ON THE NONEXISTENCE OF POSITIVE SOLUTION OF SOME SINGULAR NONLINEAR INTEGRAL EQUATIONS

NGUYEN THANH LONG

Received 15 February 2004; Accepted 24 August 2004

We consider the singular nonlinear integral equation $u(x)=\int_{\mathbb{R}^{N}} g(x, y, u(y)) d y /|y-x|^{\sigma}$ for all $x \in \mathbb{R}^{N}$, where σ is a given positive constant and the given function $g(x, y, u)$ is continuous and $g(x, y, u) \geq M|x|^{\beta_{1}}|y|^{\beta}(1+|x|)^{-\gamma_{1}}(1+|y|)^{-\gamma} u^{\alpha}$ for all $x, y \in \mathbb{R}^{N}, u \geq 0$, with some constants $\alpha, \beta, \beta_{1}, \gamma, \gamma_{1} \geq 0$ and $M>0$. We prove in an elementary way that if $0 \leq \alpha \leq(N+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right),(1 / 2)\left(N+\beta+\beta_{1}-\gamma-\gamma_{1}\right)<\sigma<\min \left\{N, N+\beta+\beta_{1}-\right.$ $\left.\gamma-\gamma_{1}\right\}, \sigma+\gamma_{1}-\beta_{1}>0, N \geq 2$, the above nonlinear integral equation has no positive solution.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

We consider the nonexistence of positive solutions of the following singular nonlinear integral equation

$$
\begin{equation*}
u(x)=b_{N} \int_{\mathbb{R}^{N}} \frac{g(x, y, u(y)) d y}{|y-x|^{\sigma}} \quad \forall x \in \mathbb{R}^{N}, \tag{1.1}
\end{equation*}
$$

where $b_{N}=2\left((N-1) \omega_{N+1}\right)^{-1}$ with ω_{N+1} being the area of unit sphere in $\mathbb{R}^{N+1}, N \geq 2$, σ is a given positive constant with $0<\sigma<N$, and $g: \mathbb{R}^{2 N} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ is given continuous function satisfying the following.

There exist the constants $\alpha, \beta, \beta_{1}, \gamma, \gamma_{1} \geq 0$ and $M>0$ such that

$$
\begin{equation*}
g(x, y, u) \geq M|x|^{\beta_{1}}|y|^{\beta}(1+|x|)^{-\gamma_{1}}(1+|y|)^{-\gamma} u^{\alpha} \quad \forall x, y \in \mathbb{R}^{N}, u \geq 0 \tag{1.2}
\end{equation*}
$$

and some auxiliary conditions below.
In the case of $\sigma=N-1, g(x, y, u(y))=g(y, u(y))$, the integral equation (1.1) is a consequence of the following nonlinear Neumann problem

$$
\begin{gather*}
\Delta v=\sum_{i=1}^{N+1} v_{x_{i} x_{i}}=0, \quad x \in \mathbb{R}^{N}, x_{N+1}>0 \tag{1.3}\\
-v_{x_{N+1}}(x, 0)=g(x, v(x, 0))=0, \quad x \in \mathbb{R}^{N} \tag{1.4}
\end{gather*}
$$

of which the boundary value $u(x)=v(x, 0)$ together with some auxiliary conditions will be a solution of the equation

$$
\begin{equation*}
u(x)=b_{N} \int_{\mathbb{R}^{N}} \frac{g(y, u(y)) d y}{|y-x|^{\sigma}} \quad \forall x \in \mathbb{R}^{N} \tag{1.5}
\end{equation*}
$$

In [3] the authors have studied a problem (1.3), (1.4) for $N=2$ with the Laplace equation (1.3) having the axial symmetry

$$
\begin{equation*}
u_{r r}+\frac{1}{r} u_{r}+u_{z z}=0 \quad \forall r>0, \forall z>0 \tag{1.6}
\end{equation*}
$$

and with the nonlinear boundary condition of the form

$$
\begin{equation*}
-u_{z}(r, 0)=I_{0} \exp \left(-r^{2} / r_{0}^{2}\right)+u^{\alpha}(r, 0) \quad \forall r>0, \tag{1.7}
\end{equation*}
$$

where I_{0}, r_{0}, α are given positive constants. The problem (1.6), (1.7) is the stationary case of the problem associated with ignition by radiation. In the case of $0<\alpha \leq 2$ the authors in [3] have proved that the following nonlinear integral equation

$$
\begin{equation*}
u(r, 0)=\frac{1}{2 \pi} \int_{0}^{+\infty}\left[I_{0} \exp \left(-s^{2} / r_{0}^{2}\right)+u^{\alpha}(s, 0)\right] s d s \int_{0}^{2 \pi} \frac{d \theta}{\sqrt{r^{2}+s^{2}-2 r s \cos \theta}} \quad \forall r>0, \tag{1.8}
\end{equation*}
$$

associated to the problem (1.6), (1.7) has no positive solution. Afterwards, this result has been extended in [8] to the general nonlinear boundary condition

$$
\begin{equation*}
-u_{z}(r, 0)=g(r, u(r, 0)) \quad \forall r>0 . \tag{1.9}
\end{equation*}
$$

In [7] the problem (1.3), (1.4) is considered for $N=2$ and for a function g continuous, nondecreasing and bounded below by the power function of order α with respect to the third variable and it is proved that for $0<\alpha \leq 2$ such a problem has no positive solution.

