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We study nonlinear ODE problems in the complex Euclidean space, with the right-hand
side being polynomial with nonconstant periodic coefficients. As the coefficients func-
tions, we admit only functions with vanishing Fourier coefficients for negative indices.
This leads to an existence theorem which relates the number of solutions with the num-
ber of zeros of the averaged right-hand side polynomial. A priori estimates of the norms
of solutions are based on the Wirtinger-Poincaré-type inequality. The proof of existence
theorem is based on the continuation method of Krasnosielski et al., Mawhin et al., and
the Leray-Schauder degree. We give a few applications on the complex Riccati equation
and some others.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

This work is devoted to the C-valued T-periodic positive oriented C1-smooth solutions
of the ordinary differential equation of the form

u̇(t)=
N∑

k=0

ck(t)uk(t), (1.1)

where ck(t), k = 0, . . . ,N , are C-value T-periodic positive oriented continuous functions.
The study of such solutions was begun in [6]. In this review article we present some new
description of our results and their applications to the complex Riccati equation. Some
theorems are presented in more general forms and proofs are given in more detail.

The algebra of positive oriented C-valued T-periodic functions C1
+(T) attracted our

attention by two reasons. At first, in C1
+(T) we developed a special technique of a priori

estimates of solution, which does not occur in the usual algebra C1(T). These estimates
give a possibility to separate and to localize the solutions and find favorable conditions
for using the degree theory for their determination.
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2 Periodic solutions of the nonlinear complex ODE

In this work we use a priori estimates of solution of two types. At first, the mean value
u of solution u(t)∈ C1

+(T) is a root of the polynomial equation

0=
N∑

k=0

ck uk (1.2)

or, shortly 0 = P(u), where the coefficients of the associated polynomial P are averaging
values

ck = 1
T

∫ T

0
ck(t)dt, u= 1

T

∫ T

0
u(t)dt (1.3)

and n= degP �N . Secondly, some assumptions for the coefficients of (1.1) and for their
mean values lead to the following: that the C0-norm ‖u‖0 of solution u(t) ∈ C1

+(T) be-
longs to the sum of two intervals [r0,r1]∪ [r2,+∞), where 0 � r0 < r1 < r2. This estimate
is fulfilled only in the algebra of positive oriented functions and is based on the Wirtinger
and Poincare inequality (see [19] for details). We study only the first part of set of solu-
tions (with norms in [r0,r1]) and prove that it is a compact subset.

In Section 2 we give the definition of the Banach algebra Ck
+(T) for integer k � 0 and

the definition of the associated polynomial P(z). Next, we formulate main Theorem 2.4.
This theorem gives a sufficient condition for the existence of a T-periodic solution u(t)
with u = z0, where z0 is a root of P(z). In Section 3 we give all properties of positive
oriented functions which we need for study of (1.1). Section 4 is devoted to the proof of
a priori estimates.

Section 5 contains the proof of main theorem on the base of the continuation method
of Krasnosielski et al. and Mawhin et al. and the Leray-Schauder degree. In some sense
our hypothesis is equivalent to an assumption that (1.1) is a small perturbation of (1.2)
if the frequency is large enough, which resembles previous approaches to the problem
[15, 17, 21]. However, we must say that as well our analytical framework as the required
a priori bound have very natural form and lead to a multiplicity result to an effective
estimate of the period.

In last Section 6 we give a few applications of our main theorem to the complex Riccati
equation and make a comparison with other results in this direction (Lloyd [14], Hassan
[12], Campos and Ortega [10], Miklaszewski [20], and Żoła̧dek [22]). We also study the
positive oriented periodic solutions on the base of the Nielsen fixed-point theory, see
[1, 2, 7, 8, 11] and [3–5]. In particular, we use the theorems on multiplicity of distinct
roots of a complex polynomial [4, 7].

In the end, we remark that the positive oriented solutions of the equation

u̇(t)= f (t,u) (1.4)

with analytical right part were studied by Marzantowicz in [16].
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2. Main theorem

In this work we look for the solutions u(t)∈ C1
+(T) of nonlinear differential equation

u̇(t)=
N∑

k=0

ck(t)uk(t) (2.1)

with cN (t) �≡ 0, integer N � 2 and coefficients ck(t)∈ C0
+(T) for all k = 0,1, . . . ,N .

Let Cp(T) for integer p � 0 and real T > 0 denotes the Banach algebra of the Cp-
smooth C-valued T-periodic functions u(t) with the norm

‖u‖p =
p∑

k=0

∥∥u(k)
∥∥

0,
∥∥u(k)

∥∥
0 = max

t∈[0,T]

∣∣u(k)(t)
∣∣. (2.2)

We assign to a given function u(t)∈ C0(T) its Fourier series

u(t)∼
+∞∑

k=−∞
fk(u)eiνkt, ν= 2π

T
, (2.3)

with the coefficients

fk(u)= 1
T

∫ T

0
u(t)e−iνkt dt. (2.4)

Definition 2.1. Let C
p
+(T) be a set of all functions u(t)∈ Cp(T) satisfying fk(u)= 0 for all

integer k < 0. The subset C
p
+(T) is a Banach subalgebra in Cp(T). We call it the algebra of

positive oriented functions.

