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1. Introduction

In recent years, the fuzzy set theory introduced by Zadeh [48] has emerged as an inter-
esting and fascinating branch of pure and applied sciences. The applications of fuzzy set
theory can be found in many branches of regional, physical, mathematical, differential
equations, and engineering sciences, see [1–51]. Recently there have been new advances
in the theory of fuzzy differential equations and inclusions [1, 3, 6, 25–29, 42]. Equally
important is variational inequality theory, which constitutes a significant and important
extension of the variational principle. Variational inequality theory provides us with a
simple and natural framework to study a wide class of unrelated linear and nonlinear
problems arising in pure and applied sciences. Recently, variational inequality theory has
been extended and generalized in different directions, using novel and innovative tech-
niques (in particular using the notion of the resolvent operator [37, 39]). A useful and
important generalization of variational inequality theory is variational inclusions, which
have been studied by Noor [33–37, 39–41], Chang et al. [10, 11, 13, 15], Siddiqi et al. [46],
Chidume et al. [17], Gu [22], Huang et al. [24] (see also the references therein). Motivated
and inspired by recent research work in these two fields Chang [8], Chang and Zhu [16]
first introduced the concepts of variational inequalities for fuzzy mappings. Since then
several classes of variational inequalities for fuzzy mappings were considered by Chang
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and Huang [14], Noor [33, 35, 38], Ding [18, 19], Park and Jeong [43, 44], Agarwal
etal. [2, 3], Zhu et al. [50], Nanda [31], and Chang [12].

The purpose of this paper is to introduce the concept of general fuzzy multivalued vari-
ational inclusions in Banach spaces and to study the existence problem and the iterative
approximation problem for certain fuzzy multivalued variational inclusions. Using the
resolvent operator technique and a new analytic technique some existence theorems and
iterative approximation techniques are established for these fuzzy multivalued variational
inclusions. The results presented in this paper are new, and they generalize, improve, and
unify a number of recent results, that is, the resolvent operator approach allows us to ob-
tain a more general theory (e.g., the results in [33–41, 43, 44, 47–49] are special cases of
our main result).

2. Preliminaries

Throughout this paper, we assume that E is a real Banach space with a norm ‖ · ‖, E∗ is
the topological dual space of E, CB(E) is the family of all nonempty bounded and closed
subsets of E, D(·,·) is the Hausdorff metric on CB(E) defined by

D(K ,B)=max
{

sup
x∈K

d(x,B), sup
y∈B

d(K , y)
}

, K ,B ∈ CB(E), (2.1)

〈·,·〉 is the dual pair between E and E∗, D(T) and R(T) denote the domain and range of
an operator T , respectively, and J : E→ 2E

∗
is the normalized duality mapping defined by

J(x)= { f ∈ E∗ : 〈x, f 〉 = ‖x‖ · ‖ f ‖, ‖ f ‖ = ‖x‖}, x ∈ E. (2.2)

In the sequel we denote the collection of all fuzzy sets on E by �(E)= { f : E→ [0,1]}.
A mapping A from E to �(E) is called a fuzzy mapping. If A : E→�(E) is a fuzzy map-
ping, then the set A(x), for x ∈ E, is a fuzzy set in �(E) (in the sequel we denote A(x) by
Ax) and Ax(y), for all y ∈ E is the degree of membership of y in Ax.

A fuzzy mapping A : E→�(E) is said to be closed, if for each x ∈ E, the function y �→
Ax(y) is upper semicontinuous, that is, for any given net {yα} ⊂ E satisfying yα→ y0 ∈ E,
we have limsupαAx(yα)≤Ax(y0). For f ∈�(E) and λ∈ [0,1], the set

( f )λ =
{
x ∈ E : f (x)≥ λ

}
(2.3)

is called a λ-cut set of f .
A closed fuzzy mapping A : E→�(E) is said to satisfy condition (∗), if there exists a

function a : E→ [0,1] such that for each x ∈ E the set

(
Ax
)
a(x) =

{
y ∈ E : Ax(y)≥ a(x)

}
(2.4)

is a nonempty bounded subset of E. It is clear that if A is a closed fuzzy mapping satisfying
condition (∗), then for each x ∈ E, the set (Ax)a(x) ∈ CB(E). In fact, let {yα}α∈Γ ⊂ (Ax)a(x)
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be a net and yα→ y0 ∈ E, then (Ax)(yα)≥ a(x) for each α∈ Γ. Since A is closed, we have

Ax
(
y0
)≥ limsup

α∈Γ
Ax
(
yα
)≥ a(x). (2.5)

This implies that y0 ∈ (Ax)a(x) and so (Ax)a(x) ∈ CB(E).

