Mercer’s type variant of (2.14).

Theorem 2.4. Let n≥ 2 and let w be a real n-tuple such that (2.12) is satisfied. Let k ≥ 2
and let I = [a1,b1]×···× [ak,bk]⊂ [0,+∞〉k. Then for any x(1), . . . ,x(n) ∈ I such that

x(1) ≤ ··· ≤ x(n) or x(1) ≥ ··· ≥ x(n), (2.19)

the following holds:

k∏

i=1

(

ai + bi−
n∑

j=1

wjx
( j)
i

)

≤
k∏

i=1

ai +
k∏

i=1

bi−
n∑

j=1

wj

k∏

i=1

x
( j)
i . (2.20)

Proof. Suppose that x(1) ≤ ··· ≤ x(n). We define vectors ξ( j) ∈ [0,+∞〉k ( j = 1, . . . ,n+ 2)
and weights w′ as

ξ(1)
i = ai, ξ(n+2)

i = bi (i= 1, . . . ,k),

ξ( j) = x( j−1) ( j = 2, . . . ,n+ 1),

w′1 = 1, w′2 =−w1, . . . ,w′n+1 =wn, w′n+2 = 1.

(2.21)

Obviously, we have ξ(1) ≤ ··· ≤ ξ(n+2) and

0≤W ′
k ≤ 1 (k = 1, . . . ,n+ 1), W ′

n+2 = 1. (2.22)

We can apply Theorem 2.3 on ξ( j) ( j = 1, . . . ,n+ 2) and w′ to obtain

k∏

i=1

n+2∑

j=1

w′j ξ
( j)
i ≤

n+2∑

j=1

w′n+2
j w′j

k∏

i=1

ξ
( j)
i , (2.23)

from which (2.20) immediately follows. If x(1) ≥ ··· ≥ x(n), the proof is similar. �

3. Variants of Pečarić’s inequalities

In 1984 Pečarić proved several generalizations of the discrete Ostrowski’s inequalities.
Here we give two of them which are interesting to us because they are refinements of
Theorem 2.1.

Theorem 3.1 [7, Theorem 3]. Let x = (x1, . . . ,xn) and y = (y1, . . . , yn) be real n-tuples
monotonic in the same direction and let w = (w1, . . . ,wn) be a real n-tuple such that

0≤Wk ≤Wn (k = 1, . . . ,n− 1). (3.1)

If m and r are nonnegative real numbers such that
∣
∣xk+1− xk

∣
∣≥m,

∣
∣yk+1− yk

∣
∣≥ r (k = 1, . . . ,n− 1), (3.2)

then

T(x,y;w)≥mrT(e,e;w)≥ 0, (3.3)
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where

T(x,y;w)=
n∑

i=1

wi

n∑

i=1

wixi yi−
n∑

i=1

wixi

n∑

i=1

wiyi,

e= (0,1, . . . ,n− 1).

(3.4)

If x and y are monotonic in opposite directions, then

T(x,y;w)≤−mrT(e,e;w)≤ 0. (3.5)

Theorem 3.2 [7, Theorem 4]. Let x and y be real n-tuples such that

∣
∣xk+1− xk

∣
∣≤M,

∣
∣yk+1− yk

∣
∣≤ R (k = 1, . . . ,n− 1) (3.6)

hold for some nonnegative real numbers M and R, and let w be a real n-tuple such that (3.1)
is valid. Then

∣
∣T(x,y;w)

∣
∣≤MRT(e,e;w). (3.7)

In the next two theorems we give Mercer’s type variants of Theorems 3.1 and 3.2 which
are refinements of Theorem 2.2.