By A : C0(T)→ C we denote the functional of averaging, that is, it assigns to a given
function u(t) its mean value

A(u)= 1
T

∫ T

0
u(t)dt. (2.5)

Remark that the mean value A(u) is equal to the 0th Fourier coefficient f0(u).

Definition 2.2. A polynomial P(z)∈ C[z] is associated with (2.1) if

P(z)=
N∑

k=0

ck zk, (2.6)

where ck = A(ck) are mean values of ck(t).
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l(x, r0) ω(x)

l(r, r0)

ω(r)

‖c0‖0

− 2
T
r0

r0 r1 r r2

x

(a)

l(x, r0) ω(x)

l(r, r0) = ω(r)

‖c0‖0

− 2
T
r0

r0 r

x

(b)

Figure 2.1

Remark 2.3. If the mean value cn �= 0 for a certain integer 1 � n � N and ck = 0 for all
integer k = n+ 1, . . . ,N , then degP = n. The degree of associated polynomial P(z) is a less
or equal than the degree of right part of (2.1).

We assign also to (2.1) two functions l,ω :R+→R defined by formulae

l
(
x,r0

)= 2
T

(
x− r0

)
, ω(x)=

N∑

k=0

∥∥ck(t)
∥∥

0x
k, (2.7)

depending from real variable x � 0. Function l(x,r0) is depending on parameter r0 � 0
in addition. The graph of ω(x) starts from the point ω(0) = ‖c0(t)‖0, it is a convex and
increasing. The graph of l(x,r0) is a direct line which starting from the point l(0,r0) =
−(2/T)r0 with the angle ϕ, where tanϕ= 2/T .

On Figures 2.1(a) and 2.1(b) the possibility intersections of the graphs of l(x,r0) and
ω(x) are showed.

We are now in position to formulate the main theorem.

Theorem 2.4. Consider (2.1). Suppose that
(i) real T > 0, integer N � 2 and cN (t) �= 0;

(ii) coefficients ck(t)∈ C0
+(T) for all k = 0,1, . . . ,N ;

(iii) mean value cn �= 0 for a certain integer 1 � n�N ;
(iv) number z0 ∈ C is a root of the associated polynomial P(z);
(v) equation

ω(x)= l
(
x,r0

)
, (2.8)
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2
T

ω′(x)

‖c0‖0

r x

Figure 2.2

where r0 = |z0|, has a two distinct roots r1 < r2 in the interval [0,+∞), see Figure 2.1(a).
Then (2.1) has at least one solution u(t)∈ C1

+(T) with the mean value

A(u)= z0. (2.9)

Moreover, its C1-norm is bounded as follows

r0 �
∥∥u(t)

∥∥
0 � r1,

∥∥u̇(t)
∥∥

0 � 2
T

(
r1− r0

)
. (2.10)

The proof of Theorem 2.4 will be given in Section 5.
Next, we will study the equation

ω(x)= l
(
x,r0

)
. (2.11)

Note r > 0 a point, where the tangent line of ω(x) is a parallel to l(x,r0). The point r is
not depending from the parameter r0 and may be found from the equality ω′(r)= tanϕ,
that is

N∑

k=1

k
∥∥ck(t)

∥∥
0 r

k−1 = 2
T
. (2.12)

The graph of ω′(x) starts from the points ω′(0)= ‖c1(t)‖0 and increases. The condi-
tion

∥∥c1(t)
∥∥

0 <
2
T

(2.13)

is a necessary and sufficient for an existence of the unique positive solution r > 0 of the
equation ω′(x)= 2/T , see Figure 2.2.
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If for a certain r0 � 0 the graphs of ω(x) and l(x,r0) have a two distinct intersection
points r1 < r2 in the interval [0,+∞), then r1 < r < r2 and ω(r) < l(r,r0), that is

N∑

k=0

∥∥ck(t)
∥∥

0 r
k <

2
T

(r− r0), (2.14)

see Figure 2.1(a). Moreover:

Property 2.5. The fulfilment of the inequalities (2.13) and (2.14) for a certain r0 � 0 is
a necessary and sufficient condition for an existence in the interval [0,+∞) of the two
distinct points of intersection of the graphs of ω(x) and l(x,r0).

Remark 2.6. The inequality (2.14) may be written in the form

r0 < r− T

2

N∑

k=0

∥∥ck(t)
∥∥

0 r
k, (2.15)

what is a very convenient for the application to the differential equation (2.1) because the
constant r0 = |z0| in the left part of (2.15) depending only from the mean values ck of the
coefficients of (2.1) and the constant in the right part of the inequality (2.15) depending
from its C0-norms and period T .