Definition 2.1. Let T : D(T)⊂ E→ 2E be a set-valued mapping.
(1) The mapping T is said to be accretive if for any x, y ∈D(T), u∈ Tx, v ∈ Ty, there

exists an j(x− y)∈ J(x− y) such that

〈
u− v, j(x− y)

〉≥ 0. (2.6)

(2) The mapping T is said to be m-accretive, if T is accretive and (I + ρT)(D(T))= E
for every (equivalently, for some) ρ > 0, where I is the identity mapping.

Remark 2.2. It is well known that if E = E∗ = H is a Hilbert space, then the notion of
accretive mapping coincides with the notion of monotone mapping [7].

Thus we have the following.

Proposition 2.3 (Barbu [7, page 74]). If E =H is a Hilbert space, then T : D(T)⊂H →
2H is an m-accretive mapping if and only if T : D(T) ⊂ H → 2H is a maximal monotone
mapping.

Problem 2.4. Let E be a real Banach space. Let T ,V ,Z : E→�(E) be three closed fuzzy
mappings satisfying condition (∗) with functions a,b,c : E→ [0,1], respectively, and let
g : E→ E be a single-valued and surjective mapping. Let A : E×E→ 2E be an m-accretive
mapping with respect to the first argument. For a given nonlinear mapping N(·,·) : E×
E→ E, we consider the problem of finding u,w, y,z ∈ E such that

Tu(w)≥ a(u), Vu(y)≥ b(u), Zu(z)≥ c(u),

that is, w ∈ (Tu)a(u), y ∈ (Vu)b(u), z ∈ (Zu)c(u),

θ ∈N(w, y) +A
(
g(u),z

)
.

(2.7)

The problem (2.7) is called the fuzzy multivalued variational inclusion in Banach spaces.

Now we consider some special cases of problem (2.7).
(1) If A(g(u),v) = A(g(u)), ∀v ∈ E, then the problem (2.7) is equivalent to finding

u,w, y ∈ E such that

Tu(w)≥ a(u), Vu(y)≥ b(u),

θ ∈N(w, y) +A
(
g(u)

)
.

(2.8)

In the case of classical multivalued mappings, problem (2.8) has been considered and
studied by Chang et al. [10, 11, 13, 15].
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(2) If E =H is a Hilbert space, A : H ×H →H is a maximal monotone mapping with
respect to the first argument and Z : E→�(E) is a closed fuzzy mapping satisfying con-
dition (∗) with c(x)= 1,∀x ∈ E, and it also satisfies the following condition:

Zx = χ{x}, ∀x ∈ E, (2.9)

where χ{x} is the characteristic function of the set {x}, then by Proposition 2.7, A is an
m-accretive mapping with respect to the first argument. Thus problem (2.7) is equivalent
to finding u,w, y ∈H , such that

Tu(w)≥ a(u), Vu(y)≥ b(u), θ ∈N(w, y) +A
(
g(u),u

)
. (2.10)

This problem is called the fuzzy multivalued quasi-variational inclusion. In the case of
classical multivalued mapping this was introduced and studied in [37, 39–41] by using
the resolvent equation technique.

(3) If E =H is a Hilbert space and for any given x ∈H , A(·,x)= ∂ϕ(·,x) : H → 2H is
the subdifferential of a proper, convex and lower semicontinuous functional ϕ(·,x) : H →
R∪{+∞} with respect to the first argument, then problem (2.10) is equivalent to finding
u,w, y ∈H such that

Tu(w)≥ a(u), Vu(y)≥ b(u),
〈
N(w, y),g(v)− g(u)

〉
+ϕ
(
g(v),u

)−ϕ
(
g(u),u

)≥ 0, ∀v ∈H ,
(2.11)

which is called the multivalued mixed quasi-variational inequality for fuzzy mapping.
Some special cases have been considered in [33, 35, 38].