In [1, 2] we have considered the problem (1.3), (1.4) for $N \geq 3$. The function $g: \mathbb{R}^{N} \times$ $[0,+\infty) \rightarrow[0,+\infty)$ is continuous, nondecreasing with respect to variable u, satisfies the condition (1.2) with $\gamma=0$ and some auxiliary conditions. In the case of $0 \leq \alpha \leq N /(N-$ 1), $N \geq 2$ we have proved that the problem (1.3), (1.4) has no positive solution [1, 2].

In $[5,6]$ the authors have proved the nonexistence of a positive solution of the problem (1.3), (1.4) with

$$
\begin{equation*}
g(x, u)=u^{\alpha} . \tag{1.10}
\end{equation*}
$$

In [6] it is proved with $1 \leq \alpha<N /(N-1), N \geq 2$, and in [5] with $1<\alpha<(N+1) /(N-$ 1), $N \geq 2$. We also note that the function $g(x, u)=u^{\alpha}$ does not satisfy the conditions in the papers $[1,7,8]$.

In this paper, we consider the nonlinear integral equation (1.1) for $(1 / 2)\left(N+\beta+\beta_{1}-\right.$ $\left.\gamma-\gamma_{1}\right)<\sigma<\min \left\{N, N+\beta+\beta_{1}-\gamma-\gamma_{1}\right\}, \sigma+\gamma_{1}-\beta_{1}>0, N \geq 2$. The function $g(x, y, u)$ is continuous, satisfies the condition (1.2) of which (1.10) is a special case. By proving elementarily we generalize the results from [1-10] that for $0 \leq \alpha \leq(N+\beta-\gamma) /\left(\sigma+\gamma_{1}-\right.$ β_{1}) (1.1) has no continuous positive solution.

2. The theorem of nonexistence of positive solution

Without loss of generality, we can suppose that $b_{N}=1$ with a change of the constant M in the assumption (1.2) of g. We rewrite the integral equation (1.1):

$$
\begin{equation*}
u(x)=T u(x) \equiv \int_{\mathbb{R}^{N}} \frac{g(x, y, u(y)) d y}{|y-x|^{\sigma}} \quad \forall x \in \mathbb{R}^{N} . \tag{2.1}
\end{equation*}
$$

Then we have the main result as follows.
Theorem 2.1. Let $g: \mathbb{R}^{2 N} \times[0,+\infty) \rightarrow \mathbb{R}$ be a continuous function satisfying the following hypothesis. There exist constants $M>0, \alpha, \beta, \beta_{1}, \gamma, \gamma_{1} \geq 0$ with

$$
\begin{gather*}
\frac{1}{2}\left(N+\beta+\beta_{1}-\gamma-\gamma_{1}\right)<\sigma<\min \left\{N, N+\beta+\beta_{1}-\gamma-\gamma_{1}\right\} \tag{2.2}\\
\sigma+\gamma_{1}-\beta_{1}>0, \quad N \geq 2
\end{gather*}
$$

such that

$$
\begin{equation*}
g(x, y, u) \geq M|x|^{\beta_{1}}|y|^{\beta}(1+|x|)^{-\gamma_{1}}(1+|y|)^{-\gamma} u^{\alpha} \quad \forall x, y \in \mathbb{R}^{N}, u \geq 0 . \tag{2.3}
\end{equation*}
$$

If $0 \leq \alpha \leq(N+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)$ then, the integral equation (2.1) has no continuous positive solution.
Remark 2.2. The result of theorem is stronger than that in [1, 7]. Indeed, corresponding to the same equation (1.5), the following assumptions which were made in [1, 7] are not needed here.
$\left(G_{1}\right) g(y, u)$ is nondecreasing with respect to variable u, that is,

$$
\begin{equation*}
(g(y, u)-g(y, v))(u-v) \geq 0 \quad \forall u, v \geq 0, y \in \mathbb{R}^{N} . \tag{2.4}
\end{equation*}
$$

$\left(G_{2}\right)$ The integral $\int_{\mathbb{R}^{N}}\left(g(y, 0) d y /(1+|y|)^{N-1}\right)$ exists and is positive.
Remark 2.3. In the case of $N \geq 2$, we have also obtained some results concerning in the papers $[2,7,9]$ in the cases as follows:
(a) $\beta=\beta_{1}=\gamma=\beta=0, \sigma=N-1,0 \leq \alpha \leq N /(N-1)($ see [2]).
(b) $\beta=\beta_{1}=\gamma=\beta=0,0 \leq \alpha \leq N / \sigma$ (see [7].
(c) $\beta_{1}=\gamma=0,0<\sigma<\min \left\{N, N+\beta-\gamma_{1}\right\}, 0 \leq \alpha \leq(N+\beta) /\left(\sigma+\gamma_{1}\right)$ (see [9]).

