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Let M[t]
n (a) be the tth power mean of a sequence a of positive real numbers, where

a = (a1,a2, . . . ,an),n ≥ 2, and α,λ ∈ Rm
++,m ≥ 2,

∑m
j=1λj = 1,min{α} ≤ θ ≤ max{α}. In

this paper, we will state the important background and meaning of the inequality
∏m

j=1{M[αj ]
n (a)}

λj ≤ (≥ )M[θ]
n (a); a necessary and sufficient condition and another in-

teresting sufficient condition that the foregoing inequality holds are obtained; an open
problem posed by Wang et al. in 2004 is solved and generalized; a rulable criterion of the
semipositivity of homogeneous symmetrical polynomial is also obtained. Our methods
used are the procedure of descending dimension and theory of majorization; and apply
techniques of mathematical analysis and permanents in algebra.

Copyright © 2006 J. Wen and W.-L. Wang. This is an open access article distributed un-
der the Creative Commons Attribution License, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original work is properly cited.

1. Symbols and introduction

We will use some symbols in the well-known monographs [1, 5, 13]:
An = a= (a1, . . . ,an), aθ = (aθ1, . . . ,aθn), In = (1, . . . ,1), On = (0, . . . ,0),
α= (α1, . . . ,αm); min{α} =min{α1, . . . ,αm}; max{α} =max{α1, . . . ,αm},
λ= (λ1, . . . ,λm); Rn = {a : ai ∈R,1≤ i≤ n}; Rn

+ = {a : ai ≥ 0, 1≤ i≤ n},
Rn

++ = {a : ai > 0, 1 ≤ i ≤ n}, Zn+ = {a | ai ≥ 0, ai is a integer, i = 1,2, . . . ,n}, (0,1]n =
{a : 0 < ai ≤ 1, 1≤ i≤ n}, d ∈R, Bd ⊂ {α : α∈Rm, α1 + ···+αm = d}, Bd is a finite set,
and it is not empty.

Recall that the definitions of the tth power mean and Hardy mean of order r for a
sequence a= (a1, . . . ,an) (n≥ 2) are, respectively,

M[t]
n (a)=

(
1
n
·

n∑

i=1

ati

)1/t

, if 0 < |t| < +∞,

M[t]
n (a)= n

√
a1a2 ···an, if t = 0,
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Hn(a;r)=
[

1
n!
·
∑

i1,...,in

n∏

j=1

(
aij
)r j
]1/(r1+···+rn)

, if r1 + ···+ rn > 0,

Hn(a;r)= n
√
a1a2 ···an, if ri = 0, i= 1, . . . ,n,

(1.1)

where t ∈R, r ∈Rn
+, a∈Rn

++. And

hn(a;r)= 1
n!
·
∑

i1,...,in

n∏

j=1

a
rj
i j , a∈Rn

++, r ∈Rn, (1.2)

is called Hardy function, where i1, . . . , in is the total permutation of 1, . . . ,n.

Definition 1.1. Let α∈Rn, let λα be a function of α, λα ∈R, x ∈Rn
++. Then the function

f (x)=∑α∈Bd
λαhn(x;α) is called the generalized homogeneous symmetrical polynomial

of n variables and degree d. When Bd ⊂ Zn
+, f (x) is called the homogeneous symmetrical

polynomial of n variables and degree d, simply, homogeneous symmetrical polynomial
(see [24, page 431]).

Definition 1.2. Let ai j be the complex numbers, i, j = 1,2, . . . ,n, and let the matrix A =
(ai j)n×n be an n×n matrix. Then the permanent (of order n) of A is a function of matrix,
written perA, it is defined by

perA=
∑

σ

a1σ1a2σ2 ···anσn , (1.3)

where the summation extends over all one-to-one functions from 1, . . . ,n to 1, . . . ,n. (See
[12].) It is often convenient in the proof of Lemma 2.2 and Corollary 2.6 that we will also
apply a symbol similar to determinant as follows:

perA=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 ··· a1n

a21 a22 ··· a2n
...

...
. . .

...
an1 an2 ··· ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

n

. (1.4)

It should be noted that the permanent remains some properties of the common de-
terminant, but both of them are different. For example, for the common determinant,
we have “the determinant changes sign if two adjacent rows are interchanged.” But the
affirmative proposition and its corollaries do not hold for permanents.

As pointed out in [1], the theory of inequalities plays an important role in all the
fields of mathematics. And the power mean is the most important one in all the means.
Many mathematicians wrote a great number of papers, and established the inequalities
involving the power means and the related problems (see, e.g., [1, 4, 5, 8, 9, 13, 14, 17–
19, 21]). Recently, the authors studied the optimal real number λ such that the following
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inequality:

{
M[α]

n (a)
}1−λ{

M
[β]
n (a)

}λ ≤M[θ]
n (a) (1.5)

or its converse holds, where a∈Rn
++, 0 < α < θ < β, λ∈R.

The optimal concepts are multifarious and versatile in mathematics (e.g., see [8, 19,
20]). Although it is so, the true worth for inequalities is as follows: if an inequality in-
cludes some parameters, we study that these parameters should satisfy some necessary
and sufficient conditions such that this inequality holds, then we call that the inequality
is optimized. In this paper, we want to discuss the following optimal problems that are
more general inequalities than inequality (1.5).

Let a ∈ Rn
++, n ≥ 2, α,λ ∈ Rm

++, m ≥ 2,
∑m

j=1 λj = 1, min{α} ≤ θ ≤max{α}. A natural
problem is the following: what are the necessary and sufficient conditions such that the
inequalities

m∏

j=1

{
M

[αj ]
n (a)

}λj ≤M[θ]
n (a), (1.6)

m∏

j=1

{
M

[αj ]
n (a)

}λj ≥M[θ]
n (a) (1.7)

hold, respectively?
Assume that the components of a are complex numbers. Then inequality (1.6) (or

(1.7)) can be expressed as

m∏

j=1

(‖a‖αj

)λj ≤ (≥)C · ‖a‖θ , (1.8)

where ‖a‖p = (
∑n

i=1 |ai|p)1/p, p > 1 is the norm of a, and C = n
∑m

j=1(λj /αj )−1/θ .
Let 1/p j + 1/αj = 1, 1/p + 1/θ = 1, p > 1, pj > 1, 1 ≤ j ≤m. If f is a bounded linear

functional on
⋂m

j=1L
pj [a,b]

⋂
Łp[a,b]. From the well-known theorem (see, e.g., [26]),

there exists a unique function y(t) ∈ ⋂m
j=1L

pj [a,b]
⋂

Łp[a,b], such that f (x) =
∫ b
a x(t)y(t)dt. Thus we have

‖ f ‖αj = ‖y‖αj =
(∫ b

a

∣
∣y(t)

∣
∣αj dt

)1/αj

, ‖ f ‖θ = ‖y‖θ =
(∫ b

a

∣
∣y(t)

∣
∣θ dt

)1/θ

. (1.9)

By the above facts, inequality (1.8) can also be expressed as

m∏

j=1

(‖ f ‖αj

)λj ≤ (≥)C · ‖ f ‖θ , (1.10)

where C = (b− a)
∑m

j=1(λj /αj )−1/θ .
Based on the above-mentioned definitions and the related depictions, an open prob-

lem posed in [19] and others, which will be solved in this paper, are significative. We
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obtain not only a necessary and sufficient condition, but also an interesting sufficient
condition such that inequality (1.6) holds. Note that the inequalities (1.6), (1.8), and
(1.10) play some roles in the geometry of convex body (see, e.g., [3, 7]). Our methods
are, of late years, the approach of descending dimension and theory of majorization; and
apply some techniques of mathematical analysis and permanents [12] in algebra. Note
that the way of descending dimension used in this paper is different from [15, 23, 25];
and the majorization is an effective theory that “it can state the inwardness and the rela-
tion between the quantities” (see [4, 11, 16]). It is very interesting that the mathematical
analysis and permanent can skillfully be combined.