(4) If the function ϕ(·,·) is the indicator function of a closed convex-valued set K(u)
in H , that is,

ϕ(u,u)= IK(u)(u)=
⎧⎨
⎩

0 if u∈ K(u),

+∞ otherwise,
(2.12)

then problem (2.10) is equivalent to finding u,w, y ∈H such that

Tu(w)≥ a(u), Vu(y)≥ b(u),
〈
N(w, y),g(v)− g(u)

〉≥ 0, ∀v ∈ K(u).
(2.13)

This problem is called the multivalued quasi-variational inequality for fuzzy mappings.
In the case of classical multivalued mappings this problem has been considered by Noor
[37, 39], using the projection method and the implicit Wiener-Hopf equation technique.

(5) If K∗(u) = {x ∈ H ,〈x,v〉 ≥ 0, ∀v ∈ K(u)} is a polar cone of the convex-valued
cone K(u) in H , then problem (2.13) is equivalent to finding u,w, y ∈H such that

Tu(w)≥ a(u), Vu(y)≥ b(u),

g(u)∈ K(u), N(w, y)∈ K∗(u),
〈
N(w, y),g(u)

〉= 0.
(2.14)

This problem is called the multivalued implicit complementarity problem for fuzzy map-
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ping (see, Chang [8] and Chang, Huang [14]). In the case of classical multivalued map-
pings we refer the reader to [37, 39].

As a result we see that for a suitable choice of the fuzzy mappings T , V , Z, mappings A,
g,N , and space E, we can obtain a number of known and new classes of (fuzzy) variational
inequalities, (fuzzy) variational inclusions, and the corresponding (fuzzy) optimization
problems from the fuzzy multivalued variational inclusion (2.7).

Related to the fuzzy multivalued variational inclusion (2.7), we now consider its corre-
sponding fuzzy resolvent operator equations. For this purpose we recall some definitions
and notions.

Definition 2.5 [7]. Let A : D(A)⊂ E→ 2E be an m-accretive mapping. For any given ρ > 0,
the mapping JA : E→D(A) associated with A defined by

JA(u)= (I + ρA
)−1

(u), u∈ E, (2.15)

is called the resolvent operator of A.

Remark 2.6. Barbu [7, page 72] pointed out that if A is an m-accretive mapping, then for
every ρ > 0 the operator (I + ρA)−1 is well defined, single-valued and nonexpansive on
the range R(I + ρA), that is,

∥∥JA(x)− JA(y)
∥∥≤ ‖x− y‖, ∀x, y ∈ R(I + ρA). (2.16)

From Remark 2.6 we have the following result.

Proposition 2.7. Let A(·,·) : E× E→ 2E be an m-accretive mapping with respect to the
first argument. For a constant ρ > 0, let

JA(·,z) =
(
I + ρA(·,z)

)−1
, z ∈ E. (2.17)

Then for any given z ∈ E, the resolvent operator JA(·,z) is well defined, single-valued, and
nonexpansive, that is,

∥∥JA(·,z)(x)− JA(·,z)(y)
∥∥≤ ‖x− y‖, ∀x, y ∈ E. (2.18)

Definition 2.8. Let T ,V : E → �(E) be two closed fuzzy mappings satisfying condition
(∗) with functions a,b : E→ [0,1], respectively, and let N(·,·) : E×E→ E be a nonlinear
mapping.

(1) The mapping x �→ N(x, y) is said to be β-Lipschitzian continuous with respect to
the fuzzy mapping T if for any x1,x2 ∈ E and w1 ∈ (Tx1 )a(x1), w2 ∈ (Tx2 )a(x2),

∥∥N(w1, y
)−N

(
w2, y

)∥∥≤ β
∥∥x1− x2

∥∥, y ∈ E, (2.19)

where β > 0 is a constant.
(2) The mapping y �→ N(x, y) is said to be γ-Lipschitzian continuous with respect to

the fuzzy mapping V if for any u1,u2 ∈ E and v1 ∈ (Vu1 )b(u1), v2 ∈ (Vu2 )b(u2),
∥∥N(x,v1

)−N
(
x,v2

)∥∥≤ γ
∥∥u1−u2

∥∥, x ∈ E, (2.20)

where γ > 0 is a constant.
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Definition 2.9. Let T : E→�(E) be a closed fuzzy mapping satisfying condition (∗) with
a function a : H → [0,1] and let D(·,·) be the Hausdorff metric on CB(E). T is said to be
ξ-Lipschitzian continuous if for any x, y ∈ E,

D
((
Tx
)
a(x),

(
Ty
)
a(y)

)
≤ ξ‖x− y‖, (2.21)

where ξ > 0 is a constant.