First, we need the following lemma.

4 On the nonexistence of positive solutions
Lemma 2.4. For every $p \geq 0, q \geq 0,0<\sigma<N, x \in \mathbb{R}^{N}$. Put

$$
\begin{equation*}
A[p, q](x)=\int_{\mathbb{R}^{N}} \frac{|y|^{p}(1+|y|)^{-q} d y}{|y-x|^{\sigma}}, \tag{2.5}
\end{equation*}
$$

we have

$$
\begin{align*}
& A[p, q](x)=+\infty, \quad \text { if } q-p \leq N-\sigma \tag{2.6}\\
& A[p, q](x) \text { convergent and } A[p, q](x) \\
& \quad \geq\left(\frac{1}{N+p}+\frac{1}{q}\right) \frac{\omega_{N}}{2^{\sigma}}|x|^{p+N-\sigma}(1+|x|)^{-q}, \quad \text { if } q-p>N-\sigma, \tag{2.7}
\end{align*}
$$

where ω_{N} is the area of unit sphere in \mathbb{R}^{N}.
The proof of lemma can be found in [9].
Proof of Theorem 2.1. We prove by contradiction. Suppose that there exists a continuous positive solution $u(x)$ of the integral equation (2.1). We suppose that there exists $x_{0} \in \mathbb{R}^{N}$, such that $u\left(x_{0}\right)>0$. Since u is continuous, then there exists $r_{0}>0$ such that

$$
\begin{equation*}
u(x)>\frac{1}{2} u\left(x_{0}\right) \equiv L \quad \forall x \in \mathbb{R}^{N},\left|x-x_{0}\right| \leq r_{0} . \tag{2.8}
\end{equation*}
$$

It follows from (2.1), (2.3), (2.8) and the monotonicity of the integral operator

$$
\begin{align*}
u(x)=T u(x) & \geq M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}}|y|^{\beta}(1+|y|)^{-\gamma} \frac{u^{\alpha}(y) d y}{|y-x|^{\sigma}} \\
& \geq M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} L^{\alpha} \int_{\left|y-x_{0}\right| \leq r_{0}}|y|^{\beta}(1+|y|)^{-\gamma} \frac{d y}{|y-x|^{\sigma}} \\
& \geq M L^{\alpha}\left(1+\left|x_{0}\right|+r_{0}\right)^{-\sigma}|x|^{\beta_{1}}(1+|x|)^{-\sigma-\gamma_{1}} \int_{\left|y-x_{0}\right| \leq r_{0}}|y|^{\beta}(1+|y|)^{-\gamma} d y \tag{2.9}
\end{align*}
$$

for all $x \in \mathbb{R}^{N}$.
Using the inequality

$$
\begin{equation*}
|y-x| \leq|y|+|x| \leq\left(1+\left|x_{0}\right|+r_{0}\right)(1+|x|) \quad \forall x, y \in \mathbb{R}^{N},\left|y-x_{0}\right| \leq r_{0} \tag{2.10}
\end{equation*}
$$

we obtain from (2.9), (2.10) that

$$
\begin{equation*}
u(x) \geq u_{1}(x)=m_{1}|x|^{p_{1}}(1+|x|)^{-q_{1}} \quad \forall x \in \mathbb{R}^{N}, \tag{2.11}
\end{equation*}
$$

where

$$
\begin{gather*}
p_{1}=\beta_{1}, \quad q_{1}=\sigma+\gamma_{1}, \\
m_{1}=M L^{\alpha}\left(1+\left|x_{0}\right|+r_{0}\right)^{-\sigma} \int_{\left|y-x_{0}\right| \leq r_{0}}|y|^{\beta}(1+|y|)^{-\gamma} d y . \tag{2.12}
\end{gather*}
$$

Using again the equality (2.1), it follows from (2.3), (2.11) that

$$
\begin{align*}
u(x) & =T u(x) \geq M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}}|y|^{\beta}(1+|y|)^{-\gamma} \frac{u_{1}^{\alpha}(y) d y}{|y-x|^{\sigma}} \\
& \geq M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}}|y|^{\beta}(1+|y|)^{-\gamma}\left(m_{1}|y|^{p_{1}}(1+|y|)^{-q_{1}}\right)^{\alpha} \frac{d y}{|y-x|^{\sigma}} \tag{2.13}\\
& =M m_{1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}}|y|^{\beta+\alpha p_{1}}(1+|y|)^{-\gamma-\alpha q_{1}} \frac{d y}{|y-x|^{\sigma}} \\
& =M m_{1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} A\left[\beta+\alpha p_{1}, \gamma+\alpha q_{1}\right](x) \quad \forall x \in \mathbb{R}^{N} .
\end{align*}
$$