2. The background of inequality (1.6)

The following theorem can display the background and meaning of inequality (1.6).

Theorem 2.1. Let f (x)=∑α∈Bd
λαhn(x;α) (x ∈Rn

++) be a generalized homogeneous sym-
metrical polynomial of n variables and degree d, where d > 0, Bd ⊂ Rn

+, λα > 0 (for all
α ∈ Bd), λ = d−1 · α, min{α} ≤ θ ≤ max{α} (for all α ∈ Bd). If, for arbitrary α ∈ Bd,
x ∈Rn

++, the inequality

n∏

j=1

{
M

[αj ]
n (x)

}λj ≤M[θ]
n (x) (2.1)

holds, then, for arbitrary x ∈Rn
++,

[
f (x)
f
(
In
)

]1/d

≤M[θ]
n (x). (2.2)

In particular, if 0 < θ ≤ 1, and the measurable set G ⊂ Ωn := {x |∑n
i=1 xi ≤ n, x ∈ Rn

+},
then, for arbitrary real number δ > 0,

∫

G

[
f (x)
f
(
In
)

]δ
dx ≤ nn

n!
, (2.3)

where dx = dx1dx2 ···dxn.

Lemma 2.2. If 0≤ ai1 ≤ ai2 ≤ ··· ≤ ain, i= 1,2, . . . ,n, then

1
n!
·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 ··· a1n

a21 a22 ··· a2n

...
...

. . .
...

an1 an2 ··· ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

n

≤
n∏

i=1

1
n

n∑

j=1

ai j . (2.4)
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Proof. We will prove the general case by the induction for m,

1
n!
·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 ··· a1n

...
...

. . .
...

am1 am2 ··· amn

1 1 ··· 1
...

...
. . .

...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

n

≤
m∏

i=1

1
n

n∑

j=1

ai j . (2.5)

All the elements of n−m rows in the above permanent are 1.
When m = 1, then the sign of equality is valid in (2.5). Assume that m = 2 below.

We delete the element at ith row and jth column from the permanent perA, then we
construct a permanent of order n− 1, and it is called cofactor of ai j and is denoted by
Mij . Note the following identities and inequalities:

1
(n− 1)!

M1 j = 1
n− 1

∑

1≤k≤n,k 	=j

a2k = 1
n− 1

[( n∑

k=1

a2k

)

− a2 j

]

,

1
(n− 1)!

M11 ≥ 1
(n− 1)!

M12 ≥ ··· ≥ 1
(n− 1)!

M1n, a11 ≤ a12 ≤ ··· ≤ a1n.

(2.6)

Therefore, the expansion of the permanent of the left-hand side of (2.5) in terms of ele-
ments of the first row is given by

the left-hand side of (2.5) = 1
n
·

n∑

j=1

a1 j · 1
(n− 1)!

M1 j

≤
[

1
n
·

n∑

j=1

a1 j

][
1
n
·

n∑

j=1

1
(n− 1)!

M1 j

]

=
2∏

i=1

1
n

n∑

j=1

ai j ,

(2.7)

where we used Čebyšev’s inequality.
Assume that the elements in the left-hand side of (2.5) are not all 1, and the count of

these rows is equal to m− 1 (m≥ 3), inequality (2.5) holds. We will prove that inequality
(2.5) holds as follows.

First we prove that inequalities (2.6) hold still.
Note that the expansion of permanent M1 j in terms of elements of the first column is

given by

M11 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a22 a23 ··· a2n

...
...

. . .
...

am2 am3 ··· amn

1 1 ··· 1
...

...
. . .

...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

n−1

=
n∑

i=2

ai2M
∗
i2, ai j = 1, (m+ 1≤ i≤ n, 1≤ j ≤ n).

(2.8)
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Similarly,

M12 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a21 a23 ··· a2n

...
...

. . .
...

am1 am3 ··· amn

1 1 ··· 1
...

...
. . .

...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

n−1

=
n∑

i=2

ai1M
∗
i1, ai j = 1, m+ 1≤ i≤ n, 1≤ j ≤ n.

(2.9)

Since M∗
i1 = M∗

i2 > 0, (i = 2,3, . . . ,n), therefore, M11 −M12 =
∑n

i=2(ai2 − ai1)M∗
i1 ≥ 0,

namely,

1
(n− 1)!

M11 ≥ 1
(n− 1)!

M12. (2.10)

Similarly,

1
(n− 1)!

M12 ≥ 1
(n− 1)!

M13 ≥ ··· ≥ 1
(n− 1)!

M1n. (2.11)

Thus, the first chain in (2.6) is proven; and the second chain of (2.6) is given.
By inequality (2.6) and Čebyšev’s inequality, we obtain that

the left-hand side of (2.5) = 1
n
·

n∑

j=1

a1 j · 1
(n− 1)!

M1 j

≤
[

1
n
·

n∑

j=1

a1 j

][
1
n
·

n∑

j=1

1
(n− 1)!

M1 j

]

.

(2.12)

It is noteworthy that the sign of equality of (2.12) is valid when a11 = a12 = ··· = a1n = 1.
If we change two rows (columns) in permanent, then permanent keeps invariable, then,
from the assumption of the induction, we get

1
n
·

n∑

j=1

1
(n− 1)!

M1 j = 1
n!
·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a21 a23 ··· a2n
...

...
. . .

...
am1 am3 ··· amn

1 1 ··· 1
...

...
. . .

...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

n

≤
m∏

i=2

1
n
·

n∑

j=1

ai j . (2.13)

From inequalities (2.12) and (2.13), we obtain inequality (2.5).
Letting m= n in (2.5), we get inequality (2.4). So the proof is complete. �

Lemma 2.3. If x ∈Rn
++, α∈ Bd ⊂Rn

+, d > 0, λ= d−1α, n≥ 2, then

Hn(x;α)≤
n∏

j=1

{
M

[αj ]
n (x)

}λj . (2.14)
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Proof. Just as well assume that 0 < x1 ≤ x2 ≤ ··· ≤ xn, then

0 < xαi1 ≤ xαi2 ≤ ··· ≤ xαin , i= 1,2, . . . ,n. (2.15)

Thus, by the definition of permanent and by Lemma 2.2, we obtain that

Hn(x;α)≤
[ n∏

i=1

1
n
·

n∑

j=1

xαij

]1/d

=
n∏

j=1

{
M

[αj ]
n (x)

}λj . (2.16)

�

Proof of Theorem 2.1. By Lemma 2.3, we observe that

[
f (x)
f
(
In
)

]1/d

=
[∑

α∈Bd
λα
(
Hn(x;α)

)d

∑
α∈Bd

λα

]1/d

≤
[∑

α∈Bd
λα
∏n

j=1

(
M

[αj ]
n (x;α)

)dλj

∑
α∈Bd

λα

]1/d

≤
[∑

α∈Bd
λα
(
M[θ]

n (x;α)
)d

∑
α∈Bd

λα

]1/d

=M[θ]
n (x;α).

(2.17)

Clearly, [ f (x)/ f (In)]δ is integrable on G. Therefore, by inequality (2.2), we obtain that

∫

G

[
f (x)
f
(
In
)

]δ
dx ≤

∫

Ωn

[
f (x)
f
(
In
)

]δ
dx ≤

∫

Ωn

{
M[θ]

n (x)
}δd

dx

≤
∫

Ωn

{
M[1]

n (x)
}δd

dμ≤
∫

Ωn

1δddx =
∫

Ωn

dx = nn

n!
.

(2.18)

�

Remark 2.4. The literature [6] generalizes the well-known Hardy inequality

α≺ β =⇒ hn(x;α)≤ hn(x;β) (2.19)

to the convex functions, where x ∈ Rn
++, α,β ∈ Rn; [24] generalizes the well-known

Čebyšev inequality to the generalized homogeneous symmetrical polynomial; [22] stud-
ied a necessary and sufficient condition such that

Hn(x;α)≤Hn(x;β) (2.20)

holds.