Theorem 3.3. Let n≥ 2 and let w be a real n-tuple such that (2.12) is valid. Let [a,b], [c,d]
be intervals inR, where a < b, c < d. Let x= (x1, . . . ,xn)∈ [a,b]n and y= (y1, . . . , yn)∈ [c,d]n

be monotonic n-tuples, and let m and r be nonnegative real numbers such that

min
1≤i≤n

xi− a≥m, b−max
1≤i≤n

xi ≥m,
∣
∣xk+1− xk

∣
∣≥m (k = 1, . . . ,n− 1),

min
1≤i≤n

yi− c ≥ r, d−max
1≤i≤n

yi ≥ r,
∣
∣yk+1− yk

∣
∣≥ r (k = 1, . . . ,n− 1).

(3.8)

If x and y are monotonic in the same direction, then

T̃(x,y;w)≥mr
[
T̃(f , f ;w) + 2n

]≥ 0, (3.9)

where

T̃(x,y;w)= ac+ bd−
n∑

i=1

wixi yi−
(

a+ b−
n∑

i=1

wixi

)(

c+d−
n∑

i=1

wiyi

)

,

f = (1, . . . ,n)∈ [1,n]n.

(3.10)

If x and y are monotonic in opposite directions, then

T̃(x,y;w)≤−mr
[
T̃(f , f ;w) + 2n

]≤ 0. (3.11)
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Proof. Suppose that n-tuples x and y are both monotonically decreasing (if x and y are
monotonically increasing, the proof is similar). We define (n + 2)-tuples w′ = (w′1, . . . ,
w′n+2), x′ = (x′1, . . . ,x′n+2), and y′ = (y′1, . . . , y′n+2) as

w′1 = 1, w′2 =−w1, . . . ,w′n+1 =−wn, w′n+2 = 1,

x′1 = b, x′2 = x1, . . . ,x′n+1 = xn, x′n+2 = a,

y′1 = d, y′2 = y1, . . . , y′n+1 = yn, y′n+2 = c.

(3.12)

Obviously, x′ and y′ are both monotonically decreasing and we have

0≤W ′
k ≤ 1 (k = 1, . . . ,n+ 1), W ′

n+2 = 1,
∣
∣x′k+1− x′k

∣
∣≥m,

∣
∣y′k+1− y′k

∣
∣≥ r (k = 1, . . . ,n+ 1).

(3.13)

From Theorem 3.1 we have

T(x′,y′;w′)≥mrT(e′,e′;w′)≥ 0, (3.14)

where

e′ = (0,1, . . . ,n+ 1). (3.15)

From that we immediately obtain

ac+ bd−
n∑

i=1

wixi yi−
(

a+ b−
n∑

i=1

wixi

)(

c+d−
n∑

i=1

wiyi

)

≥mr

⎡

⎣
n+2∑

i=1

w′i (i− 1)2−
(n+2∑

i=1

w′i (i− 1)

)2
⎤

⎦

=mr

⎡

⎣(n+ 1)2−
n∑

i=1

wii
2−

(

n+ 1−
n∑

i=1

wii

)2
⎤

⎦≥ 0,

(3.16)

that is,

T̃(x,y;w)≥mr
[
T̃(f , f ;w) + 2n

]≥ 0. (3.17)

If n-tuples x and y are monotonic in opposite directions, the proof is similar. �

Theorem 3.4. Let n≥ 2 and let w be a real n-tuple such that (2.12) is valid. Let [a,b], [c,d]
be intervals in R, where a < b, c < d. Let x = (x1, . . . ,xn)∈ [a,b]n, y = (y1, . . . , yn)∈ [c,d]n

and let M and R be nonnegative real numbers such that
∣
∣x1− a

∣
∣≤M,

∣
∣b− xn

∣
∣≤M,

∣
∣xk+1− xk

∣
∣≤M (k = 1, . . . ,n− 1),

∣
∣y1− c

∣
∣≤ R,

∣
∣d− yn

∣
∣≤ R,

∣
∣yk+1− yk

∣
∣≤ R (k = 1, . . . ,n− 1).