Related to the fuzzy multivalued variational inclusion (2.7), we consider the following
problem.

Find x,u,w, y,z ∈ E such that

(
Tu
)
(w)≥ a(u),

(
Vu
)
(y)≥ b(u),

(
Zu
)
(z)≥ c(u),

N(w, y) + ρ−1FA(·,z)(x)= 0,
(2.22)

where ρ > 0 is a constant and FA(·,z) = (I − JA(·,z)), where I is the identity operator and
JA(·,z) is the resolvent operator of A(·,z). An equation of the type (2.22) is called the
fuzzy resolvent operator equation in Banach spaces. The following two lemmas play an
important role in proving our main results.

Lemma 2.10 [9]. Let E be a real Banach space and let J : E→ 2E
∗

be the normalized duality
mapping. Then, for any x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
(2.23)

for all j(x+ y)∈ J(x+ y).

Lemma 2.11. The following conclusions are equivalent:
(i) (u,w, y,z), where u∈ E, (Tu)(w)≥ a(u), (Vu)(y)≥ b(u), (Zu)(z)≥ c(u) is a solu-

tion of the fuzzy multivalued variational inclusion (2.7);
(ii) (u,w, y,z), where u∈ E, (Tu)(w)≥ a(u), (Vu)(y)≥ b(u), (Zu)(z)≥ c(u) is a solu-

tion of the following equation:

g(u)= JA(·,z)
(
g(u)− ρN(w, y)

)
; (2.24)

(iii) (x,u,w, y,z), x,u∈ E, (Tu)(w)≥ a(u), (Vu)(y)≥ b(u), (Zu)(z)≥ c(u) is a solution
of the fuzzy resolvent operator equation (2.22), where

x = g(u)− ρN(w, y), g(u)= JA(·,z)(x). (2.25)

Proof. (i)⇒(ii). If (u,w, y,z), where u ∈ E, (Tu)(w) ≥ a(u), (Vu)(y) ≥ b(u), (Zu)(z) ≥
c(u) is a solution of the fuzzy multivalued variational inclusion (2.7), then we have

θ ∈N(w, y) +A
(
g(u),z

)
. (2.26)

Therefore we have

θ ∈−[g(u)− ρN(w, y)
]

+
[
I + ρA(·,z)

](
g(u)

)
, (2.27)
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that is,

g(u)= [I + ρA(·,z)
]−1(

g(u)− ρN(w, y)
)= JA(·,z)

(
g(u)− ρN(w, y)

)
. (2.28)

(ii)⇒(iii). Taking x = g(u)− ρN(w, y), from (2.24) we have g(u)= JA(·,z)(x), and so we
have

x = JA(·,z)(x)− ρN(w, y). (2.29)

This implies that

N(w, y) + ρ−1(I − JA(·,z)
)
(x)= θ. (2.30)

Consequently, (x,u,w, y,z) is a solution of the fuzzy resolvent operator equation (2.22).
(iii)⇒(i). From (2.25) we have

g(u)= JA(·,z)
(
g(u)− ρN(w, y)

)
. (2.31)

This implies that

g(u)− ρN(w, y)∈ [I + ρA(·,z)
](
g(u)

)
, (2.32)

that is,

θ ∈N(w, y) +A
(
g(u),z

)
. (2.33)

Therefore (u,w, y,z), where u ∈ E, (Tu)(w) ≥ a(u), (Vu)(y) ≥ b(u), (Zu)(z) ≥ c(u) is a
solution of the fuzzy multivalued variational inclusion (2.7).