Remark 2.5. Lemma 2.2 is an important theorem. We can deduce an interesting conclu-
sion from this fact as follows.

Corollary 2.6. Let f (x) = ∑α∈Bd
λαhn(x;α) (x ∈ Rn

++) be a generalized homogeneous
symmetrical polynomial of n variables and degree d. If d > 0, Bd ⊂ Rn

+, λα > 0 (for all
α∈ Bd), [1/ f (x)]δ is integrable on measurable set G, (0,1]n ⊂G⊂Rn

++, then, for arbitrary
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real number δ > 0,

∫

G

[
f
(
In
)

f (x)

]δ
dx ≥

{∫ 1

0

[
n

td +n− 1

]δ
dt
}n

, (2.21)

where dx = dx1dx2 ···dxn.

Proof. For all α∈ Bd, just as well assume that

α1 ≥ α2 ≥ ··· ≥ αn ≥ 0. (2.22)

Then, when x ∈ (0,1]n, we have

0 < xα1
j ≤ xα2

j ≤ ··· ≤ xαnj , j = 1,2, . . . ,n. (2.23)

From Lemma 2.2, we get

hn(x;α)= 1
n!
·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xα1
1 xα2

1 ··· xαn1

xα1
2 xα2

2 ··· xαn2
...

...
. . .

...
xα1
n xα2

n ··· xαnn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+

n

≤
n∏

i=1

1
n
·

n∑

j=1

x
αj

i . (2.24)

Since the exponential function ct (c > 0) is a convex function onR, therefore, by [16, page
59], we observe that 1/n ·∑n

j=1 x
αj

i is a Schur-convex function of α on Rn
+. For all α∈Rn

+,
α≺ (

∑n
j=1αj ,On−1)= (d,On−1) from which [16, page 54], we conclude that

g(α) := 1
n
·

n∑

j=1

x
αj

i ≤ g
(
d,On−1

)= xdi +n− 1
n

, (2.25)

f
(
In
)

f (x)
=

∑
α∈Bd

λα
∑

α∈Bd
λαhn(x;α)

≥
∑

α∈Bd
λα

∑
α∈Bd

λα
∏n

i=1

(
xdi +n− 1

)
/n
=

n∏

i=1

n

xdi +n− 1
,

∫

G

(
f
(
In
)

f (x)

)δ
dx ≥

∫

(0,1]n

(
f
(
In
)

f (x)

)δ
dx ≥

∫

(0,1]n

( n∏

i=1

n

xdi +n− 1

)δ

dx

=
∫

(0,1]n

n∏

i=1

(
n

xdi +n− 1

)δ

dx=
∫ 1

0

∫ 1

0
···

∫ 1

0

n∏

i=1

(
n

xdi +n− 1

)δ

dx1dx2 ···dxn

=
n∏

i=1

∫ 1

0

(
n

xdi +n− 1

)δ

dxi =
[∫ 1

0

(
n

td +n− 1

)δ
dt

]n

.

(2.26)
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In Section 1 through Section 2, these pioneer studies that the authors attempted would
demonstrate that these results of this paper occupy some important positions in the the-
ory of inequalities, as well as they are often used in several function spaces. �

3. A necessary and sufficient condition that inequality (1.6) holds

We have known from Section 2 that investigation that inequalities (1.6) and (1.7) hold has
considerable meaning. In this section, we will discuss how to transform inequality (1.6)
into an inequality involving fewer variables so that there is a possibility that inequality
(1.6) can be proven by means of mathematical software.

Theorem 3.1. Let a ∈ Rn
++, α,λ ∈ Rm

++, n ≥m ≥ 2,
∑m

j=1 λj = 1, min{α} ≤ θ ≤max{α}.
Then, a necessary and sufficient condition such that inequality (1.6) holds is that inequality

m∏

j=1

{
M

[αj ]
n
(
Am−1,Ik,On−m−k+1

)}λj ≤M[θ]
n

(
Am−1,Ik,On−m−k+1

)
(3.1)

holds for all the Am−1 = (a1,a2, . . . ,am−1)∈Rm−1
++ , k = 0,1,2, . . . ,n−m+ 1.

Lemma 3.2. Let

u(t)=
m∑

j=0

ajt
rj , aj ∈R−{0}, r j ∈R, j = 1,2, . . . ,m, m≥ 1, r0 = 0, a0 ∈R, t ∈R1

++,

(3.2)

be a common polynomial of one variable. Then u(t) has at most m zeroes onR1
++, that is, the

count of elements of the set Um = {t | u(t)= 0, t > 0} is |Um|, where |Um| ≤m.

Proof. We will prove by means of the induction for m.
When m = 1, the conclusion is clear. Assume that when 1 ≤ k ≤m− 1 (m ≥ 2), the

inequality |Uk| ≤ k holds. We will prove that |Um| ≤m holds as follows. We can assume
rm > rm−1 > ··· > r1, r j 	= 0, j = 1,2, . . . ,m, then

u′(t)=
m∑

j=0

r jaj t
rj−1 = tr1−1 ·

m∑

j=1

r jaj t
rj−r1 ,

(
r jaj ∈R−{0}, j = 1,2, . . . ,m, m≥ 2, t ∈R1

++

)
.

(3.3)

Based on the assumption of induction, the common polynomial
∑m

j=1 r jaj trj−r1 has at
most m− 1 zeroes on R1

++. Since tr1−1 > 0, therefore u′(t) has at most m− 1 zeroes on
R1

++, u(t) has at most m− 1 extreme points on R1
++. Let all the extreme points of u(t) on

R1
++ be

t1, t2, . . . , tp, t1 < t2 < ··· < tp, 0≤ p ≤m− 1. (3.4)

If p = 0, then u(t) is a monotonic function on R1
++. We may assume that u(t) is a increas-

ing function on R1
++. We will prove that u(t) is a strictly increasing function on R1

++ as
follows.
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Let 0 < t′1 < t′2, then u(t′1)≤ u(t′2). If u(t′1)= u(t′2), then for all t ∈ [t′1, t′2], u(t′1)≤ u(t)≤
u(t′2)= u(t′1), u(t)≡ u(t′1), u′(t)≡ 0. Thus, for all t ∈ [t′1, t′2], t is the zero of u′(t) on R1

++.
This contradicts with u′(t) which has m− 1 zeroes on R1

++. Therefore, u(t′1) < u(t′2), u(t)
is a strictly increasing function on R1

++. Based on these facts, the count of the zeroes of
u(t) on R1

++ is |Um| ≤ 1≤m.
If p ≥ 1, we can assert by using the above method that u(t) is a strictly monotonic func-

tion on each of the following p+ 1 intervals: (0, t1],[t1, t2], . . . , [tp,+∞). And the number
of zeroes of u(t) is at most 1 on each of these intervals, then the amount of zeroes of u(t)
on R1

++ is |Um| ≤ p+ 1≤m. This ends the proof of Lemma 3.2. �

Lemma 3.3. Let An = a ∈ Rn
+, α,λ ∈ Rm

++, n ≥ m ≥ 2. F(a) denotes
∏m

j=1{M[αj ]
n (a)}λj .

If Aq is a critical point of F(Aq,On−q) (for all q : m ≤ q ≤ n) on Dq := {Aq |
∑q

r=1 ar =
q, Aq ∈Rq

+}, then a1,a2, . . . ,aq satisfying r ≤m, where m denotes largest number of the pair
(ai,aj) with ai 	= aj , i < j, for i, j = 1,2, . . . ,q, that is, the amount of the elements in the set
{a1,a2, . . . ,aq} is |{a1,a2, . . . ,aq}|, and |{a1,a2, . . . ,aq}| ≤m.