3. Algebra of periodic C
p
+-functions

At first we study the properties of the Banach algebras C
p
+(T), integer p � 0 and T > 0,

which are necessary for the proof of main Theorem 2.4.
In C0(T) consider the following linear subspace of the trigonometrical polynomials

E(T)=
{
c0 +

m∑

k=1

ck ek(t) : c0,ck ∈ C, m= 1,2, . . .

}
, (3.1)

where

e(t)= eiνt, ν= 2π
T
. (3.2)

It is clear, that E(T) is a subspace of every Cp(T).

Definition 3.1. We will denote by C
p
+(T) the closure of subspace E(T) in Cp(T) with

respect to its norm ‖ · ‖p.

Definition 3.1 is equivalent to Definition 2.1, see [6].
We assign to a given period T > 0 the two dimensional open disc on the complex plane

Dτ =
{
z : |z| < τ

}
, τ = T

2π
. (3.3)
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Let us denote by Sτ its boundary and by Dτ the closed disc. Remark that the length of Sτ
is equal to T . For a given C-valued function g(z), which is defined in some open neigh-
borhood of Dτ , we assign its restriction u(t) to the boundary Sτ by following formula

u(t)= g
(
τeiνt

)
. (3.4)

Remark that the each trigonometrical polynomial

v(t)=
m∑

k=0

ck eiνkt (3.5)

is a restriction to the circle Sτ of the corresponding holomorphic function

h(z)=
m∑

k=0

(
ckν

k
)
zk. (3.6)

Let H(Dτ) denotes the linear space of the C-valued functions h(z) defined and holo-
morphic in some open neighborhood of Dτ . Let Cp(Sτ) denotes the Banach algebra of
the Cp-smooth C-valued functions u(t) defined on the circle Sτ . Note that Cp(Sτ) can be
identified with Cp(T). We call H(Sτ) or H(T) the set of restrictions to the boundary Sτ
of all functions h(z)∈H(Dτ). The set H(T) is a linear subspace in Cp(T) for all integer
p � 0.

Definition 3.2. We will denote by C
p
+(T) the closure of subspace H(T) in Cp(T) with

respect to its norm ‖ · ‖p.

Definition 3.2 is equivalent to Definitions 2.1 and 3.1, see [6].

Property 3.3. The functional of averaging A : C
p
+(T)→ C, defined by (2.2), is a linear and

multiplicative, that is, for every u(t),v(t)∈ C
p
+(T) and every α,β ∈ C we have

A(αu+βv)= αA(u) +βA(v),

A(uv)= A(u)A(v).
(3.7)

Property 3.3 may be simple verified for u(t),v(t) ∈ E(T), see formula (3.1). Property
3.3 for all functions in C

p
+(T) follows from the continuity of A.

Definition 3.4. We call V
p
+ (T), integer p � 0 and real T > 0, the kernel subspace of the

averaging functional A : C
p
+(T)→ C defined by (2.3).

Recall that V
p
+ (T) is a set of all functions v(t)∈ C

p
+(T) having f0(v)= 0, where f0(v)

is its 0th Fourier coefficient.
It is well known that the kernel subspace of multiplicative linear functional is a maxi-

mal ideal in the Banach algebra. Let V0 denotes the subspace of constant complex func-
tions with the based element e0(t)≡ 1. We will write V0 ∼ C. We will be different: e0(t)≡
1 is an element of the Banach algebra C

p
+(T) and 1 is an element of C.
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Property 3.5. The Banach algebra C
p
+(T), integer p � 0 and real T > 0, may be written as

a direct sum

C
p
+(T)=V0⊕V

p
+ (T). (3.8)

The every function v(t)∈V
p
+ (T) may be written as

v(t)= eiνtu(t), (3.9)

where u(t)∈ C
p
+(T). Therefore, the Banach algebras C

p
+(T) and V

p
+ (T) are isometric. For

a given integer m� 0 we have a decomposition

C
p
+(T)=V0⊕V1(T)⊕···⊕Vm(T)⊕V

p
+m(T), (3.10)

where

Vk(T)= {ceiνkt : c ∈ C}, k = 0,1, . . . ,m, (3.11)

and V
p
+m(T) is a Banach algebra of all functions v(t)∈ C

p
+(T) satisfying

fk(v)= 0, k = 0,1, . . . ,m. (3.12)

Note that algebras V
p
+m(T) in the decompositions (3.10) for all integer m� 0 are isomet-

ric to C
p
+(T). Moreover, V

p
+0(T)= C

p
+(T) and V

p
+1(T)=V

p
+ (T).

Definition 3.6. We call J the projector J : C
p
+(T)→ C

p
+(T) to the subspace V0 along the

ideal V
p
+ (T) defined by formula

J(u)= A(u)e0. (3.13)

It is a multiplicative linear bounded map with Im J =V0 and Ker J =V
p
+ (T) preserving

all elements from V0.