Now, we consider separately the cases of different values of α.
Case 1. $0 \leq \alpha \leq(N-\sigma+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)$. We obtain from (2.6), (2.13) with $p=\beta+$ $\alpha p_{1}, q=\gamma+\alpha q_{1}, q-p=\gamma-\beta+\alpha\left(q_{1}-p_{1}\right)=\gamma-\beta+\alpha\left(\sigma+\gamma_{1}-\beta_{1}\right) \leq N-\sigma$, that

$$
\begin{equation*}
u(x)=+\infty \quad \forall x \in \mathbb{R}^{N} . \tag{2.14}
\end{equation*}
$$

It is a contradiction.
Case 2. $(N-\sigma+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)<\alpha<(N+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)$. Using (2.7) with $p=\beta+\alpha p_{1}, q=\gamma+\alpha q_{1}, q-p=\gamma-\beta+\alpha\left(q_{1}-p_{1}\right)=\gamma-\beta+\alpha\left(\sigma+\gamma_{1}-\beta_{1}\right)>N-\sigma$, we deduce from (2.13) that

$$
\begin{equation*}
u(x) \geq u_{2}(x)=m_{2}|x|^{p_{2}}(1+|x|)^{-q_{2}} \quad \forall x \in \mathbb{R}^{N}, \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
p_{2} & =\alpha p_{1}+\beta+\beta_{1}+N-\sigma \\
q_{2} & =\alpha q_{1}+\gamma+\gamma_{1} \tag{2.16}\\
m_{2} & =M m_{1}^{\alpha}\left(\frac{1}{N+\beta+\alpha p_{1}}+\frac{1}{\gamma+\alpha q_{1}}\right) \frac{\omega_{N}}{2^{\sigma}} .
\end{align*}
$$

Suppose that

$$
\begin{equation*}
u(x) \geq u_{k-1}(x)=m_{k-1}|x|^{p_{k-1}}(1+|x|)^{-q_{k-1}} \quad \forall x \in \mathbb{R}^{N}, \tag{2.17}
\end{equation*}
$$

6 On the nonexistence of positive solutions

If $\gamma+\alpha q_{k-1}-\beta-\alpha p_{k-1}>N-\sigma$, then, using (2.1), (2.3), (2.7), and (2.17), we obtain

$$
\begin{align*}
u(x) & =T u(x) \geq M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}}|y|^{\beta}(1+|y|)^{-\gamma} \frac{u^{\alpha}(y) d y}{|y-x|^{\sigma}} \\
& \geq M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}}|y|^{\beta}(1+|y|)^{-\gamma} \frac{u_{k-1}^{\alpha}(y) d y}{|y-x|^{\sigma}} \\
& \geq M m_{k-1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}}|y|^{\beta}(1+|y|)^{-\gamma} \frac{|y|^{\alpha p_{k-1}}(1+|y|)^{-\alpha q_{k-1}}(y) d y}{|y-x|^{\sigma}} \\
& =M m_{k-1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} A\left[\beta+\alpha p_{k-1}, \gamma+\alpha q_{k-1}\right](x) \\
& \geq \operatorname{Mm}_{k-1}^{\alpha}\left(\frac{1}{N+\beta+\alpha p_{k-1}}+\frac{1}{\gamma+\alpha q_{k-1}}\right) \frac{\omega_{N}}{2^{\sigma}}|x|^{\beta_{1}+\beta+\alpha p_{k-1}+N-\sigma}(1+|x|)^{-\gamma_{1}-\alpha q_{k-1}-\gamma} . \tag{2.18}
\end{align*}
$$

Hence

$$
\begin{equation*}
u(x) \geq u_{k}(x)=m_{k}|x|^{p_{k}}(1+|x|)^{-q_{k}} \quad \forall x \in \mathbb{R}^{N} \tag{2.19}
\end{equation*}
$$

where the sequences $\left\{p_{k-1}\right\},\left\{q_{k-1}\right\}$ and $\left\{m_{k-1}\right\}$ are defined by the recurrence formulas

$$
\begin{align*}
p_{k} & =\alpha p_{k-1}+\beta+\beta_{1}+N-\sigma \\
q_{k} & =\alpha q_{k-1}+\gamma+\gamma_{1} \tag{2.20}\\
m_{k} & =M m_{k-1}^{\alpha}\left(\frac{1}{N+\beta+\alpha p_{k-1}}+\frac{1}{\gamma+\alpha q_{k-1}}\right) \frac{\omega_{N}}{2^{\sigma}}, \quad k \geq 2 .
\end{align*}
$$