Proof. Make the Lagrange function L= F(Aq,On−q) + μ(
∑q

r=1 ar − q). Then Aq is a criti-
cal point of F(Aq,On−q) on the domain Dq if and only if ∂L/∂ak = ∂F(Aq,On−q)/(∂ak) +

μ = 0, k = 1,2, . . . ,q, and Aq ∈ Dq. Since lnF(Aq,On−q) =∑m
j=1 ln{M[αj]

n (Aq,On−q)}λj =
∑m

j=1(λj/αj) ln(
∑q

r=1 a
αj
r /n), therefore,

∂F
(
Aq,On−q

)

∂ak

[
F
(
Aq,On−q

)]−1 =
m∑

j=1

λj

αj
· αj · aαj−1

k
∑q

r=1 a
αj
r
=

m∑

j=1

λj
∑q

r=1 a
αj
r
· aαj−1

k . (3.5)

Let Aq be a critical point of F(Aq,On−q) on the domain Dq. We take the auxiliary function
as follows:

u(t)=
m∑

j=0

bjt
rj : bj =

λj ·F
(
Aq,On−q

)

∑q
r=1 a

αj
r

	= 0,

r j = αj − 1∈R, j = 1,2, . . . ,m, b0 = μ.

(3.6)

Then

∂L

∂ak
= 0, k = 1,2, . . . ,q⇐⇒ u

(
ak
)= 0,

ak ∈Um =
{
t | u(t)= 0, t > 0

}
, k = 1,2, . . . ,q⇐⇒ {

a1,a2, . . . ,aq
}⊂Um.

(3.7)

By Lemma 3.2, we obtain that |{a1,a2, . . . ,aq}| ≤ |Um| ≤m. Lemma 3.3 is thus proved.
�

Proof of Theorem 3.1. Necessity. If inequality (1.6) holds, in (1.6), we put that a =
(Am−1,Ik,On−m−k+1), (for all k : 0≤ k ≤ n−m+ 1), then, (1.6) reduces to (3.1), thus (3.1)
holds.
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Sufficiency. Assume that (3.1) holds. We will prove that inequality (1.6) holds.
Note that we will prove a more general conclusion, that is,

m∏

j=1

{
M

[αj ]
n
(
Aq,On−q

)}λj ≤M[θ]
n

(
Aq,On−1

)
, ∀q : m≤ q ≤ n, ∀Aq ∈Rq

+. (3.8)

First we prove a special case θ = 1. Since both sides of (3.8) are a linear homogeneous
function of Aq, therefore we may assume that Aq ∈ Dq := {Aq |

∑q
r=1 ar = q, Aq ∈ Rq

+}.
Thus, inequality (3.8) is equivalent to

F
(
Aq,On−q

)≤ q

n
, ∀q : m≤ q ≤ n,∀Aq ∈Dq, (3.9)

where the definitions of F(a) and Dq are in Lemma 3.3. We can prove that (3.9) holds for
q by the induction.

First we prove that (3.9) holds for the case q =m. If am = 0, from (3.1), we get

F
(
Aq,On−q

)= F
(
Am−1,I0,On−m+1

)≤M[1]
n

(
Am−1,I0,On−m+1

)= q

n
, (3.10)

therefore (3.9) holds. Let am > 0 below. Taking k = 1 in (3.1), we have

m∏

j=1

{
M

[αj ]
n
(
Am−1,1,On−m

)}λj ≤M[1]
n

(
Am−1,1,On−m

)
. (3.11)

Replacing Am−1 by Am−1/am in (3.11), we obtain that

m∏

j=1

{

M
[αj]
n

(
Am−1

am
,1,On−m

)}λj

≤M[1]
n

(
Am−1

am
,1,On−m

)

. (3.12)

Multiplying both sides of (3.12) by am, then (3.12) reduces to (3.8), thus (3.9) holds.
Assume that we replace q by q− 1(m+ 1≤ q ≤ n) in (3.9), we have (3.9). We will prove

that (3.9) holds as follows. From the continuity and differentiability of F(Aq,On−q) on Dq,
we just have to prove that for the critical point Aq of F(Aq,On−q) on Dq, for the point Aq

on the boundary of Dq, (3.9) holds still.
Case 1. If Aq is a critical point of F(Aq,On−q) on Dq, from Lemma 3.3, we know that the
amount of unequal terms of a1,a2, . . . ,aq is at most m.

By the symmetry, we may assume that am = am+1 = ··· = aq > 0. Thus, taking k =
q−m+ 1 in (3.1), we obtain that

F
(
Aq,On−q

)= F
(
Am−1,am · Iq−m+1,On−q

)= am ·F
(
Am−1

am
,Iq−m+1,On−q

)

≤ am ·M[1]
n

(
Am−1

am
,Iq−m+1,On−q

)

=M[1]
n

(
Aq,On−q

)= q

n
.

(3.13)

In other words, (3.9) holds.



12 The optimization for the inequalities of power means

Case 2. Let Aq be a point on the boundary of Dq. Then there exists a term in a1,a2, . . . ,aq,
this term must be zero. We may assume that aq = 0. From Aq ∈Dq, a1 + a2 + ···+ aq−1 =
q, ((q− 1)/q) · a1 + (q− 1)/q · a2 + ···+ ((q− 1)/q) · aq−1 = q− 1, therefore, if we take
Xq−1 = ((q− 1)/q) ·Aq−1, then Aq−1 = q/(q− 1) ·Xq−1, Xq−1 ∈ Dq−1. Thus, by the as-
sumption of induction, we obtain that

F
(
Aq,On−q

)= F
(
Aq−1,On−q+1

)= F
(

q

q− 1
·Xq−1,On−q+1

)

= q

q− 1
·F(Xq−1,On−q+1

)

≤ q

q− 1
·M[1]

n

(
Xq−1,On−q+1

)

= q

q− 1
· q− 1

n
= q

n
.

(3.14)

Based on the principle of induction, (3.9) has been proven.
Second, we will prove the general case θ 	= 1. Letting

aθ = (aθ1,aθ2, . . . ,aθn
)= y = (y1, y2, . . . , yn

)

∈Rn
+ ⇐⇒ a= (y1/θ

1 , y1/θ
2 , . . ., y1/θ

n

)∈Rn
+,

(3.15)

then inequality (3.8) is equivalent to

m∏

j=1

{
M

[αj /θ]
n

(
Yq,On−q

)}λj ≤M[1]
n

(
Yq,On−q

)
, ∀q : m≤ q ≤ n,∀Aq ∈Rq

+. (3.16)

Since α/θ ∈Rn
++, min{α/θ} ≤ 1≤max{α/θ}, inequality (3.16) reduces to the case θ = 1,

therefore inequality (3.16) holds.
Summarizing the above mentioned, inequality (3.8) has been proven. Taking q = n in

inequality (3.8), we obtain inequality (1.6). Theorem 3.1 is thus proved. �

Corollary 3.4. Let a∈Rn
++, 0 < α < θ < β, λ∈R. Then the maximal value of λ such that

inequality (1.5) holds is

λ∗ := inf
t>0,0≤k≤n−1

{
lnM[θ]

n
(
[a]t,n,k

)− lnM[α]
n
(
[a]t,n,k

)

lnM
[β]
n
(
[a]t,n,k

)− lnM[α]
n
(
[a]t,n,k

)

}

, (3.17)

where [a]t,n,k = (t,Ik,On−k−1). Inequality (1.5) holds if and only if λ≤ λ∗.
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Proof. By Theorem 3.1, inequality (1.5) holds if and only if

{
M[α]

n

(
[a]t,n,k

)}1−λ{
M

[β]
n
(
[a]t,n,k

)}λ

≤M[θ]
n

(
[a]t,n,k

)
, ∀t > 0,∀k : 0≤ k ≤ n− 1,

⇐⇒ λ≤ lnM[θ]
n
(
[a]t,n,k

)− lnM[α]
n
(
[a]t,n,k

)

lnM
[β]
n
(
[a]t,n,k

)− lnM[α]
n
(
[a]t,n,k

) , ∀t > 0,∀k : 0≤ k ≤ n− 1⇐⇒ λ≤ λ∗.