(3.18)
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Then

∣
∣T̃(x,y;w)

∣
∣≤MR

[
T̃(f , f ;w) + 2n

]≤ 0. (3.19)

Proof. Similarly as in Theorem 3.3. �

Corollary 3.5. Let n≥ 2 and let [a,b] be an interval in R where a < b. Then for all x =
(x1, . . . ,xn)∈ [a,b]n,

⎡

⎣na2 +nb2−
n∑

i=1

x2
i −

1
n

(

na+nb−
n∑

i=1

xi

)2
⎤

⎦ 12
n(n+ 1)(5n+ 7)

≥m2, (3.20)

where

m= min
0≤i< j≤n+1

∣
∣xi− xj

∣
∣, x0 = a, xn+1 = b. (3.21)

Proof. Directly from Theorem 3.3. �

Corollary 3.6. Let x = (x1, . . . ,xn), y = (y1, . . . , yn),M andR be defined as in Theorem 3.4.
Then

∣
∣
∣
∣
∣
nac+nbd−

n∑

i=1

xi yi− 1
n

(

na+nb−
n∑

i=1

xi

)(

nc+nd−
n∑

i=1

yi

)∣
∣
∣
∣
∣
≤ n(n+ 1)(5n+ 7)

12
MR.

(3.22)

Proof. Directly from Theorem 3.4. �

The above results are variants of some Lupaş’ results [3].

4. Applications: inequality of Milne and its converse

In 1925 Milne [5] obtained the following interesting integral inequality for positive func-
tions f and g which are integrable on [a,b]:

∫ b

a

f (x)g(x)
f (x) + g(x)

dx
∫ b

a

[
f (x) + g(x)

]
dx ≤

∫ b

a
f (x)dx

∫ b

a
g(x)dx. (4.1)

In 2000 Rao [9] combined Milne’s inequality and the well-known inequality between
arithmetic and geometric means to obtain the following double inequality for sums.

Proposition 4.1. Let n≥ 2 and let wi > 0 (i= 1,2, . . . ,n) be real numbers with
∑n

i=1wi = 1.
Then for all real numbers pi ∈ 〈−1,1〉 (i= 1, . . . ,n),

n∑

i=1

wi

1− p2
i

≤
( n∑

i=1

wi

1− pi

)( n∑

i=1

wi

1 + pi

)

≤
( n∑

i=1

wi

1− p2
i

)2

. (4.2)

Two years later Alzer and Kovačec obtained the following refinement of (4.2).
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Theorem 4.2 [2, Theorem 1]. Let n≥ 2 and let wi > 0 (i= 1,2, . . . ,n) be real numbers with
∑n

i=1wi = 1. Then for all real numbers pi ∈ [0,1〉 (i= 1, . . . ,n),

( n∑

i=1

wi

1− p2
i

)α

≤
( n∑

i=1

wi

1− pi

)( n∑

i=1

wi

1 + pi

)

≤
( n∑

i=1

wi

1− p2
i

)β

(4.3)

with the best possible exponents

α= 1, β = 2− min
1≤i≤n

wi. (4.4)

We note here that the crucial step in the proof of Theorem 4.2 was performed by using
a discrete variant of the Čebyšev’s inequality (see, e.g., [8, page 197]) which itself was gen-
eralized in Section 2. This enables us to give the following generalization of Theorem 4.2.

Theorem 4.3. Let n ≥ 2 and let w = (w1, . . . ,wn) be a real n-tuple such that (2.12) is sat-
isfied. Then for all α∈ 〈−∞,1], β ∈ [2−min1≤i≤nWi,+∞〉 and for all monotonic n-tuples
p= (p1, . . . , pn)∈ [0,1〉n,

( n∑

i=1

wi

1− p2
i

)α

≤
( n∑

i=1

wi

1− pi

)( n∑

i=1

wi

1 + pi

)

≤
( n∑

i=1

wi

1− p2
i

)β

(4.5)

with the best possible exponents

α= 1, β = 2− min
1≤i≤n

Wi. (4.6)

Proof. We follow the idea of the proof given in [2]. Suppose that 1 > p1 ≥ p2 ≥ ··· ≥
pn ≥ 0. It can be easily seen that