This completes the proof. �

We now invoke Lemma 2.11 and (2.25) to suggest the following algorithms for solving
the fuzzy multivalued variational inclusion (2.7) in Banach spaces.

Algorithm 2.12. For any given x0,u0 ∈ E, w0 ∈ (Tu0 )a(u0), y0 ∈ (Vu0 )b(u0), z0 ∈ (Zu0 )c(u0),
let

x1 = g
(
u0
)− ρN

(
w0, y0

)
. (2.34)

Since g is surjective, there exists u1 ∈ E such that

g
(
u1
)= JA(·,z0)

(
x1
)
. (2.35)

Since w0 ∈ (Tu0 )a(u0), y0 ∈ (Vu0 )b(u0), z0 ∈ (Zu0 )c(u0), by Nadler [30, page 480], there exist
w1 ∈ (Tu1 )a(u1), y1 ∈ (Vu1 )b(u1), z1 ∈ (Zu1 )c(u1), such that

∥∥w0−w1
∥∥≤ (1 + 1)D

((
Tu0

)
a(u0),

(
Tu1

)
a(u1)

)
,

∥∥y0− y1
∥∥≤ (1 + 1)D

((
Vu0

)
b(u0),

(
Vu1

)
b(u1)

)
,

∥∥z0− z1
∥∥≤ (1 + 1)D

((
Zu0

)
c(u0),

(
Zu1

)
c(u1)

)
,

(2.36)
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where D is the Hausdorff metric on CB(E). Let

x2 = g
(
u1
)− ρN

(
w1, y1

)
. (2.37)

Again by the surjectivity of g, there exists u2 ∈ E such that

g
(
u2
)= JA(·,z1)

(
x2
)
. (2.38)

Again by Nadler [30, page 480], there exist w2∈ (Tu2 )a(u2), y2∈ (Vu2 )b(u2), z2∈ (Zu2 )c(u2),
such that

∥∥w1−w2
∥∥≤

(
1 +

1
2

)
D
((
Tu1

)
a(u1),

(
Tu2

)
a(u2)

)
,

∥∥y1− y2
∥∥≤

(
1 +

1
2

)
D
((
Vu1

)
b(u1),

(
Vu2

)
b(u2)

)
,

∥∥z1− z2
∥∥≤

(
1 +

1
2

)
D
((
Zu1

)
c(u1),

(
Zu2

)
b(u2)

)
.

(2.39)

Continuing in this way, we can obtain the sequences {xn}, {un}, {wn}, {yn}, {zn} ⊂ E
such that

(i) wn ∈
(
Tun

)
a(un),

∥∥wn−wn+1
∥∥≤

(
1 +

1
n+ 1

)
D
((
Tun

)
a(un),

(
Tun+1

)
a(un+1)

)
,

(ii) yn ∈
(
Vun

)
b(un),

∥∥yn− yn+1
∥∥≤

(
1 +

1
n+ 1

)
D
((
Vun

)
b(un),

(
Vun+1

)
b(un+1)

)
,

(iii) zn ∈
(
Zun

)
c(un),

∥∥zn− zn+1
∥∥≤

(
1 +

1
n+ 1

)
D
((
Zun

)
c(un),

(
Zun+1

)
c(un+1)

)
,

(iv) xn+1 = g
(
un
)− ρN

(
wn, yn

)
,

(v) g
(
un+1

)= JA(·,zn)
(
xn+1

)
,

(2.40)

for all n≥ 0.

If E =H is a Hilbert space and A(·,z)= ∂ϕ(·,z), where ϕ(·,z) is the indicator function
of a closed convex subset K of H , then JA(·,z) = PK (z) (the projection of H onto K). Then
Algorithm 2.12 is reduced to the following.