(3.18)

�

Example 3.5. Let α= 1/2, θ = 1, β = 3/2, n= 15. By using (3.17) in Corollary 3.4, we have

λ∗ := inf
t>0,0≤k≤n−1

{
lnM[θ]

n
(
[a]t,n,k

)− lnM[α]
n
(
[a]t,n,k

)

lnM
[β]
n
(
[a]t,n,k

)− lnM[α]
n
(
[a]t,n,k

)

}

= inf
t>0,0≤k≤14

{
ln(t+ k)/15− 2ln(

√
t+ k)/15

(2/3)ln
(
t3/2 + k

)
/15− 2ln(

√
t+ k)/15

}

.

(3.19)

In fact, by means of Mathematica software, we can sketch the graphs of the functions
of two variables g(t,k) := (ln((t + k)/15)− 2ln((

√
t + k)/15))/((2/3)ln((t3/2 + k)/15)−

2ln(
√
t + k)/15) and −g(t,k). Thus our problem can be explained from the graphs, our

result is the following: if a∈R15
+ , then λ≤ 0.4160944179212302 . . . if and only if

{
M[1/2]

15 (a)
}1−λ{

M[3/2]
15 (a)

}λ ≤M[1]
15 (a). (3.20)

Remark 3.6. Corollary 3.4 is an open problem posed in [19].
In this section, we merely discuss the optimal problem of inequality (1.6) under the

condition n≥m≥ 2. When m is sufficiently large, it is impossible that we apply Theorem
3.1 artificially. Owing to this reason, we will discuss the general case of inequality (1.6) in
Section 4. In other words, we will search for the necessary and sufficient condition such
that m≥ 2, n≥ 2 hold. Our aim is to work artificially.

4. The sufficient condition that inequality (1.6) holds

Theorem 4.1. Let α∈Rm
++, m≥ 2, 0 < α1 ≤ ···≤αp−1 ≤ θ ≤ αp ≤ ··· ≤ αm, 2≤ p ≤m,

λ∈Rm
++,

∑m
j=1 λj = 1. If αm ≤ 2(αp + θ), inf t>0

∑m
j=1(λj(θ−αj)/(2 + (n− 2)tαj ))≥ 0, then,

for all a∈Rn
++, n≥ 2, inequality (1.6) holds.
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Recall the definition (see, e.g., [5, pages 41–42] and [9, 19]) of generalized logarithmic
means E(r,s;x, y),

E(r,s;x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
r

s
· y

s− xs

yr − xr

]1/(s−r)

, rs(r− s)(x− y) 	= 0,

[
1
r
· yr − xr

ln y− lnx

]1/r

, s= 0, r(x− y) 	= 0,

e−1/r
[
xx

r

yyr

]1/(xr−yr )
, r = s, r(x− y) 	= 0,

√
xy, r = s= 0, x 	= y,

x, x = y.

(4.1)

Lemma 4.2 [9, 19]. Let a1 and a2 be two positive real numbers, and let r, s, u, v be real
numbers, where r 	= s, u 	= v. Then, for all the a1,a2 > 0, a necessary and sufficient condition
such that the inequality

E
(
r,s;a1,a2

)≤ E
(
u,v;a1,a2

)
(4.2)

holds is that

r + s≤ u+ v,

e(r,s)≤ e(u,v),
(4.3)

where 0≤min{r,s,u,v} or max{r,s,u,v} ≤ 0,

e(x, y)=
⎧
⎪⎨

⎪⎩

x− y

lnx− ln y
, xy > 0, x 	= y,

0, xy = 0,
(4.4)

when min{r,s,u,v} < 0 < max{r,s,u,v},

e(x, y)= |x|− |y|
x− y

, x, y ∈R, x 	= y. (4.5)

Lemma 4.3. Let α ∈ Rm
++, m ≥ 2, 0 < α1 ≤ ··· ≤ αp−1 ≤ 1 ≤ αp ≤ ··· ≤ αm, 2 ≤ p ≤m,

λ∈Rm
++, αm ≤ 2(αp + 1). Define the function Φ :Rn

++ →R, Φ(a) :=− ln
∏m

j=1{M[αj ]
n (a)}λj ,

then a necessary and sufficient condition such that the function Φ is a Schur-convex function
is that

inf
t>0

{ m∑

j=1

λj
(
1−αj

)

2 + (n− 2)tαj

}

≥ 0. (4.6)

Proof. From the literature [11, 16], we only have to prove that a necessary and sufficient
condition such that the inequality

(
a1− a2

)
(
∂Φ

∂a1
− ∂Φ

∂a2

)

≥ 0, ∀a∈Rn
++, (4.7)

holds is that inequality (4.6) holds.
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Without loss of generality, we may assume that a1 > a2, 0 < αp−1 < 1 < αp. Note that

Φ(a)=−
m∑

j=1

λj

αj
ln

∑n
i=1 a

αj

i

n
,

∂Φ

∂a1
− ∂Φ

∂a2
=−

m∑

j=1

λj
(
a
αj−1
1 − a

αj−1
2

)

∑n
i=1 a

αj

i

, a
αp−1
1 − a

αp−1
2 > 0.

(4.8)

Thus, inequality (4.7) is equivalent to

m∑

j=1

λj
∑n

i=1 a
αj

i

· a
αj−1
1 − a

αj−1
2

a
αp−1
1 − a

αp−1
2

≤ 0. (4.9)

Since

a
αj−1
1 − a

αj−1
2

a
αp−1
1 − a

αp−1
2

= a
αp·((αj−1)/αp)
1 − a

αp·((αj−1)/αp)
2

a
αp·((αp−1)/αp)
1 − a

αp·((αp−1)/αp)
2

= αj − 1

αp− 1
·
[

E
(
αj − 1

αp
,
αp− 1

αp
;a

αp

1 ,a
αp

2

)](αj−αp)/αp

,

(4.10)

so, inequality (4.9) is equivalent to

m∑

j=1

λj
(
1−αj

)

∑n
i=1 a

αj

i

[

E
(
αj − 1

αp
,
αp− 1

αp
;a

αp

1 ,a
αp

2

)](αj−αp)/αp

≥ 0. (4.11)

Sufficiency. Assume that (4.6) holds, we will prove that inequality (4.11) holds. In fact,
we will follow every step in the following.
Step 1. We will prove that

λj
(
1−αj

)

∑n
i=1 a

αj

i

≥ λj
(
1−αj

)

2uαj + (n− 2)vαj
, j = 1,2, . . . ,m, (4.12)

where u= ((a
αp

1 + a
αp

2 )/2)1/αp , when n > 2, we have v = (
∑n

i=3 a
αp

i /(n− 2))1/αp , when n= 2,
we may define an arbitrary value of v. Now we define that v = u. When 1 ≤ j ≤ p− 1,
we have λj(1− αj) > 0, 0 < αj < αp. Therefore, by the inequality with power means, we
obtain that

n∑

i=1

a
αj

i = 2 ·
(
a
αj

1 + a
αj

2

2

)αj /αj

+ (n− 2)
(∑n

i=3 a
αj

i

n− 2

)αj /αj

≤ 2uαj + (n− 2)vαj . (4.13)

Thus, inequality (4.12) holds. When j ≥ p, λj(1 − αj) < 0, αj ≥ αp > 1, the reverse
inequality of (4.13) holds, therefore inequality (4.12) holds still.
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Step 2. We will prove that

E
(
αj − 1

αp
,
αp− 1

αp
;a

αp

1 ,a
αp

2

)

≤ E
(
1,2;a

αp

1 ,a
αp

2

)= a
αp

1 + a
αp

2

2
, 1≤ j ≤m, j 	= p. (4.14)

When 1≤ j ≤ p− 1,

min
{
αj − 1

αp
,
αp− 1

αp
,1,2

}

= αj − 1

αp
< 0 < 2=max

{
αj − 1

αp
,
αp− 1

αp
,1,2

}

,

αi− 1
αp

+
αp− 1

αp
< 0 + 1 < 1 + 2,

∣
∣
(
αj − 1

)
/αp

∣
∣−∣∣(αp− 1

)
/αp

∣
∣

((
αj − 1

)
/αp

)− ((αp− 1
)
/αp

) = 2−αp−αj

αj −αp
= 2

(
1−αj

)

αj −αp
+ 1 < 1= |1|− |2|

1− 2
,

(4.15)

therefore, by Lemma 4.2, inequality (4.13) holds.
When p+ 1≤ j ≤m,

min
{
αj − 1

αp
,
αp− 1

αp
,1,2

}

= αp− 1

αp
> 0,

αj − 1

αp
+
αp− 1

αp
= αj +αp− 2

αp
≤ αm +αp− 2

αp
≤ 2

(
αp + 1

)
+αp− 2

αp
= 1 + 2.