Definition 3.7. We will denote by D the operator of derivative D : C
p
+(T)→ C

p−1
+ (T), in-

teger p � 1 and real T > 0, defined by the formula

D(u)(t)= u̇(t). (3.14)

Property 3.8. The operator D is a linear bounded. It belongs to the class Φ0, that is, is a
Fredholm map of index 0. Moreover, it has

KerD =V0, ImD =V
p−1
+ (T). (3.15)

The restriction D : V
p
+ (T)→ V

p−1
+ (T) is an isomorphism. It is naturally, because all

components Vk(T), k ∈ N, in the decomposition (3.10) are the eigne-subspaces of the
linear map D.
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Property 3.9. Let A : C0
+(T)→ C denotes the functional of averaging, see (2.2), and u(t)∈

C1
+(T). Then we have

A(u̇)= 0. (3.16)

To prove Property 3.9 consider the differential operator D : C1
+(T)→ C0

+(T). We have

V 0
+(T)= ImD = KerA. (3.17)

Definition 3.10. We will denote by L the differential operator L : C
p
+(T)→ C

p−1
+ (T), inte-

ger p � 1 and real T > 0, defined by the formula

L(u)(t)= u̇(t) +u(t). (3.18)

Property 3.11. The operator L is an isomorphism.

To prove Property 3.11 we write the operator L as a sum

L=D+E ◦ I , (3.19)

where I : C
p
+(T)→ C

p
+(T) is the identity map and E : C

p
+(T)→ C

p−1
+ (T) is a natural em-

bedding of the Banach algebras. Recall that E is a completely continuous. Following the
superposition E ◦ I is a completely continuously too. In the sum (3.19) the first operator
belongs to the class Φ0 and the second is a completely continuous. Therefore L∈Φ0. It is
not difficult to verify that KerL= {0}. Following the map L is an isomorphism.

4. A priori estimates of solutions in C
p
+-algebra

The proof of the main Theorem 2.4 is based on the homotopy

u̇(t)=
N∑

k=0

(
λck(t)uk(t) + (1− λ)ckA(u)k

)
(4.1)

with parameter λ∈ [0,1], where the constants ck = A(ck) are mean values of ck(t), A(u) is
a mean value of u(t). Remark that the homotopy (4.1) is thought to deformation (2.1) to
a simpler equation u̇= P(u), where P is a polynomial associated with (2.1). The simpler
equation has only constant solutions u(t) ≡ z, u̇(t) ≡ 0, where z is a root of P. In this
section we will give some a priori properties of the solutions of (4.1) in C1(T) and C1

+(T),
which we need to prove the main Theorem 2.4.

We will use the following inequality of the Wirtinger-Poincare type, see [19] and [6]
for details.

Property 4.1. Let u(t) ∈ C1(T) be a T-periodic function, u = A(u) its mean value and
‖u‖0 its C0-norm, see formulae (2.5) and (2.2). Then

0 � ‖u‖0−|u|� T

2
‖u̇‖0. (4.2)
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Proof. For every 0 � t0 � T we have

0 �
∥∥u(t)

∥∥
0−
∣∣u
(
t0
)∣∣�

∥∥u(t)−u
(
t0
)∥∥

0 � T

2

∥∥u̇(t)
∥∥

0. (4.3)

On the other hand for the mean value u of any periodic function u(t) ∈ C1(T) we have
|u|� |u(t∗)| for some t∗ ∈ [0,T]. This leads to Property 4.1. �

Property 4.2. Consider (4.1) with real T > 0, integer N � 2 and all coefficient ck(t) ∈
C0(T). Let u(t) ∈ C1(T) is a solution for some λ ∈ [0,1]. Then the following inequality
holds:

2
T

(‖u‖0−|u|
)
�

N∑

k=0

∥∥ck
∥∥

0‖u‖k0, (4.4)

or, shortly,

l
(‖u‖0,|u|)� ω

(‖u‖0
)
. (4.5)

Recall that u= A(u) is a mean value of u(t) and

‖u‖0 = max
t∈[0,T]

∣∣u(t)
∣∣. (4.6)

Proof. To prove Property 4.2 we calculate the C0-norms from the left and right parts
of (4.1) and use the inequalities |ck| � ‖ck‖0 for all k = 0,1, . . . ,N and |A(u)| � ‖u‖0.
We get

‖u̇‖0 �
N∑

k=0

∥∥ck
∥∥

0‖u‖k0 (4.7)

independently from the parameter λ∈ [0,1]. From (4.2) we get

2
T

(‖u‖0−|u|
)
� ‖u̇‖0. (4.8)

The inequalities (4.7) and (4.8) lead Property 4.2. �

Property 4.3. Let u(t) ∈ C1
+(T) is a solution of (4.1) for some λ ∈ [0,1], where integer

N � 2 and all coefficients ck(t) ∈ C0
+(T). Then its mean value u = A(u) is a root of the

associated polynomial P(z), that is

0=
n∑

k=0

ck uk. (4.9)

To prove Property 4.3 we calculate the mean values from the left and right parts of
(4.1) and apply Properties 3.3 and 3.9.