Algorithm 2.13. For any given x0,u0 ∈H , w0 ∈ (Tu0 )a(u0), y0 ∈ (Vu0 )b(u0), z0 ∈ (Zu0 )c(u0),
compute the sequences {xn}, {un}, {wn}, {yn}, {zn} ⊂ H by the iterative schemes such
that

(i) wn ∈
(
Tun

)
a(un),

∥∥wn−wn+1
∥∥≤

(
1 +

1
n+ 1

)
D
((
Tun

)
a(un),

(
Tun+1

)
a(un+1)

)
,

(ii) yn ∈
(
Vun

)
b(un),

∥∥yn− yn+1
∥∥≤

(
1 +

1
n+ 1

)
D
((
Vun

)
b(un),

(
Vun+1

)
b(un+1)

)
,

(iii) zn ∈
(
Zun

)
c(un),

∥∥zn− zn+1
∥∥≤

(
1 +

1
n+ 1

)
D
((
Zun

)
c(un),

(
Zun+1

)
c(un+1)

)
,
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(iv) xn+1 = g
(
un
)− ρN

(
wn, yn

)
,

(v) g
(
un+1

)= PK
(
xn+1

)
.

(2.41)

3. Main results

Theorem 3.1. Let E be a real Banach space, let T ,V ,Z : E→�(E) be three closed fuzzy
mappings satisfying condition (∗) with functions a,b,c : E→ [0,1], respectively, let N(·,·) :
E×E→ E be a single-valued continuous mapping, let g : E→ E be a single-valued and sur-
jective mapping, and let A(·,·) : E→ 2E be an m-accretive mapping with respect to the first
argument satisfying the following conditions:

(i) g is δ-Lipschitzian continuous and k-strongly accretive, 0 < k < 1;
(ii) T ,V ,Z : E → �(E) are Lipschitzian continuous fuzzy mappings with Lipschitzian

constants μ, ξ, η, respectively;
(iii) the mapping x �→N(x, y) is β-Lipschitzian continuous with respect to the fuzzy map-

ping T for any given y ∈ E;
(iv) the mapping y �→N(x, y) is γ-Lipschitzian continuous with respect to the fuzzy map-

ping V for any given x ∈ E;
here δ, μ, ξ, β, η, and γ all are positive constants.

If the following conditions are satisfied

(a)
∥∥JA(·,x)(z)− JA(·,y)(z)

∥∥≤ σ‖x− y‖ ∀x, y,z ∈ E, σ > 0,

(b)

0 < ρ <

√√√3 + 2k− 4δ2− 2σ2η2

8
(
γ2 +β2

) ,

0 <
4δ2 + 2σ2η2 + 8ρ2

(
γ2 +β2

)− 3
2

< k < 1,

(3.1)

then there exist x,u ∈ E, w ∈ (Tu)a(u), y ∈ (Vu)b(u), z ∈ (Zu)c(u) satisfying the operator
equation (2.24), and so (u,w, y,z) is a solution of the fuzzy multivalued variational in-
clusion (2.7) and the iterative sequences {xn}, {un}, {wn}, {yn}, and {zn} generated by
Algorithm 2.12 converge strongly to x,u,w, y,z in E, respectively.

Proof. Condition (i) and Lemma 2.10 imply, for any j(un+1−un)∈ J(un+1−un), that we
have

∥∥un+1−un
∥∥2

= ∥∥g(un+1
)− g

(
un
)− g

(
un+1

)
+ g
(
un
)−un+1 +un

∥∥2

≤ ∥∥g(un+1
)− g

(
un
)∥∥2− 2

〈
g
(
un+1

)− g
(
un
)

+un+1−un, j
(
un+1−un

)〉

≤ ∥∥g(un+1
)− g

(
un
)∥∥2− 2(1 + k)

∥∥un+1−un
∥∥2

,

(3.2)

so

∥∥un+1−un
∥∥2 ≤ 1

3 + 2k

∥∥g(un+1
)− g

(
un
)∥∥2

. (3.3)
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From (iv) and (v) in (2.40), we have

∥∥g(un+1
)− g

(
un
)∥∥2

= ∥∥JA(·,zn)
(
g
(
un
)− ρN

(
wn, yn

))− JA(·,zn−1)
(
g
(
un−1

)− ρN
(
wn−1, yn−1

))∥∥2
.

