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We establish upper bounds for the eigenvalues of second-order and fourth-order differ-
ential equations. The inequalities are obtained via rearrangements of higher degree.
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1. Introduction

Let L1
+(0, l) denote the set of all nonnegative functions from L1(0, l), l being a positive real

number. The decreasing rearrangement of a function f ∈ L1
+(0, l) is defined by

f ∗(x)= sup
{
t > 0 : μ f (t) > x

}
, (1.1)

for all x in [0, l], where

μ f (t)=
∣
∣{x ∈ (0, l) : f (x) > t

}∣∣, t ≥ 0, (1.2)

is the distribution function of f . The increasing rearrangement of f is simply f ∗∗(x)≡
f ∗(l− x). The function f ∗ is nonnegative, right continuous and we have (see for instance
[1, 8])

∫ x

0
f dt ≤

∫ x

0
f ∗dt, x ∈ [0, l],

∫ l

0
f dt =

∫ l

0
f ∗dt.

(1.3)

Furthermore, if g ∈ L∞(0, l) is nonnegative, then we have

∫ l

0
f ∗∗g∗dx ≤

∫ l

0
f g dx ≤

∫ l

0
f ∗g∗dx. (1.4)

We denote by f +
n (resp., f −n ) the symmetrically increasing (resp., decreasing) rearrange-

ment of f of degree n. The function f +
n is uniquely defined by the following conditions

Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2006, Article ID 48606, Pages 1–7
DOI 10.1155/JIA/2006/48606

http://dx.doi.org/10.1155/S1025583404486068


2 Differential inclusions

(see [11]):
(i) f +

n is periodic on [0, l/n] with period l/n,
(ii) f +

n is symmetric in [0, l/n] about l/(2n),
(iii) f +

n (x)= f ∗(2nx) for x ∈ [0, l/(2n)].
The function f −n is uniquely defined by (i)-(ii) and (iii)’: f −n (x) = f ∗∗(2nx) for x ∈
[0, l/(2n)]. For more information on rearrangements see [1, 11].

In this paper, we derive upper bounds for eigenvalues of some classes of differential
equations via rearrangements of higher degree. Many results concerning lower and upper
bounds for eigenvalues have been obtained [2–5, 9–11]. For instance in [5], lower bounds
for the first eigenvalues of the equations (p(x)y′)′ + q(x)y + μy = 0 and (p(x)y′′)′′ +
q(x)y + μy = 0, subject to Dirichlet boundary conditions, are found. In [11], lower and
upper bounds for the nth eigenvalue of the equation y′′ + μρ(x)y = 0 are obtained via
rearrangements of higher degree. In [7], it is shown that the first eigenvalue of Euler
problem decreases when one replaces the design (coefficient function) involved in the
problem by its decreasing rearrangement. In [9], we derived upper bounds for the nth
eigenvalue of the equation y′′ + p(x)y +μq(x)y = 0 with Dirichlet boundary conditions,
under some conditions on the coefficients p and q. The first goal of this paper is to com-
plete the results obtained in [9], by deriving upper bounds for the eigenvalues of the
problem

(
p(x)y′

)′
+ λq(x)y = 0, 0 < x < l, y(0)= y(l)= 0. (1.5)

This will be achieved by first considering the intermediate problem in (2.1). The second
goal is to establish upper bounds for fourth-order differential equations. In order to sim-
plify the presentation, we assume throughout the paper that the functions p and q are
positive and continuous on [0, l].

2. Second-order problem

Consider the boundary value problem

(
p(x)y′

)′
+μq(x)y = 0, y(0)= 0, y′(l)= 0. (2.1)

According to a variational principle, the first eigenvalue μ1(p,q) of this problem can be
written as

μ1(p,q)= inf
y∈H1(0,l), y(0)=0

∫ l
0 p(x)y′(x)2dx
∫ l

0 q(x)y(x)2dx
. (2.2)

Another characterization of μ1(p,q) can be found in [6, 7]

1
μ1(p,q)

= max
v∈L2,‖v‖=1

∫ l

0

1
p(x)

(∫ l

x
q(t)1/2v(t)dt

)2

dx, (2.3)

where ‖ · ‖ denotes the standard L2(0, l) norm. This maximum is attained at v1 = q1/2y1

where y1 is a first eigenfunction of (2.1). Let v̄ = v1 when (p,q)= (p∗,q∗). If v̄ is chosen
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nonnegative then the function x 
→ ∫ lx q∗(t)1/2(t)v̄(t)dt is nonincreasing. Thus, arguing as
in [7], we have

1
μ1(p∗,q∗)

=
∫ l

0

1
p∗(x)

(∫ l

x
q∗(t)1/2v̄(t)dt

)2

dx

≤
∫ l

0

1
p(x)

(∫ l

x
q∗(t)1/2v̄(t)dt

)2

dx ≤ 1
μ1
(
p,q∗

) .