(4.16)

Based on the above discussion and Lemma 4.2, we only have to prove that

(
αj − 1

αp
− αp− 1

αp

)/(

ln
αj − 1

αp
− ln

αp− 1

αp

)

≤ 1
ln2

= 1− 2
ln1− ln2

. (4.17)

Let x = ln((αj − 1)/αp), y = ln((αp − 1)/αp), then y ≤ x ≤ ln((αm − 1)/αp) ≤ ln((2αp +
1)/αp)= x0, from this fact, we get

(
αj − 1

αp
− αp− 1

αp

)/(

ln
αj − 1

αp
− ln

αp− 1

αp

)

= ex − ey

x− y
= ey · e

x−y − 1
x− y

= ey ·
∞∑

k=0

(x− y)k

(k+ 1)!
≤ ey ·

∞∑

k=0

(
x0− y

)k

(k+ 1)!

=
(2αp + 1

αp
− αp− 1

αp

)/(

ln
2αp + 1

αp
− ln

αp− 1

αp

)

= 1 + 2t
ln(2 + t)− ln(1− t)

, 0 < t = 1
αp

< 1.

(4.18)
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Thus, we only have to prove that

1 + 2t
ln(2 + t)− ln(1− t)

≤ 1
ln2

⇐⇒ φ(t)

:= ln(2 + t)− ln(1− t)− (ln2)(1 + 2t)≥ 0, ∀t ∈ (0,1).
(4.19)

Since φ′(t)= 3/(2− t− t2)− 2ln2 is increasing on (0,1), we have

φ′(t) > φ′(0)= 3
2
− 2ln2= 0.11371··· > 0, φ(t) > φ(0)= 0. (4.20)

It follows that inequality (4.17) and the assertion of Step 2 have been proven.
Step 3. We will prove that inequality (4.11) holds.

Since (1−αj)(αj −αp) < 0 ( j = 1, . . . , p− 1, p+ 1, . . . ,m), therefore, by the inequalities
(4.12) and (4.14), when j 	= p,

λj
(
1−αj

)

∑n
i=1 a

αj

i

[

E
(
αj − 1

αp
,
αp− 1

αp
;a

αp

1 ,a
αp

2

)](αj−αp)/αp

≥ λj
(
1−αj

)
uαj−αp

2uαj + (n− 2)vαj
, (4.21)

when j = p, inequality (4.21) reduces to the equality, so (4.21) holds still. Thus, letting
t = v/u > 0, we have

m∑

j=1

λj
(
1−αj

)

∑n
i=1 a

αj

i

[

E
(
αj − 1

αp
,
αp− 1

αp
;a

αp

1 ,a
αp

2

)](αj−αp)/αp

≥
m∑

j=1

λj
(
1−αj

)
uαj−αp

2uαj + (n− 2)vαj
= u−αp

m∑

j=1

λj
(
1−αj

)

2 + (n− 2)tαj

≥ u−αp · inf
t>0

u−αp

m∑

j=1

λj
(
1−αj

)

2 + (n− 2)tαj
≥ 0.

(4.22)

It follows that inequality (4.11) holds.

Necessity. Assume that inequality (4.11) holds. We will prove that inequality (4.6) holds
as follows.

Putting a1 = a2 = 1, a3 = ··· = an = t > 0 in (4.11), then inequality (4.11) reduces to

m∑

j=1

λj
(
1−αj

)

2 + (n− 2)tαj
≥ 0 (∀t > 0)=⇒ inf

t>0

m∑

j=1

λj
(
1−αj

)

2 + (n− 2)tαj
≥ 0. (4.23)

This completes the proof. �

Proof of Theorem 4.1. We first prove a special case θ = 1. By the hypothesis of Theorem
4.1 and Lemma 4.3, the function

Φ :Rn
++ −→R, Φ(a) :=− ln

m∏

j=1

{
M

[αj ]
n (a)

}λj (4.24)

is a Schur-convex function.
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Let A = (a1 + a2 + ··· + an)/n. Then a = (A,A, . . . ,A) ≺ a. From the definition of
Schur-convex function, we observe that Φ(a)≤Φ(a). By reason of λ1 + λ2 + ···+ λn = 1,
it is easy to see that inequality (1.6) is equivalent to the inequality Φ(a) ≤ Φ(a). Thus
inequality (1.6) holds.

Second, we prove the general case θ 	= 1 as follows.
By the hypothesis of Theorem 4.1, we obtain that

0 <
α1

θ
≤ ··· ≤ αp−1

θ
≤ 1≤ αp

θ
≤ ··· ≤ αm

θ
,

αm
θ
≤ 2

(
αp

θ
+ 1
)

,

inf
t>0

m∑

j=1

λj
(
1−αj/θ

)

2 + (n− 2)tαj /θ
= 1

θ
inf
t1/θ>0

m∑

j=1

λj
(
θ−αj

)

2 + (n− 2)
(
t1/θ
)αj

≥ 0.

(4.25)

Combining the above with the conclusion of the special case θ = 1, we have

m∏

j=1

{
M

[αj /θ]
n (a)

}λj ≤M[1]
n (a). (4.26)

Replacing a by aθ in (4.26), then inequality (4.26) reduces to inequality (1.6). This com-
pletes our proof. �

Remark 4.4. Let m= 2 in Theorem 4.1. Then we get [19, Theorem 1].

Corollary 4.5. If a,b,x, y ∈ (0,+∞), then

exp

∫ b
a

(
ln(xt + yt)/2

) · (dt/t)
b− a

≤
(
x(a+b)/2 + y(a+b)/2

2

)2/(a+b)

, (4.27)

with equality holds if and only if x = y or a= b.

Proof. In Theorem 4.1, letting n = 2, m = 2p− 1, p ≥ 2, λj = 1/m, αj = a + ( j/m)(b−
a), b > a > 0, j = 1,2, . . . ,m, (a1,a2) = (x, y), θ = (1/m)

∑m
j=1αj = a+ (p/m)(b− a) = αp,

then we have α∈ Rm
++, m≥ 2, 0 < α1 ≤ ··· ≤ αp−1 ≤ θ = αp ≤ ··· ≤ αm, 2≤ p ≤m, λ∈

Rm
++,

∑m
j=1 λj = 1. Since

αm = b ≤ b+ a < 2
[

a+
p

2p− 1
(b− a)

]

< 2
[

a+
p

2p− 1
(b− a) + θ

]

= 2
(
αp + θ

)
,

m∑

j=1

λj
(
θ−αj

)

2 + (n− 2)tαj
=

m∑

j=1

λj
(
θ−αj

)

2
= 0, inf

t>0

m∑

j=1

λj
(
θ−αj

)

2 + (n− 2)tαj
≥ 0,

(4.28)
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therefore, by Theorem 4.1 we have

m∏

j=1

(
xαj + yαj

2

)1/mαj

≤
(
xθ + yθ

2

)1/θ

,

1
b− a

m∑

j=1

1
αj

ln
(
xαj + yαj

2

)

· b− a

m
≤ ln

(
xθ + yθ

2

)1/θ

,

∫ b
a

(
ln(xt + yt)/2

) ·dt/t
b− a

= lim
m→∞

1
b− a

m∑

j=1

1
αj

ln
(
xαj + yαj

2

)

· b− a

m

≤ lim
m→∞ ln

(
xθ + yθ

2

)1/θ

= ln
(
x(a+b)/2 + y(a+b)/2

2

)2/(a+b)

.