(3.4)

Now since

‖x+ y‖2 ≤ 2
(‖x‖2 +‖y‖2), ∀x, y ∈ E, (3.5)

we have from condition (a), condition (iii) of (2.40) and condition (i) that

1
2

∥∥g(un+1
)− g

(
un
)∥∥2

≤ ∥∥JA(·,zn)
(
g(un

)− ρN
(
wn, yn

))− JA(·,zn)
(
g
(
un−1

)− ρN
(
wn−1, yn−1

))∥∥2

+
∥∥JA(·,zn)

(
g
(
un−1

)− ρN
(
wn−1, yn−1

))− JA(·,zn−1)
(
g
(
un−1

)− ρN
(
wn−1, yn−1

))∥∥2

≤ ∥∥g(un)− g
(
un−1

)− ρN
(
wn, yn

)−N
(
wn−1, yn−1

)∥∥2
+ σ2

∥∥zn− zn−1
∥∥2

≤ 2δ2
∥∥un−un−1

∥∥2
+ 2ρ2

∥∥N(wn, yn
)−N

(
wn−1, yn−1

)∥∥2

+ σ2
(

1 +
1
n

)2

D2
((
Zun−1

)
c(un−1),

(
Zun

)
c(un)

)
.

(3.6)

Now we consider the second term on the right-hand side of (3.6). By conditions (iii)
and (iv) we have

2ρ2
∥∥N(wn, yn

)−N
(
wn−1, yn−1

)∥∥2

= 2ρ2
∥∥N(wn, yn

)−N
(
wn, yn−1

)
+N

(
wn, yn−1

)−N
(
wn−1, yn−1

)∥∥2

≤ 4ρ2
{∥∥N(wn, yn

)−N
(
wn, yn−1

)∥∥2
+
∥∥N(wn, yn−1

)−N
(
wn−1, yn−1

)∥∥2
}

≤ 4ρ2
{
γ2
∥∥un−un−1

∥∥2
+β2

∥∥un−un−1
∥∥2
}
= 4ρ2{γ2 +β2}∥∥un−un−1

∥∥2
.

(3.7)

Now we consider the third term on the right-hand side of (3.6). By condition (ii) we
have

σ2
(

1 +
1
n

)2

D2
((
Zun−1

)
c(un−1),

(
Zun

)
c(un)

)
≤ σ2

(
1 +

1
n

)2

η2
∥∥un−1−un

∥∥2
. (3.8)

Substituting (3.7) and (3.8) into (3.6) gives

1
2

∥∥g(un+1
)− g

(
un
)∥∥2 ≤

{
2δ2 + 4ρ2(γ2 +β2)+ σ2

(
1 +

1
n

)2

η2

}∥∥un−un−1
∥∥2

, (3.9)
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that is,

∥∥g(un+1
)− g

(
un
)∥∥2 ≤

{
4δ2 + 8ρ2(γ2 +β2)+ 2σ2

(
1 +

1
n

)2

η2

}∥∥un−un−1
∥∥2
. (3.10)

Substituting (3.10) into (3.3) gives

∥∥un+1−un
∥∥2 ≤ 4δ2 + 8ρ2

(
γ2 +β2

)
+ 2σ2(1 + 1/n)2η2

3 + 2k

∥∥un−un−1
∥∥2
. (3.11)

Letting

αn =
√√√√4δ2 + 8ρ2

(
γ2 +β2

)
+ 2σ2

(
1 + 1/n

)2
η2

3 + 2k
,

α=
√

4δ2 + 8ρ2
(
γ2 +β2

)
+ 2σ2η2

3 + 2k
,

(3.12)

we have

∥∥un+1−un
∥∥≤ αn

∥∥un−un−1
∥∥. (3.13)

Obviously, αn → α(n→∞). It is easy to prove that condition (b) implies that 0 < α < 1,
and so 0 < αn < 1, when n is sufficiently large. It follows from (3.13) that {un} is a Cauchy
sequence. Let un→ u. From condition (ii), T ,V ,Z : E→ F(E) are μ, ξ, η-Lipschitzian con-
tinuous fuzzy mappings, respectively, so it follows from (i), (ii), (iii) in (2.40) that {wn},
{yn}, {zn} are also Cauchy sequences. We can assume that wn → w(n→∞), yn → y(n→
∞), zn→ z(n→∞). By (iv) and (v) in (2.40) we have

g
(
un+1

)= JA(·,zn)
[
g
(
un
)− ρN

(
wn, yn

)]
. (3.14)

Noting the continuity of g, N , and condition (a), let n→∞ in the above expression obtain

g(u)= JA(·,z)
[
g(u)− ρN(w, y)