(2.4)

The first inequality follows from the fact that (1/p)∗∗ = 1/p∗ and from (1.4). As v̄ is not
necessarily nondecreasing, we cannot introduce q(t) in these inequalities. We then return
to representation (2.2). Let ȳ be an eigenfunction of (2.1) associated with μ1(p,q∗). ȳ2 is
obviously nondecreasing. Hence, by using (1.4), we have

μ1(p,q∗)=
∫ l

0 p(x) ȳ′(x)2dx
∫ l

0 q∗(x) ȳ(x)2dx
≥
∫ l

0 p(x) ȳ′(x)2dx
∫ l

0 q(x) ȳ(x)2dx
≥ μ1(p,q). (2.5)

If μ1(p,q∗) = μ1(p,q) then ȳ is also an eigenfunction for μ1(p,q) and therefore q∗ = q.
The equality μ1(p∗,q∗)= μ1(p,q∗) leads similarly to p = p∗. We have then

Theorem 2.1. μ1(p,q)≤ μ1(p∗,q∗) and equality holds only if (p,q)= (p∗,q∗).

Now let ν2(p,q) denote the second eigenvalue of the following problem

(
p(x)y′

)′
+ λq(x)y = 0, y′(0)= 0, y′(l)= 0, (2.6)

and let a be the unique zero in (0, l) of the eigenfunction associated with ν2(p,q). Then by
applying Theorem 2.1 on each subinterval [0,a] and [a, l] and by arguing as in the proof
of [9, Theorem 7.4], we can show that ν2(p,q)≤ ν2(p−1 ,q−1 ). More generally, we have the
following result.

Theorem 2.2. Let νn(p,q) be the nth eigenvalue of problem (2.6). Then, νn(p,q)≤ ν2(p−n−1,
q−n−1) for all n > 1, and equality holds only if (p,q)= (p−n−1,q−n−1).

The next result is a direct consequence of this theorem and arguments from [9].

Theorem 2.3. Let λn(p,q) be the nth eigenvalue of

(
p(x)y′

)′
+ λq(x)y = 0, y(0)= 0, y(l)= 0. (2.7)

Then, λn(p,q)≤ λn(p+
n ,q+

n ) for all n, and equality holds only if (p,q)= (p+
n ,q+

n ).

3. Fourth-order problem

Let μ1(p,q) denote the first eigenvalue of the fourth-order differential equation

(
p(x)y′′

)′′
+μq(x)y = 0

y(0)= y′′(0)= 0, y′(l)= y′′′(l)= 0.
(3.1)
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Let ψ = py′′. Then ψ′′ = −μq(x)y and ψ(0)= ψ′(l)= 0. It follows that

ψ(x)= μ
∫ l

0
g(x, t)q(t)y(t)dt, (3.2)

where g(x, t)=min{x, t}. Hence,

y′′(x)= μ

p(x)

∫ l

0
g(x, t)q(t)y(t)dt. (3.3)

Since the right-hand member belongs to L1(0, l) and y(l)= y′(l)= 0, we have

y(x)= μ
∫ l

0
g(x, t)

1
p(t)

(∫ l

0
g(t,s)q(s)y(s)ds

)
dt. (3.4)

Let L be the operator defined by

(Lv)(x)=
∫ l

0
g(x, t)q(x)1/2p(t)−1/2v(t)dt, (3.5)

v ∈ L2(0, l). The kernel l(x, t) = g(x, t)q(x)1/2p(t)−1/2 is square integrable and therefore
L is a Hilbert-Schmidt operator from L2(0, l) in L2(0, l). It is in particular compact on
L2(0, l). Its adjoint L∗ is given by

(
L∗v

)
(x)=

∫ l

0
g(x, t)q(t)1/2p(x)−1/2v(t)dt, (3.6)

v ∈ L2(0, l).Equation (3.4) can be written now as

v = μ(LL∗)v, (3.7)

where v(x)= q(x)1/2y(x). The operator (LL∗) is compact, selfadjoint and positive, there-
fore there exists an infinite sequence of eigenvalues 0 < μ1(p,q) ≤ μ2(p,q) ≤ ··· which
increases without limit. The first eigenvalue can be found as