(4.29)

In other words, inequality (4.27) has been proven. Corollary 4.5 is thus proved. �

Example 4.6. Consider the condition such that the inequality

{ 5∏

j=1

M
[2 j]
10 (a)

}(1−λ)/5{ 10∏

j=6

M
[2 j]
10 (a)

}λ/5

≤M[11]
10 (a), ∀a∈R10

++, (4.30)

holds.
Since 0 < 2 < 4 < 6 < 8 < 10 < θ = 11 < 12 < 14 < 16 < 18 < 20 < 2(12 + 11), therefore,

from Theorem 4.1, we know that, when

inf
t>0

{
1− λ

5

5∑

j=1

11− 2 j
2 + 8t2 j +

λ

5

10∑

j=6

11− 2 j
2 + 8t2 j

}

≥ 0⇐⇒ λ≤ inf
t>0

{
g(t)

}
,

g(t)=
( 5∑

j=1

11− 2 j
1 + 4t2 j

)/( 5∑

j=1

11− 2 j
1 + 4t2 j +

10∑

j=6

2 j− 11
1 + 4t2 j

)

,

(4.31)

inequality (4.30) holds. By means of Mathematica software, we can work out inf g(t) =
0.297911 . . . . Namely, when λ≤ 0.297911 . . ., inequality (4.30) holds.

5. The necessary and sufficient condition that inequality (1.7) holds

Theorem 5.1. Let a∈Rn
++, n≥ 2, α,λ∈Rm

++, m≥ 2,
∑m

j=1 λj = 1, min{α} ≤ θ ≤max{α}.
Then, a necessary and sufficient condition such that inequality (1.7) holds is that

m∑

j=1

λj

αj
≤ 1

θ
. (5.1)
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Lemma 5.2. Let ajk > 0, qj > 0,
∑m

j=1 qj ≤ 1, 1 ≤ j ≤m, 1 ≤ k ≤ n. Then, an analogue of
Hölder’s inequality is

1
n
·

n∑

k=1

m∏

j=1

a
qj

jk ≤
m∏

j=1

(
1
n
·

n∑

k=1

ajk

)qj

. (5.2)

Proof of Theorem 5.1. Sufficiency. Assume that inequality (5.1) holds. We will prove that
inequality (1.7) holds as follows: by (5.1), we have

∑m
j=1(θλj/αj) ≤ 1, θλj/αj > 0, j =

1,2, . . . ,m. using Lemma 5.2, we obtain that

[ m∏

j=1

{
M

[αj]
n (a)

}λj

]θ

=
m∏

j=1

(
1
n
·

n∑

i=1

a
αj

i

)θλj /αj

≥ 1
n
·

n∑

i=1

m∏

j=1

(
a
αj

i

)θλj /αj

= 1
n
·

n∑

i=1

m∏

j=1

a
θλj

i = 1
n
·

n∑

i=1

(
ai
)θ·∑m

j=1 λj = 1
n
·

n∑

i=1

(
ai
)θ
.

(5.3)

In other words, inequality (1.7) holds.

Necessity. Assume that inequality (1.7) holds. We will prove that inequality (5.1) holds
as follows: letting a1 = 1, a2 = a3 = ··· = an→ 0 in inequality (1.7), (1.7) can be reduced
to

m∏

j=1

{(
1
n

)1/αj}λj

≥
(

1
n

)1/θ

⇐⇒
m∏

j=1

n−λj /αj ≥ n−1/θ ⇐⇒ n
∑m

j=1(λj /αj ) ≤ n1/θ ⇐⇒
m∑

j=1

λj

αj
≤ 1

θ
.

(5.4)

Up to now, Theorem 5.1 is proven. �

Remark 5.3. Applying the approach of [19], we can establish some results that are similar
to [19, (33) and (37)]. By using the definition of Riemann’ integral, we can obtain an
analogue of integral of (1.7) as follows.

Corollary 5.4. Let the measurable function on the measurable sets E and E0,

f : E −→R1
++, g : E0 −→R1

++, p : E0 −→R1
++, E,E0 ⊂Rn, (5.5)

satisfy that
∫
E0
p(t)dt = 1, inf t∈E0 g(t)≤ θ ≤ supt∈E0

g(t),
∫
E0

(p(t)/g(t))dt ≤ 1/θ. Then

exp

∫
E0

(
p(t)/g(t)

)
ln
{∫

E

[
f (x)

]g(t)
dx
/|E|}dt

∣
∣E0

∣
∣ ≥

{∫
E

[
f (x)

]θ
dx

|E|
}1/θ

, (5.6)

where |E| and |E0| denote the measures of E and E0.

Inequality (5.6) has important background in the geometry of convex body (see, e.g.,
[3, 7]).
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6. The criterion of the semipositivity of homogeneous symmetric polynomial

In this section, we will use the following symbols:
σk =

∑
1≤i1<···<ik≤n≤n

∏k
j=1 xij , sk =

∑n
i=1 x

k
i , A(xk) = (1/n) · sk, k = 1,2, . . . ,d ∧ n, d ∧

n = min{d,n}, −−−−−→t(d∧n) := t(d ∧ n) := (t1, . . . , td∧n) ∈ Zd∧n
+ ,

−−−→
d∧n · −−−−−→t(d∧n) = ∑d∧n

k=1 ktk,

Td = {
−−−−−→
t(d∧n) | −−−→d∧n ·−−−−−→t(d∧n)= d,

−−−−−→
t(d∧n)∈ Zd∧n

+ }, λ= (λ1, . . . ,λi, . . . ,λd∧n)= d−1 · (t1,
2t2, . . . , iti, . . . ,d∧ntd∧n).

Lemma 6.1. Let f (x)=∑α∈Bd
λαhn(x;α) be a homogeneous symmetrical polynomial of n (n

≥ 2) variables of degree d (d ≥ 2), and let f satisfy that f (In)= 0. Then f can be expressed
as

f (x)=
∑

t(d∧n)∈Td,1

λt(d∧n)

{d∧n∏

i=1

[
M[i]

n (x)
]λi
}d

−
∑

t(d∧n)∈Td,2

λt(d∧n)

{d∧n∏

i=1

[
M[i]

n (x)
]λi
}d

,

(6.1)

where Td,1,Td,2 ⊂ Td, Td,1∩Td,2 =Φ, Td,1∪Td,2 = Td, λt(d∧n) ≥ 0 (for all t(d∧ n)∈ Td),
and

∑
t(d∧n)∈Td,1

λt(d∧n) =
∑

t(d∧n)∈Td,2
λt(d∧n).

Proof. By [2, Theorem 15, page 41], f can be expressed as

f (x)=
∑

t(d∧n)∈Td

λt(d∧n)

d∧n∏

i=1

σtii . (6.2)

Using Newton’s formula (see[2, page 49] and [10, page 28]),

σ0 = 1,
k∑

i=1

(−1)k−iσk−isi + (−1)kkσk = 0, 1≤ k ≤ n, (6.3)

or

σ0 = 1, k!σk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s1 1 0 ··· 0

s2 s1 2 ··· 0
...

...
...

. . .
...

sk−1 sk−2 sk−3 ··· k− 1

sk sk−1 sk−2 ··· s1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, 1≤ k ≤ n, (6.4)

σi can be expressed as

σi =
∑

t(i)∈Ti

λt(i)

i∏

j=1

s
tj
j (1≤ i≤ n), Ti =

{

t(i) |
i∑

j=1

jt j = i, t(i)∈ Zi
+

}

. (6.5)
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Equation (6.2) is substituted by (6.5); and using expansion formula for polynomial, f
can be expressed as

f (x)=
∑

t(d∧n)∈Td

λ∗t(d∧n)

d∧n∏

i=1

stii =
∑

t(d∧n)∈Td

λt(d∧n)

d∧n∏

i=1

Ati
(
xi
)

=
∑

t(d∧n)∈Td

λt(d∧n)

d∧n∏

i=1

{
M[i]

n (x)
}iti =

∑

t(d∧n)∈Td

λt(d∧n)

{d∧n∏

i=1

[
M[i]

n (x)
]λi
}d

.