Note that $(N-\sigma+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)<1<(N+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)$, hence we obtain from (2.16), (2.20) that

$$
\begin{gather*}
p_{k}=\left\{\begin{array}{l}
\left(\beta+\beta_{1}+N-\sigma\right)(k-1)+\beta_{1}, \quad \text { if } \alpha=1, \\
\left(\beta+\beta_{1}+N-\sigma\right)\left(\frac{1-\alpha^{k-1}}{1-\alpha}\right)+\beta_{1} \alpha^{k-1}, \\
\text { if } \frac{N-\sigma+\beta-\gamma}{\sigma+\gamma_{1}-\beta_{1}}<\alpha<\frac{N+\beta-\gamma}{\sigma+\gamma_{1}-\beta_{1}}, \alpha \neq 1,
\end{array}\right. \tag{2.21}\\
q_{k}=\left\{\begin{array}{c}
(k-1)\left(\gamma+\gamma_{1}\right)+\sigma+\gamma_{1}, \quad \text { if } \alpha=1, \\
\left(\gamma+\gamma_{1}\right)\left(\frac{1-\alpha^{k-1}}{1-\alpha}\right)+\left(\sigma+\gamma_{1}\right) \alpha^{k-1}, \\
\text { if } \frac{N-\sigma+\beta-\gamma}{\sigma+\gamma_{1}-\beta_{1}}<\alpha<\frac{N+\beta-\gamma}{\sigma+\gamma_{1}-\beta_{1}}, \alpha \neq 1 .
\end{array}\right. \tag{2.22}
\end{gather*}
$$

It follows from (2.1), (2.3), and (2.18) that

$$
\begin{equation*}
u(x) \geq M m_{k}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} A\left[\beta+\alpha p_{k}, \gamma+\alpha q_{k}\right](x) \quad \forall x \in \mathbb{R}^{N} . \tag{2.23}
\end{equation*}
$$

So, from (2.22), (2.23), we only need to choose the natural number $k \geq 2$ such that

$$
\begin{equation*}
\gamma+\alpha q_{k}-\beta-\alpha p_{k} \leq N-\sigma<\gamma+\alpha q_{k-1}-\beta-\alpha p_{k-1}, \tag{2.24}
\end{equation*}
$$

since $A\left[\beta+\alpha p_{k}, \gamma+\alpha q_{k}\right](x)=+\infty$.
On the other hand, by (2.21), (2.22) the inequalities (2.24) equivalent to

$$
\begin{equation*}
k-1<\frac{\sigma}{N-\sigma+\beta+\beta_{1}-\gamma-\gamma_{1}} \leq k, \quad \text { if } \alpha=1, \tag{2.25}
\end{equation*}
$$

or

$$
\begin{equation*}
k-1<\frac{1}{\ln \alpha} \ln \left(\frac{\alpha\left(\gamma_{1}-\beta_{1}\right)-(N-\sigma+\beta-\gamma)}{\alpha\left(\sigma+\gamma_{1}-\beta_{1}\right)-(N+\beta-\gamma)}\right) \leq k \tag{2.26}
\end{equation*}
$$

if

$$
\begin{equation*}
\frac{N-\sigma+\beta-\gamma}{\sigma+\gamma_{1}-\beta_{1}}<\alpha<\frac{N+\beta-\gamma}{\sigma+\gamma_{1}-\beta_{1}}, \quad \alpha \neq 1 . \tag{2.27}
\end{equation*}
$$

By (2.23)-(2.26) we choose k as follows.
(i) If $\alpha=1$, we choose k satisfying $\sigma /\left(N-\sigma+\beta+\beta_{1}-\gamma-\gamma_{1}\right) \leq k<1+\sigma /(N-\sigma+\beta$ $\left.+\beta_{1}-\gamma-\gamma_{1}\right)$.
(ii) If $(N-\sigma+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)<\alpha<(N+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)$ and $\alpha \neq 1$, we choose k satisfying $k_{0} \leq k<k_{0}+1$, where

$$
\begin{equation*}
k_{0}=\frac{1}{\ln \alpha} \ln \left(\frac{\left(\gamma_{1}-\beta_{1}\right) \alpha-(N-\sigma+\beta-\gamma)}{\left(\sigma+\gamma_{1}-\beta_{1}\right) \alpha-(N+\beta-\gamma)}\right) . \tag{2.28}
\end{equation*}
$$