Remark that (4.1) for each λ∈ [0,1] has a same associated polynomial P(z) at degree
n � N . Let P−1(0)= {z1, . . . ,zm}, where integer 1 � m � n. For a given root zj we assign
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the fiber F(zj) in the space C1
+(T) defined by formula

F
(
zj
)= {u(t) : A(u)= zj

}
, j = 1, . . . ,m. (4.10)

Note that all solutions of (4.1) in the algebra C1
+(T) belong to the set F, which is a sum of

all fibers

F = F
(
z1
)∪···∪F

(
zm
)
. (4.11)

Theorem 4.4. Consider the family (4.1) with parameter λ∈ [0,1]. Suppose that
(i) real T > 0, integer N � 2 and cN (t) �= 0;

(ii) coefficients ck(t)∈ C0
+(T) for all k = 0,1, . . . ,N ;

(iii) mean value cn �= 0 for a certain integer 1 � n�N and ck = 0 for all k > n;
(iv) number z0 ∈ C is a root of the associated polynomial P(z);
(v) function u(t)∈ C1

+(T) is a solution of (4.1) for some λ∈ [0,1] and A(u)= z0.
Then, its C0-norm and mean value satisfy a priori inequality

l
(‖u‖0,

∣∣z0
∣∣)� ω

(‖u‖0
)
, (4.12)

where the functions l(x,r0) and ω(x) defined by formulae (2.7).

Theorem 4.4 follows directly from Properties 4.2 and 4.3.

Remark 4.5. If the supposition (v) of the main Theorem 2.4 is fulfilled, see Figure 2.1(a)
and Property 2.5, then for each solution u(t) ∈ F(z0) ⊂ C1

+(T) of (2.1) its C0-norm
‖u(t)‖0 belongs to the one of two intervals [r0,r1] or [r2,+∞), where r0 = |z0| and
r1 < r2 are positive roots of the equation l(x,r0)= ω(x). If the supposition (v) of the main
Theorem 2.4 is not fulfilled, then ‖u(t)‖0 belongs to [r0,+∞), see Figure 2.1(b).

5. Proof of main theorem

We are now in position to prove the main Theorem 2.4. Introduce the following operators
acted in the Banach algebras of positive oriented functions:

L : C1
+(T)−→ C0

+(T), Lu(t)= u̇(t) +u(t), (5.1)

is an isomorphism L=D+ I , see Property 3.11;

Q : C0
+(T)−→ C0

+(T), Qu(t)=
N∑

k=0

ck(t)uk(t) +u(t), (5.2)

is a nonlinear continuous map (evaluation Niemytskij operator);

E : C1
+(T)−→ C0

+(T), Eu(t)= u(t), (5.3)
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is a natural embedding of the Banach algebras (completely continuous map);

J : C1
+(T)−→ C1

+(T), Ju(t)= A(u)e0(t), (5.4)

is a projector to the subspace V0 ∼ C, where e0(t)≡ 1 is an element of C1
+(T).

Reduce the differential equation (2.1) to a fixed point problem u=G(u) with the com-
pletely continuous map G : C1

+(T)→ C1
+(T). Add the function u(t) to the left and right

parts of (2.1). We get

u̇(t) +u(t)=
N∑

k=0

ck(t)uk(t) +u(t). (5.5)

Equation (5.5) may be written in the operator form

L(u)=Q ◦E(u), (5.6)

where the operators L, Q, E are defined by (5.1), (5.2), and (5.3). Equation (5.6) may be
written in the form

u= L−1 ◦Q ◦E(u) (5.7)

with the help of the invertibility of L, see Property 3.11. Denote

G= L−1 ◦P ◦E. (5.8)

Then, the operator equation (5.7) or differential equation (2.1) may be written as a fixed
points problem u=G(u) for the completely continuous map G : C1

+(T)→ C1
+(T) defined

by formula (5.8). The map G is a completely continuous because one of the elements
of decomposition (5.8) is a completely continuous embedding of the Banach algebras,
see (5.3).

The actions of all operators are illustrated on the following scheme

C1
+(T)

L−→ C0
+(T)

Q←− C0
+(T)

E←− C1
+(T). (5.9)

Recall that the proof of the main Theorem 2.4 is based on the homotopy (4.1), which
is thought to deform (2.1) to a simpler equation. Write all of this equations together:

u̇(t)=
N∑

k=0

ck(t)uk(t), λ= 1,

u̇(t)=
N∑

k=0

[
λck(t)uk(t) + (1− λ)ck A(u)k

]
, 0 � λ� 1,

u̇(t)=
N∑

k=0

ck A(u)k, λ= 0.

(5.10)
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Write this homotopy in the operator form:

u=G(u), λ= 1,

u=Gλ(u), 0 � λ� 1,

u= J ◦G(u), λ= 0.