(6.6)

Since f (In)= 0,
∑

t(d∧n)∈Td
λt(d∧n) = 0, by (6.6), there exist

Td,1,Td,2 ⊂ Td, Td,1∩Td,2 =Φ, Td,1∪Td,2 = Td, λt(d∧n) ≥ 0
(∀t(d∧n)∈ Td

)
,

(6.7)

such that f can be expressed as

f (x)=
∑

t(d∧n)∈Td,1

λt(d∧n)

{d∧n∏

i=1

[
M[i]

n (x)
]λi
}d

−
∑

t(d∧n)∈Td,2

λt(d∧n)

{d∧n∏

i=1

[
M[i]

n (x)
]λi
}d

,

(6.8)

where
∑

t(d∧n)∈Td,1
λt(d∧n) =

∑
t(d)∈Td,2

λt(d∧n). This completes the proof. �

Theorem 6.2. Let f (x) be a homogeneous symmetrical polynomial of n (n ≥ 2) variables
of degree d (d ≥ n), and let f (In)= 0, and let the expression of f (x) be given by (6.1). The
following can be written:

μi =
∑

t(d∧n)∈Td,1
λiλt(d∧n)

∑
t(d∧n)∈Td,1

λt(d∧n)
=
∑

t(d∧n)∈Td,1
itiλt(d∧n)

∑
t(d∧n)∈Td,1

d · λt(d∧n)
, i= 1,2, . . . ,d∧n,

θ1 =
(d∧n∑

j=1

μj

j

)−1

=
d ·
(∑

t(d∧n)∈Td,1
λt(d∧n)

)

∑d∧n
j=1

∑
t(d∧n)∈Td,1

t jλt(d∧n)

,

θ2 = sup
t>0, t(d∧n)∈Td,2

{[d∧n∑

j=1

j2t j
2 + (n− 2)t j

]/[d∧n∑

j=1

jt j
2 + (n− 2)t j

]}

.

(6.9)

If, for arbitrary t(d∧n)∈ Td,2, there exists p : 2≤ p ≤ d∧n such that

1≤ ··· ≤ p− 1≤ θ2 ≤ p ≤ ··· ≤ d∧n≤ 2
(
p+ θ2

)
, (6.10)

then, when θ1 ≥ θ2,

f (x)≥ 0, x ∈Rn
++. (6.11)
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Proof. By the related theorem of continuous function, if λ ∈ Rm
+ (or, λ ∈ Rn

+), then the
above theorem and lemma are valid.

By the arithmetic-geometric mean inequality and Theorem 5.1, we obtain that

∑

t(d∧n)∈Td,1

λt(d∧n)

{d∧n∏

i=1

[
M[i]

n (x)
]λi
}d

≥
(

∑

t(d∧n)∈Td,1

λt(d∧n)

){
∏

t(d∧n)∈Td,1

[d∧n∏

i=1

(
M[i]

n (x)
)λi
]d·λt(d∧n)}1/

∑
t(d∧n)∈Td,1

λt(d∧n)

=
(

∑

t(d∧n)∈Td,1

λt(d∧n)

){d∧n∏

i=1

∏

t(d∧n)∈Td,1

[(
M[i]

n (x)
)λi]d·λt(d∧n)

}1/
∑

t(d∧n)∈Td,1
λt(d∧n)

=
(

∑

t(d∧n)∈Td,1

λt(d∧n)

){d∧n∏

i=1

[
M[i]

n (x)
]∑

t(d∧n)∈Td,1
λi·d·λt(d∧n)

}1/
∑

t(d∧n)∈Td,1
λt(d∧n)

=
(

∑

t(d∧n)∈Td,1

λt(d∧n)

){d∧n∏

i=1

[
M[i]

n (x)
]μi
}d ≥

(
∑

t(d∧n)∈Td,1

λt(d∧n)

)
{
M[θ1]

n (x)
}d
.

(6.12)

By the definition of θ2 and λ= d−1 · (t1,2t2, . . . , jt j , . . . ,d∧ntd∧n),
−−−→
d∧n ·−−−−−→t(d∧n)= d, for

for all t(d∧ n) ∈ Td,2, we have inf t>0{
∑d∧n

j=1 (λj(θ2 − j)/(2 + (n− 2)t j))} ≥ 0, and by the
hypothesis of Theorems 4.1 and 6.2, for all t(d∧n)∈ Td,2, we have

∑

t(d∧n)∈Td,2

λt(d∧n)

{d∧n∏

i=1

[
M[i]

n (x)
]λi
}d

≤
∑

t(d∧n)∈Td,2

λt(d∧n)
{
M[θ2]

n (x)
}d =

(
∑

t(d∧n)∈Td,2

λt(d∧n)

)
{
M[θ2]

n (x)
}d
.

(6.13)

By (6.1), (6.12), (6.13), θ1 ≥ θ2, and
∑

t(d∧n)∈Td,1
λt(d∧n) =

∑
t(d∧n)∈Td,2

λt(d∧n), inequality
(6.11) holds. This completes the proof. �

Example 6.3. Consider the condition such that the following inequality holds:

(1− s)

(
1

10

10∑

i=1

x6
i

)(
1

10

10∑

i=1

x10
i

)2

+ s

(
1

10

10∑

i=1

x2
i

)3(
1

10

10∑

i=1

x4
i

)5

− 1
2

[(
1

10

10∑

i=1

xi

)10(
1

10

10∑

i=1

x4
i

)4

+

(
1

10

10∑

i=1

x2
i

)9(
1

10

10∑

i=1

x8
i

)]

≥ 0,

(6.14)
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where d = 26, n= 10, d∧n= 10,

Td,1 =
{

(0,0,0,0,0,1,0,0,0,2),(0,3,0,5,0,0,0,0,0,0)
}

,

Td,2 =
{

(10,0,0,4,0,0,0,0,0,0),(0,9,0,0,0,0,0,1,0,0)
}

,

θ1 =
(d∧n∑

j=1

μj

j

)−1

=
d ·
(∑

t(d∧n)∈Td,1
λt(d∧n)

)

∑d∧n
j=1

∑
t(d∧n)∈Td,1

t jλt(d∧n)

= 26× 1
(1− s) + 2(1− s) + 3s+ 5s

= 26
3 + 5s

,

θ2 = sup
t>0, t(d∧n)∈Td,2

{[d∧n∑

j=1

j2t j
2 + (n− 2)t j

]/[d∧n∑

j=1

jt j
2 + (n− 2)t j

]}

= sup
t>0, t(10)∈Td,2

{[ 10∑

j=1

j2t j
2 + 8t j

]/[ 10∑

j=1

jt j
2 + 8t j

]}

= sup
t>0, t(10)∈Td,2

{[
5

1+4t
+

32
1+4t4

]/[
5

1+4t
+

8
1+4t4

]

,
[

18
1+4t

+
32

1+4t4

]/[
9

1+4t
+

4
1+4t4

]}

.

(6.15)

Using Mathematica software, we obtain that θ2 = 510279565184453 . . ..
It follows that

θ1 ≥ θ2 ⇐⇒ 26
3 + 5s

≥ θ2 ⇐⇒ s≤ 1
5

(
26
θ2
− 3

)

= 0.41904923394695076 . . . . (6.16)

Namely, for 0 < s≤ 0.41904923394695076 . . ., inequality (6.14) holds.

Remark 6.4. It must be pointed out that Theorem 6.2 can be operated artificially.
Theorem 6.2 is different from the result in [15], because that of [15] only has meaning
for n ≥ [d/2] (i.e., the greatest integer function of d/2) and can be operated artificially.
The problem in Example 6.3 is too difficult, and furthermore, it cannot be solved by all
the softwares in the existing circumstances.
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