Case 3. $\alpha=(N+\beta-\gamma) /\left(\sigma+\gamma_{1}-\beta_{1}\right)$. Note that by $\beta+\alpha p_{1}=\beta+\alpha \beta_{1}$ and $\gamma+\alpha q_{1}=N+$ $\beta+\alpha \beta_{1}$, we rewrite (2.13) as follows

$$
\begin{align*}
u(x) & \geq M m_{1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}} \frac{|y|^{\beta+\alpha p_{1}}(1+|y|)^{-\gamma-\alpha q_{1}} d y}{|y-x|^{\sigma}} \\
& =M m_{1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}} \frac{|y|^{\beta+\alpha \beta_{1}}(1+|y|)^{-N-\beta-\alpha \beta_{1}} d y}{|y-x|^{\sigma}} \tag{2.29}\\
& =M m_{k}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} A\left[\beta+\alpha \beta_{1}, N+\beta+\alpha \beta_{1}\right](x)
\end{align*}
$$

for all $x \in \mathbb{R}^{N}$.
On the other hand, for every $x \in \mathbb{R}^{N},|x| \geq 1$, we have

$$
\begin{align*}
A\left[\beta+\alpha \beta_{1}, N+\beta+\alpha \beta_{1}\right](x) & \geq \int_{\mathbb{R}^{N}} \frac{|y|^{\mid \beta+\alpha \beta_{1}}(1+|y|)^{-N-\beta-\alpha \beta_{1}} d y}{(|y|+|x|)^{\sigma}} \\
& =\omega_{N} \int_{0}^{+\infty} \frac{r^{\beta+\alpha \beta_{1}+N-1} d r}{(1+r)^{N+\beta+\alpha \beta_{1}}(r+|x|)^{\sigma}} \tag{2.30}\\
& \geq \omega_{N} \int_{1}^{|x|} \frac{r^{\beta+\alpha \beta_{1}+N-1} d r}{(1+r)^{N+\beta+\alpha \beta_{1}}(r+|x|)^{\sigma}}=\omega_{N} B(x) .
\end{align*}
$$

8 On the nonexistence of positive solutions

Notice that for every r such that $1 \leq r \leq|x|$ we have

$$
\begin{equation*}
\left(\frac{r}{1+r}\right)^{\beta+\alpha \beta_{1}+N} \geq \frac{1}{2^{\beta+\alpha \beta_{1}+N}}, \quad \frac{1}{(r+|x|)^{\sigma-1}} \geq \frac{\min \left\{1,2^{1-\sigma}\right\}}{|x|^{\sigma-1}} . \tag{2.31}
\end{equation*}
$$

Then

$$
\begin{align*}
B(x) & =\int_{1}^{|x|}\left(\frac{r}{1+r}\right)^{\beta+\alpha \beta_{1}+N} \frac{1}{(r+|x|)^{\sigma-1}} \frac{d r}{r(r+|x|)} \\
& \geq \frac{1}{2^{\beta+\alpha \beta_{1}+N}} \frac{\min \left\{1,2^{1-\sigma}\right\}}{|x|^{\sigma-1}} \int_{1}^{|x|} \frac{d r}{r(r+|x|)} \tag{2.32}\\
& =\frac{1}{2^{\beta+\alpha \beta_{1}+N}} \frac{\min \left\{1,2^{1-\sigma}\right\}}{|x|^{\sigma}} \ln \left(\frac{1+|x|}{2}\right) .
\end{align*}
$$

It follows from (2.29), (2.30), (2.32) that

$$
u(x) \geq v_{2}(x)= \begin{cases}0, & \text { if }|x| \leq 1 \tag{2.33}\\ C_{2}|x|^{\beta_{1}-\sigma}(1+|x|)^{-\gamma_{1}}\left(\ln \left(\frac{1+|x|}{2}\right)\right)^{s_{2}}, & \text { if }|x| \geq 1\end{cases}
$$

with

$$
\begin{equation*}
s_{2}=1, \quad C_{2}=M m_{1}^{\alpha} \omega_{N} \frac{1}{2^{\beta+\alpha \beta_{1}+N}} \min \left\{1,2^{1-\sigma}\right\} \tag{2.34}
\end{equation*}
$$

Suppose that

$$
u(x) \geq v_{k-1}(x)= \begin{cases}0, & \text { if }|x| \leq 1 \tag{2.35}\\ C_{k-1}|x|^{\beta_{1}-\sigma}(1+|x|)^{-\gamma_{1}}\left(\ln \left(\frac{1+|x|}{2}\right)\right)^{s_{k-1}}, & \text { if }|x| \geq 1\end{cases}
$$

and C_{k-1}, s_{k-1}, are positive constants.
Then, using (2.1), (2.3), (2.35), we have