(5.11)

Recall, see Property 3.5, that the Banach algebra C1
+(T) may be written as a direct sum

C1
+(T)=V 1

+(T)⊕V0 (5.12)

with the finite-dimensional subspace

V0 =
{
Ce0(t) : C ∈ C}∼ C, (5.13)

where e0(t)≡ 1 is an element of C1
+(T). The map J : C1

+(T)→ C1
+(T) is a projector to V0

along V 1
+(T), see Definition 3.6.

Following the operator J ◦G : C1
+(T)→ C1

+(T) acts by right

J ◦G(u)(t)=
N∑

k=0

[
ck A(u)k + A(u)

]
e0(t) (5.14)

and it has a finite-dimensional image, see Figure 5.1. All its fixed points belong to the
finite-dimensional subspace, that is

Im(J ◦G)⊂V0, Fix(J ◦G)⊂V0. (5.15)

From Definition 2.2 of the associated polynomial P(z), Property 4.3 and the equality
(5.14) we get

(J ◦G− I)
∣∣
V0∼C = P, (5.16)

where the left part of (5.16) is a restriction of the map J ◦G− I to the finite-dimensional
subspace V0. On the base of (5.16) we get

Fix(J ◦G)= P−1(0) (5.17)

or, more exactly, the equation

u= J ◦G(u) (5.18)

is equivalent to the system

u(t)≡ z, z ∈ C,

P(z)= 0, P : C−→ C. (5.19)

Property 5.1. Consider the family of (5.11) with parameter λ ∈ [0,1]. Let the number
z0 ∈ C is a root of the associated polynomial P(z). Then the simpler equation u= J ◦G(u)
for λ= 0 has a solution u0(t)≡ z0.
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V1
+(T)

J

G

JG

V0 ∼ C

Figure 5.1

V1
+(T) Fε,r(z0)

z0

V0 ∼ C

Figure 5.2

Recall, see Property 4.3 and Figure 5.2, that this solution belongs to the fiber

F
(
z0
)= {u(t) : A(u)= z0

}
. (5.20)

We would like to show on the base of the Leray-Schauder degree that the root of u=Gλ(u)
will be preserved in the fiber F(z0) for all λ∈ [0,1].

Now, we are in position to apply the Leray-Schauder degree.

Lemma 5.2. Let U is a bounded open connected set in C1
+(T). Consider the intersection

UC =U ∩V0. (5.21)

Assume that UC �= ∅, then it is a bounded open connected set in V0 ∼ C. Suppose that the
boundary ∂UC there is not a roots of the associated polynomial P(z). Then,

deg(J ◦G− I ,U ,0)= deg
(
P,UC,0

)
, (5.22)

where deg denotes the Leray-Schauder degree.
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Choose the sufficiently small open neighborhood of z0 in C

Cε
(
z0
)= {z :

∣∣z− z0
∣∣ < ε

}
, (5.23)

such that its closure does not consist others roots of the associated polynomial P(z).
Choose also the real number r > 0 such that r1 < r < r2, see supposition (v) of

Theorem 2.4 and Figure 2.1(a). For example, r may be chosen as a unique root of (2.12).
In Banach algebra C1

+(T) define the open bounded connected set by following

Fε,r
(
z0
)=

{
u(t) :

∣∣A(u)− z0
∣∣ < ε, ‖u‖0 < r, ‖u̇‖0 <

N∑

k=0

∥∥ck
∥∥

0r
k

}
, (5.24)

see Figure 5.2. Remark that

Fε,r
(
z0
)∩V0 = Cε

(
z0
)
. (5.25)

For each solution u(t)∈ F(z0)⊂ C1
+(T) of the equation u= Gλ(u) for some λ∈ [0,1] its

C0-norm ‖u(t)‖0 belongs to the one of two intervals [r0,r1] or [r2,+∞). It follows from
Theorem 4.4 and supposition (v) of Theorem 2.4. We get

‖u‖0 � r1 < r or r < r2 � ‖u‖0. (5.26)

From (5.26) and Property 4.3 we get

FixGλ∩ ∂Fε,r
(
z0
)=∅ (5.27)

for all λ∈ [0,1].
Finally. Let z0 ∈ C is a root of the associated polynomial P(z). Then:

deg
(
P,Cε

(
z0
)
,0
) �= 0;

u0(t)≡ z0 is a solution of u= J ◦G(u);

u0(t) belongs to the set Fε,r
(
z0
)
.

(5.28)

Using the Leray-Schauder degree and Lemma 5.2, we get

deg
(
I −G,Fε,r

(
z0
)
,0
)= deg

(
I −Gλ,Fε,r

(
z0
)
,0
)

= deg
(
I − J ◦G,Fε,r

(
z0
)
,0
)

= deg
(−P,Cε

(
z0
)
,0
) �= 0.

(5.29)

Following the equation u=G(u) has at least one solution u(t)∈ Fε,r(z0)⊂ C1
+(T).