0 <
1

1 + p1
≤ 1

1 + p2
≤ ··· ≤ 1

1 + pn
≤ 1,

1
1− p1

≥ 1
1− p2

≥ ··· ≥ 1
1− pn

≥ 1,

1
1− p2

1
≥ 1

1− p2
2
≥ ··· ≥ 1

1− p2
n
≥ 1,

(4.7)

so in this case (see Remark 1.3) we know that

n∑

i=1

wi

1− pi
≥ 1,

n∑

i=1

wi

1 + pi
> 0,

n∑

i=1

wi

1− p2
i

≥ 1. (4.8)

Let w =min1≤i≤nWi. We define function f : [0,1〉n→R as

f
(
p1, . . . , pn

)= (2−w) log

( n∑

i=1

wi

1− p2
i

)

− log

( n∑

i=1

wi

1− pi

)

− log

( n∑

i=1

wi

1 + pi

)

. (4.9)

For fixed k ∈ {1, . . . ,n− 1} we define function fk : [0,1〉 →R as

fk(p)= f
(
p, . . . , p, pk+1, . . . , pn

)
. (4.10)
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Let p ∈ [pk+1,1〉. We have

f ′k (p)= WkD(
1− p2

)
ABC

, (4.11)

where

A=Wk +
n∑

i=k+1

wi
1− p2

1− p2
i

, B =Wk +
n∑

i=k+1

wi
1− p

1− pi
, C =Wk +

n∑

i=k+1

wi
1 + p

1 + pi
,

(4.12)

D = A
[
(1− p)B− (1 + p)C

]
+ 2(2−w)pBC. (4.13)

We define n-tuples x = (x1, . . . ,xn) and y = (y1, . . . , yn) with

xi = 1, yi = 1 (i= 1, . . . ,k),

xi = 1− p

1− pi
, yi = 1 + p

1 + pi
(i= k+ 1, . . . ,n),

(4.14)

which are obviously monotonic in opposite directions. From Theorem 2.1 we have

( n∑

i=1

wixi

)( n∑

i=1

wiyi

)

≥
n∑

i=1

wixi yi, (4.15)

that is, BC ≥ A, and from Remark 1.3 we know that A, B, and C are all positive. This
enables us to conclude that

D

A
≥ (1− p)B− (1 + p)C+ 2(2−w)p

= 2p
(
2−w−Wk

)
+

n∑

i=k+1

wi

(
(1− p)2

1− pi
− (1 + p)2

1 + pi

)

.
(4.16)

It can be easily seen that

−4p = (1− p)2− (1 + p)2 ≤ (1− p)2

1− pk+1
− (1 + p)2

1 + pk+1

≤ ··· ≤ (1− p)2

1− pn
− (1 + p)2

1 + pn
,

(4.17)

so we have

k∑

i=1

wi(−4p) +
n∑

i=k+1

wi

(
(1− p)2

1− pi
− (1 + p)2

1 + pi

)

≥−4p, (4.18)

that is,

n∑

i=k+1

wi

(
(1− p)2

1− pi
− (1 + p)2

1 + pi

)

≥−4p+ 4pWk. (4.19)
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From (4.19) and (4.16) we obtain

D

A
≥ 2p

(
Wk −w

)≥ 0, (4.20)

which implies that the function fk is increasing on [pk+1,1〉. Using that fact we obtain

f
(
p1, . . . , pn

)= f1
(
p1
)≥ f1

(
p2
)= f2

(
p2
)≥ f2

(
p3
)= f3

(
p3
)

≥ ··· ≥ fn−1
(
pn
)=−(1−w) log

(
1− p2

n

)≥ 0,
(4.21)

which implies

( n∑

i=1

wi

1− pi

)( n∑

i=1

wi

1 + pi

)