]
. (3.15)

Finally we prove that w ∈ (Tu)a(u), y ∈ (Vu)b(u), z ∈ (Zu)c(u). Since wn ∈ (Tun)a(un), we
have

dist(w,
(
Tu
)
a(u)

)≤ ∥∥w−wn

∥∥+ dist
(
wn,

(
Tu
)
a(u)

)

≤ ∥∥w−wn

∥∥+ dist
(
wn,

(
Tun

)
a(un)

)
+D

((
Tun

)
a(un),

(
Tu
)
a(u)

)

≤ ∥∥w−wn

∥∥+ 0 +μ
∥∥un−u

∥∥−→ 0 (n−→∞).

(3.16)

Hence dist(w, (Tu)a(u))= 0, and so w ∈ (Tu)a(u), since (Tu)a(u) ∈ CB(E).
In a similar way, we can also prove that y ∈ (Vu)b(u) and z ∈ (Zu)c(u). This implies

that (u,w, y,z) is a solution of (2.24). By lemma 2.11, (u,w, y,z) is a solution of the fuzzy
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multivalued variational inclusion (2.7). Also the iterative sequences {un}, {wn}, {yn},
{zn} generated by Algorithm 2.12 converge strongly to u,w, y,z in E, respectively.

This completes the proof of Theorem 3.1. �

Remark 3.2. Theorem 3.1 is a new existence theorem for fuzzy multivalued variational
inclusions. The main results by Ding [18, 19], Noor [33, 35, 38], Park and Jeong [43, 44]
are special cases of Theorem 3.1. In addition in the case of classical multivalued mappings
our results extend and improve the corresponding results in [32, 34, 36, 37, 39–41, 47, 49,
45]. Theorem 3.1 also improves and extends the corresponding results in [10, 13, 15].

The following result can be obtained from Theorem 3.1 immediately.

Theorem 3.3. Let H be a real Hilbert space, let T ,V ,Z : E→�(H) be three closed fuzzy
mappings satisfying condition (∗) with functions a,b,c : E→ [0,1], respectively. Suppose the
following conditions are satisfied:

(i) g : H →H is a δ-Lipschitzian continuous, surjective, and k-strongly monotone map-
ping, where k ∈ (0,1) is a constant;

(ii) for any fixed z ∈ H , A(·,z) = ∂ϕ(·,z) : H → 2H is a maximal monotone operator
with respect to the first argument, where ϕ(·,·) : H ×H → R∪ {+∞} is a proper
convex lower semicontinuous functional with respect to the first argument;

(iii) T ,V ,Z : H → �(H) are three Lipschitzian continuous fuzzy mappings with Lips-
chitzian constants μ, ξ, η, respectively;

(iv) N(·,·) : H ×H → H is a continuous mapping and the mapping x �→ N(x, y) is β-
Lipschitzian continuous with respect to the fuzzy mapping T ;

(v) the mapping y �→N(x, y) is γ-Lipschitzian continuous with respect to the fuzzy map-
ping V , where δ, μ, ξ, β, γ are all positive constants.

If the following conditions are satisfied:

(a)
∥∥JA(·,x)(z)− JA(·,y)(z)

∥∥≤ σ‖x− y‖ ∀x, y,z ∈H , σ > 0,

(b)

0 < ρ <

√√√3 + 2k− 4δ2− 2σ2η2

8
(
γ2 +β2

) ,

0 <
4δ2 + 2σ2η2 + 8ρ2

(
γ2 +β2

)− 3
2

< k < 1,

(3.17)

then there exist x,u,w, y,z ∈ H , w ∈ (Tu)a(u), y ∈ (Vu)b(u), z ∈ (Zu)c(u) satisfying (2.24)
and the iterative sequences {xn}, {un}, {wn}, {yn}, and {zn} generated by Algorithm 2.13
converge strongly to x,u,w, y,z in H , respectively.

Remark 3.4. Theorem 3.3 is an improvement and a generalization of the corresponding
results by Noor [33, 35, 38] and Park and Jeong [43, 44]. Theorem 3.3 is also a fuzzy
generalization of the corresponding results by Noor [34, 36, 37, 39–41].
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