$$
\begin{align*}
u(x) \geq & M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{\mathbb{R}^{N}} \frac{|y|^{\beta}(1+|y|)^{-\gamma} v_{k-1}^{\alpha}(y) d y}{|y-x|^{\sigma}} \\
\geq & M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{|y| \geq 1} \frac{|y|^{\beta}(1+|y|)^{-\gamma} v_{k-1}^{\alpha}(y) d y}{(|y|+|x|)^{\sigma}} \\
= & M|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} C_{k-1}^{\alpha} \\
& \times \int_{|y| \geq 1} \frac{|y|^{\beta}(1+|y|)^{-\gamma}|y|^{\alpha\left(\beta_{1}-\sigma\right)}(1+|y|)^{-\alpha \gamma_{1}}(\ln ((1+|y|) / 2))^{\alpha s_{k-1}} d y}{(|y|+|x|)^{\sigma}} \tag{2.36}\\
= & M C_{k-1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{|y| \geq 1} \frac{|y|^{\beta+\alpha\left(\beta_{1}-\sigma\right)}(\ln ((1+|y|) / 2))^{\alpha s_{k-1}} d y}{(1+|y|)^{\gamma+\alpha \gamma_{1}}(|y|+|x|)^{\sigma}} \\
= & M \omega_{N} C_{k-1}^{\alpha}|x|^{\beta_{1}}(1+|x|)^{-\gamma_{1}} \int_{1}^{+\infty} \frac{r^{\beta+\alpha\left(\beta_{1}-\sigma\right)+N-1}(\ln ((1+r) / 2))^{\alpha s_{k-1}} d r}{(1+r)^{\gamma+\alpha \gamma_{1}}(r+|x|)^{\sigma}} .
\end{align*}
$$

Considering $|x| \geq 1$, we have

$$
\begin{align*}
\int_{1}^{+\infty} & \frac{r^{\beta+\alpha\left(\beta_{1}-\sigma\right)+N-1}(\ln ((1+r) / 2))^{\alpha s_{k-1}} d r}{(1+r)^{\gamma+\alpha \gamma_{1}}(r+|x|)^{\sigma}} \\
& \geq\left(\ln \left(\frac{1+|x|}{2}\right)\right)^{\alpha s_{k-1}} \int_{|x|}^{+\infty} \frac{r^{\beta+\alpha\left(\beta_{1}-\sigma\right)+N-1} d r}{(r+r)^{\gamma+\alpha \gamma_{1}}(r+r)^{\sigma}} \\
& =\frac{1}{2^{\gamma+\alpha \gamma_{1}+\sigma}}\left(\ln \left(\frac{1+|x|}{2}\right)\right)^{\alpha s_{k-1}} \int_{|x|}^{+\infty} r^{-1-\sigma} d r \tag{2.37}\\
& =\frac{1}{\sigma 2^{\gamma+\alpha \gamma_{1}+\sigma}} \times \frac{1}{|x|^{\sigma}} \times\left(\ln \left(\frac{1+|x|}{2}\right)\right)^{\alpha s_{k-1}}
\end{align*}
$$

We deduce from (2.36), (2.37) that

$$
u(x) \geq v_{k}(x)= \begin{cases}0, & \text { if }|x| \leq 1 \tag{2.38}\\ C_{k}|x|^{\beta_{1}-\sigma}(1+|x|)^{-\gamma_{1}}\left(\ln \left(\frac{1+|x|}{2}\right)\right)^{s_{k}}, & \text { if }|x| \geq 1\end{cases}
$$

where

$$
\begin{equation*}
s_{k}=\alpha s_{k-1}, \quad C_{k-1}=\frac{1}{\sigma 2^{\gamma+\alpha \gamma_{1}+\sigma}} M \omega_{N} C_{k-1}^{\alpha}, \quad k \geq 3 . \tag{2.39}
\end{equation*}
$$

From (2.34), (2.39) we obtain

$$
\begin{equation*}
s_{k}=s_{2} \alpha^{k-2}=\alpha^{k-2}=\left(\frac{N+\beta-\gamma}{\sigma+\gamma_{1}-\beta_{1}}\right)^{k-2}, \quad C_{k}=\frac{1}{d}\left(d C_{2}\right)^{\alpha^{k-2}}, \tag{2.40}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\left(\frac{1}{\sigma 2^{\gamma+\alpha \gamma_{1}+\sigma}} M \omega_{N}\right)^{1 /(\alpha-1)}, \quad \alpha=\frac{(N+\beta-\gamma)}{\left(\sigma+\gamma_{1}-\beta_{1}\right)}>1 \tag{2.41}
\end{equation*}
$$

Then, with $|x| \geq 1$, we rewrite (2.38) in the form

$$
\begin{equation*}
u(x) \geq v_{k}(x)=\frac{1}{d}|x|^{\beta_{1}-\sigma}(1+|x|)^{-\gamma_{1}}\left(d C_{2} \ln \left(\frac{1+|x|}{2}\right)\right)^{\alpha^{k-2}} . \tag{2.42}
\end{equation*}
$$

Choosing x_{1} such that $d C_{2} \ln \left(\left(1+\left|x_{1}\right|\right) / 2\right)>1$. By (2.42), we deduce that $u\left(x_{1}\right)=+\infty$. It is a contradiction.