≤
( n∑

i=1

wi

1− p2
i

)2−w
, (4.22)

that is, the right inequality in (4.5) holds for β = 2−min1≤i≤nWi. Since

n∑

i=1

wi

1− p2
i

≥ 1, (4.23)

it is clear that it also holds for all β ≥ 2−min1≤i≤nWi.
A similar argument as in [2] shows that β = 2−min1≤i≤nWi gives the best upper

bound in (4.5): if Wk =min1≤i≤nWi, we simply choose n-tuple p = (p1, . . . , pn) defined
as

p1 = ··· = pk = q, pk+1 = ··· = pn = 0, q ∈ 〈0,1〉, (4.24)

and for such p and w we obtain that β must satisfy the condition β ≥ 2−Wk.
The left-hand side of (4.5) is a simple consequence of Theorem 2.1. If we define

xi = 1
1− pi

, yi = 1
1 + pi

(i= 1, . . . ,n), (4.25)

then n-tuples x = (x1, . . . ,xn) and y = (y1, . . . , yn) are monotonic in opposite directions,
so we have

n∑

i=1

wi

1− p2
i

≤
( n∑

i=1

wi

1− pi

)( n∑

i=1

wi

1 + pi

)

. (4.26)

Furthermore, (4.23) implies

( n∑

i=1

wi

1− p2
i

)α

≤
( n∑

i=1

wi

1− pi

)( n∑

i=1

wi

1 + pi

)

(4.27)

for all α≤ 1.
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The same argument as in [2] shows that α= 1 gives the best lower bound for (4.5). In
case 0≤ p1 ≤ ··· ≤ pn < 1 the proof is similar. �

In the next theorem we give a Mercer’s type variant of (4.5).

Theorem 4.4. Let n≥ 2 and let w = (w1, . . . ,wn) be a real n-tuple such that (2.12) is satis-
fied. Then for all α∈ 〈−∞,1], β ∈ [2,+∞〉 and for all monotonic n-tuples p= (p1, . . . , pn)∈
[p,q]n, where [p,q]⊆ [0,1〉 and p < q,

(
1

1− p2
+

1
1− q2

−
n∑

i=1

wi

1− p2
i

)α

≤
(

1
1− p

+
1

1− q
−

n∑

i=1

wi

1− pi

)(
1

1 + p
+

1
1 + q

−
n∑

i=1

wi

1 + pi

)

≤
(

1
1− p2

+
1

1− q2
−

n∑

i=1

wi

1− p2
i

)β

,

(4.28)

with the best possible exponents

α= 1, β = 2. (4.29)

Proof. Suppose that q ≥ p1 ≥ p2 ≥ ··· ≥ pn ≥ p. We define (n+ 2)-tuples w′ = (w′1, . . . ,
w′n+2) and p′ = (p′1, . . . , p′n+2)∈ [0,1〉n with

w′1 = 1, w′2 =−w1, . . . ,w′n+1 =−wn, w′n+2 = 1,

p′1 = q, p′2 = p1, . . . , p′n+1 = pn, p′n+2 = p.
(4.30)

We have

0≤W ′
k ≤ 1 (k = 1, . . . ,n+ 1), W

′
n+2 = 1, min

1≤i≤n
W ′

i = 0. (4.31)

From Remark 1.3 we know that

n+2∑

i=1

w′i
1− p′2i

≥ 1, (4.32)

so the left side and the right side of (4.28) are well defined. If we apply Theorem 4.3 on
(n+ 2)-tuples w′ and p′, we obtain

(n+2∑

i=1

w′i
1− p′2i

)α

≤
(n+2∑

i=1

w′i
1− p′i

)(n+2∑

i=1

w′i
1 + p′i

)

≤
(n+2∑

i=1

w′i
1− p′2i

)β

, (4.33)

from which (4.28) immediately follows.
If p ≤ p1 ≤ ··· ≤ pn ≤ q, the proof is similar. �
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[8] J. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Ap-
plications, Mathematics in Science and Engineering, vol. 187, Academic Press, Massachusetts,
1992.

[9] C. R. Rao, Statistical proofs of some matrix inequalities, Linear Algebra and Its Applications 321
(2000), no. 1–3, 307–320.
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