6. Applications

In this section we first give some modifications of the main Theorem 2.4, which are con-
venient to the applications to particular differential equations. Now, we need a following
simple result from classical algebra.
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Property 6.1. On the complex plane consider the following polynomial equation

0=
n∑

k=0

ck zk, (6.1)

where all coefficient ck ∈ C, integer 0 � k � n, and cn �= 0. Denote

m= 1
|cn|

n−1∑

k=0

∣∣ck
∣∣. (6.2)

Then, each root z0 of (6.1) is satisfied to one of two following a priory estimates

∣∣z0
∣∣� m1/n, if m < 1, (6.3)

or

∣∣z0
∣∣� m, if m � 1. (6.4)

From Theorem 2.4, Property 2.5, Remark 2.6, and Property 6.1 we get following the-
orem.

Theorem 6.2. Consider the differential equation (2.1). Suppose that
(i) real T > 0, integer N � 2 and cN (t) �≡ 0;

(ii) coefficients ck(t)∈ C0
+(T) for all k = 0,1, . . . ,N ;

(iii) C0-norm ‖c1(t)‖0 < 2/T ;
(iv) mean value cn �= 0 for a certain integer 1 � n�N and ck = 0 for n < k �N ;
(v) one of the two following inequalities holds

m1/n < r− T

2

N∑

k=0

∥∥ck(t)
∥∥

0r
k, if m < 1, (6.5)

or

m < r− T

2

N∑

k=0

∥∥ck(t)
∥∥

0r
k, if m � 1, (6.6)

where r > 0 is a unique root of (2.12) and m � 0 is defined by (6.2). Then, for each root
z0 of the associated polynomial P(z) correspond at least one solution u(t) ∈ C1

+(T) of the
differential equation (2.1) with the mean value A(u)= z0 and C0-norm less than r.

The proof of Theorem 6.2 is based on the fact, that the inequality (6.5) or (6.6) leads
the inequality (2.14) or (2.15) for all roots of associated polynomial P(z) simultaneously.

Remark 6.3. The supposition (iv) implies that degP = n.

We will give a sufficient condition for the existence in C1
+(T) of n distinct solutions of

(2.1). It states that if associated polynomial P(z) has n distinct roots in C.
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Theorem 6.4. Consider the differential equation (2.1). Let supposition (i)–(v) of Theorem
6.2 are fulfilled. Assume that all coefficients ck, 0 � k � n, satisfy the conditions

∣∣c0
∣∣ >

∣∣c1
∣∣+

∣∣c2
∣∣+ ···+

∣∣cs
∣∣,

∣∣cs+1
∣∣ >

∣∣c0
∣∣+ ···+

∣∣cs
∣∣+

∣∣cs+2
∣∣+ ···+

∣∣cn
∣∣,

(6.7)

for a certain integer 1 � s � n. Then, the differential equation (2.1) has at least s distinct
solutions in the algebra C1

+(T) with C0-norm less than r.

The statement follows from Theorem 6.2 and example to corollary and proposition 3
of [8]. The fulfilment of (6.7) is a sufficient condition for the existence of s distinct roots
of the associated polynomial P(z). This fact was proved in [8] on the base of the Nielsen
Fixed Point Theory, see also [7] and [11].

Property 6.5. On the complex plane consider the polynomial equation

0= zn +
n−1∑

k=0

ck zk, (6.8)

where all coefficient ck ∈ C, integer 0 � k � n− 1. If

∣∣1 + c0
∣∣+

n−1∑

k=1

∣∣ck
∣∣ <

1
2

, (6.9)

Then, (6.8) has n distinct roots z1, . . . ,zn such that

(
1
2

)1/n

�
∣∣zj
∣∣� 1 +

1
2

, j = 1, . . . ,n. (6.10)

Property 6.5 follows from Theorem 2.1 in [4], which was proved on the base of Nielsen
Fixed Point Theory (see also [3, 5]).

From Theorem 6.2 and Property 6.5 we get the following theorem.

Theorem 6.6. Consider the differential equation (2.1). Suppose that
(i) real T > 0, integer N � 2 and cN (t) �≡ 0;

(ii) coefficients ck(t)∈ C0
+(T) for all k = 0,1, . . . ,N ;

(iii) C0-norm ‖c1(t)‖0 < 2/T and r > 0 is a unique root of (2.12);
(iv) following inequality holds

3
2
< r− T

2

N∑

k=0

∥∥ck(t)
∥∥

0r
k; (6.11)

(v) mean value cn = 1 for a certain integer 1 � n�N and ck = 0 for n < k �N ;
(vi) following inequality holds

∣∣1 + c0
∣∣+

n−1∑

k=1

∣∣ck
∣∣ <

1
2
. (6.12)
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Then, (2.1) has at least n distinct solutions in the Banach algebra C1
+(T) with C0-norm less

than r.