Theorem is proved completely.
Remark 2.5. In the case of $g(x, u)$ we have not a conclusion about $\alpha>N /(N-1)$ and $N \geq 2$, yet. However, when $g(x, u)=u^{\alpha}, N /(N-1) \leq \alpha<(N+1) /(N-1), N \geq 2$, Hu in [5] have proved that the problem (1.3), (1.4) has no positive solution. In the limiting case $\alpha=(N+1) /(N-1)$, positive solutions do exist (see [4-6]). In particular, for this
value of α, the authors of [4] gave explicit forms for all nontrivial nonnegative solutions $u \in C^{2}\left(\mathbb{R}_{+}^{N+1}\right) \cap C^{1}\left(\overline{\mathbb{R}_{+}^{N+1}}\right)$ of the problem

$$
\begin{align*}
& -\Delta u=a u^{\alpha+(2 / N-1)} \quad \text { in } x^{\prime} \in \mathbb{R}^{N}, x_{N+1}>0, \\
& -u_{x_{N+1}}\left(x^{\prime}, 0\right)=b u^{\alpha}\left(x^{\prime}, 0\right) \quad \text { on } x_{N+1}=0 . \tag{2.43}
\end{align*}
$$

They proved the following results:
(i) if $a>0$ or $a \leq 0, b>B=\sqrt{a(1-N) /(N+1)}$, then $u(x)=C\left(\left|x-x^{0}\right|^{2}+\beta\right)^{(1-N) / 2}$ for some $C>0, \beta \in \mathbb{R}$ and $x^{0}=\left(x_{1}^{0}, \ldots, x_{N+1}^{0}\right) \in \mathbb{R}^{N+1}$, where $x_{1}^{0}=(b /(N-$ 1)) $C^{2 /(N-1)}$ and $\beta=(a /(N+1)(N-1)) C^{4 /(N-1)}$;
(ii) if $a=0$ and $b=0$, then $u(x)=C$ for some $C>0$;
(iii) if $a=0$ and $b<0$, then $u(x)=C x_{1}+(-C / b)^{(N-1) /(N+1)}$ for some $C>0$;
(iv) if $a<0$ and $b=B$, then $u(x)=\left((2 B / N-1) x_{1}+C\right)^{(1-N) / 2}$ for some $C>0$;
(v) if $a<0$ and $b<B$, then there is no nontrivial nonnegative solution of the problem.

References

[1] D. T. T. Binh, T. N. Diem, D. V. Ruy, and N. T. Long, On nonexistence of positive solution of a nonlinear Neumann problem in half-space \mathbf{R}_{+}^{n}, Demonstratio Mathematica 31 (1998), no. 4, 773-782.
[2] D. T. T. Binh and N. T. Long, On the nonexistence of positive solution of Laplace equation in halfspace \mathbf{R}_{+}^{N} with a nonlinear Neumann boundary condition, Demonstratio Mathematica 33 (2000), no. 2, 365-372.
[3] F. V. Bunkin, V. A. Galaktionov, N. A. Kirichenko, S. P. Kurdyumov, and A. A. Samarskiĭ, A nonlinear boundary value problem of ignition by radiation, Akademiya Nauk SSSR. Zhurnal Vychislitel'noĭ Matematiki i Matematicheskoĭ Fiziki 28 (1988), no. 4, 549-559, 623 (Russian), translated in U.S.S.R. Comput. Math. and Math. Phys. 28 (1988), no. 2, 157-164 (1989).
[4] M. Chipot, I. Shafrir, and M. Fila, On the solutions to some elliptic equations with nonlinear Neumann boundary conditions, Advances in Differential Equations 1 (1996), no. 1, 91-110.
[5] B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations 7 (1994), no. 2, 301-313.
[6] B. Hu and H.-M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Transactions of the American Mathematical Society 346 (1994), no. 1, 117-135.
[7] N. T. Long and D. T. T. Binh, On the nonexistence of positive solution of a nonlinear integral equation, Demonstratio Mathematica 34 (2001), no. 4, 837-845.
[8] N. T. Long and D. V. Ruy, On a nonexistence of positive solution of Laplace equation in upper half-space with Cauchy data, Demonstratio Mathematica 28 (1995), no. 4, 921-927.
[9] _, On the nonexistence of positive solution of some nonlinear integral equation, Demonstratio Mathematica 36 (2003), no. 2, 393-404.
[10] D. V. Ruy, N. T. Long, and D. T. T. Binh, On a nonexistence of positive solution of Laplace equation in upper half-space, Demonstratio Mathematica 30 (1997), no. 1, 7-14.

Nguyen Thanh Long: Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University-Ho Chi Minh City,
227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
E-mail address: longnt@hcmc.netnam.vn