Theorem 6.6 is a very convenient for applications because the verification of assump-
tions (iii) and (iv), which connected with C0-norm of coefficients and period T , is sep-
arated from the verification of assumptions (v) and (vi), which connected with its mean
values. Theorem 6.6 may be applied to the differential equations in the form

u̇(t)= un(t) +
n−1∑

k=0

ck(t)uk(t), (6.13)

where cn(t) ≡ cn = 1 and n = N = degP. Such equations were studied by many authors
(see, for example, [9, 10, 13, 14, 17, 18, 20] and some others).

Example 6.7. Let us consider the complex equation

u̇= un + c(t), (6.14)

where c(t)∈ C0
+(T) for given period T > 0 and integer n� 2. Remark then for n= 2 it is

the Riccati equation.
Apply the main Theorem 2.4. We need to verify the assumption (v). Let next c∈ C is

a mean value of c(t). Then, the associated polynomial P(z)= zn + c. If c �= 0, then it has n
distinct complex roots z1, . . . ,zn and

r0 =
∣∣zi
∣∣= |c|1/n. (6.15)

If c= 0, then the associated polynomial P(z)= zn has only one root z0 = 0. The functions
ω(x) and l(x,r0) defined by formulae

ω(x)= xn +‖c‖0, l
(
x,r0

)= 2
T

(
x− r0

)
. (6.16)

For the verification of the assumption (v) we will use Property 2.5. Find out the root r > 0
of the equation ω′(r)= 2/T . We get

r =
(

2
nT

)1/(n−1)

. (6.17)

The inequality ‖c1‖0 < 2/T is fulfilled because ‖c1‖0 = 0. The inequality ω(r) < l(r,r0) in
the case of (6.14) has a following form:

rn +‖c‖0 <
2
T

(
r− r0

)
. (6.18)

After some calculations, we get a following theorem.

Property 6.8. Consider (6.14) with the coefficient c(t)∈ C0
+(T) for given period T > 0 and

integer n� 2. If c �= 0 and the following inequality holds

‖c‖0 +
2
T
|c|1/n < (n− 1)

(
2
nT

)n/(n−1)

, (6.19)
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then (6.14) has at least n distinct solutions in the algebraC1
+(T) with mean values z1, . . . ,zn

and C0-norm less than r. If c= 0 and

‖c‖0 < (n− 1)
(

2
nT

)n/(n−1)

, (6.20)

then (6.14) has at least one solution in the algebra C1
+(T) with mean value 0 and C0-norm

less than r.

Example 6.9. Let us consider (6.14) for n= 2 (Riccati equation)

u̇(t)= u2(t) + c(t), (6.21)

where the coefficient

c(t)= Reiνt ± r2
0 , ν= 2π

T
, (6.22)

belongs to the algebra C0
+(T) for given period T > 0. Assume that real R,r0 > 0. Then,

‖c(t)‖0 = R and P(z)= z2± r2
0 .

Remark 6.10. If n= 2, then r = 1/T and the inequality (6.19) has a very simple form

R+
2
T
r0 <

1
T2

. (6.23)

The inequality (6.23) is a sufficient condition for existence of two distinct solutions in the
Banach algebra C1

+(T) of (6.21) with C0-norm less than r = 1/T .

Remark that all examples of (6.14) with periodic c(t) but without any periodic so-
lution as these given by Lloyd [13], Hassan [12], and Campos and Ortega [10] have to
be constructed with c(t) being a function outside the algebra C0

+. Indeed in all the men-
tioned examples c(t) is a real periodic function, that is, c :R→R⊂ C. On the other hand
we have a direct observation.

Remark 6.11. Suppose that a function u(t)∈ C0
+(T) is a real-valued. Then u(t) is a con-

stant function.

Example 6.12. In [20], by use of the Fourier series, Miklaszewski showed (under a con-
jecture) that there exists R= R0 > 0 such that the Riccati equation

u̇(t)= u2(t) +Reit (6.24)

has not 2π-periodic solution. Here c(t) = Reit belongs to C0
+(2π) but c = 0. Write the

inequality (6.23) for T = 2π and r0 = 0. We get

R <
1

4π2
(6.25)

a sufficient condition for an existence of the solution u(t)∈ C1
+(2π) of (6.24) with

A(u)= 0, ‖u‖0 � 1
2π
−
√

1
4π2

−R. (6.26)
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Gdańsk, 1997, pp. 78–90.

[5] , A multiplicity result for a system of real integral equations by use of the Nielsen number,
Nielsen Theory and Reidemeister Torsion (Warsaw, 1996), Banach Center Publ., vol. 49, Polish
Academy of Sciences, Warsaw, 1999, pp. 9–18.

[6] A. Borisovich and W. Marzantowicz, Multiplicity of periodic solutions for the planar polynomial
equation, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisci-
plinary Journal. Series A: Theory and Methods 43 (2001), no. 2, 217–231.

[7] R. F. Brown, Retraction methods in Nielsen fixed point theory, Pacific Journal of Mathematics 115
(1984), no. 2, 277–297.

[8] , Topological identification of multiple solutions to parametrized nonlinear equations, Pa-
cific Journal of Mathematics 131 (1988), no. 1, 51–69.
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