1
μ1
= max

v∈L2\{0}

∥
∥L∗v

∥
∥2

∥
∥v
∥
∥2 . (3.8)

The maximum is attained at v1 = q1/2y1, where y1 is the first eigenfunction of (3.1). From
general theory of compact operators with positive kernels [6], we know that μ1 is simple
and y1 can be chosen positive on [0, l]. We finally notice that

∫ l

0
g(x, t)q(t)1/2v(t)dt =

∫ x

0

(∫ l

t
q(s)1/2v(s)ds

)
dt, (3.9)

and therefore μ1 can be found as

1
μ1
= max
‖v‖=1

∫ l

0

1
p(x)

(∫ x

0

∫ l

t
q(s)1/2v(s)dsdt

)2

dx. (3.10)
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Let v̄ = (q∗)1/2 ȳ, where ȳ is a positive eigenfunction corresponding to μ1(p∗∗,q∗) and
such that ‖v̄‖ = 1. We have

1
μ1(p∗∗,q∗)

=
∫ l

0

(
1
p

)∗(∫ x

0

∫ l

t
q∗(s)1/2v̄(s)dsdt

)2

dx

≤
∫ l

0

1
p(x)

(∫ x

0

∫ l

t
q∗(s)1/2v̄(s)dsdt

)2

dx ≤ 1
μ1
(
p,q∗

) .

(3.11)

On the other hand, reasoning as in the previous section, we find that μ1(p,q∗)≥ μ1(p,q).
As a result, we have

Theorem 3.1. μ1(p,q)≤ μ1(p∗∗,q∗) and equality holds only if (p,q)= (p∗∗,q∗).

By using this theorem and arguments from [9], we prove the following.

Theorem 3.2. Let λn(p,q) be the nth eigenvalue of

(
p(x)y′′

)′′ − λq(x)y = 0,

y(0)= y′′(0)= 0, y(l)= y′′(l)= 0.
(3.12)

Then, λn(p,q)≤ λn(p−n ,q+
n ) for all n, and equality holds only if (p,q)= (p−n ,q+

n ).

4. Another problem

In this section, we denote by μ1(p,q) the first eigenvalue of the following problem

y(4)− [μq(x)− p(x)]y = 0,

y(0)= y′′(0)= 0, y′(l)= y′′′(l)= 0.
(4.1)

Let h and H be positive numbers such that h≤ q(x)≤H on [0, l]. Then, we have

Lemma 4.1. If

Hmax
x

p(x)−hmin
x
p(x)≤ hπ4l−4/16, (4.2)

then p(x)− μ1(p,q)q(x) ≤ 0 for all x ∈ [0, l]. If y1(x) is a positive first eigenfunction of
problem (4.1) and if condition (4.2) holds, then y1(x) is nondecreasing.

Proof. We have

μ1(p,q)≥ inf
y

[∫ l

0
y′′2dx/

∫ l

0
qy2dx

]
+ min

x
p(x)/H

≥H−1[π/(2l)
]4

+ min
x
p(x)/H.

(4.3)

If (4.2) holds, then from the last inequality we get μ1(p,q)≥maxx p(x)/h, and therefore
μ1(p,q)q(x)− p(x) ≥ 0 for all x ∈ [0, l]. If y1(x) is a positive eigenfunction of problem

(4.1) associated with μ1(p,q), then y(4)
1 (x)= [μ1(p,q)q(x)− p(x)]y1(x)≥ 0 in [0, l]. This

means that y′′1 (x) is a convex function. As y′′1 (0) = y′′′1 (l) = 0, it follows that y′′1 (x) is
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nonnegative and therefore y1(x) is concave and nondecreasing, since y1(0) = y′1(l) = 0.
�

Theorem 4.2. If condition (4.2) holds, then

μ1(p,q)≤ μ1
(
p∗∗,q∗

)
. (4.4)

Moreover, equality holds only if (p,q)= (p∗∗,q∗).

Proof. Suppose that (4.2) is fulfilled and let y1(x) be a positive first eigenfunction of prob-
lem (4.1) associated with the couple (p∗∗,q∗). Since p∗∗ and q∗ satisfy also condition
(4.2), Lemma 4.1 tells us that y1(x) in nondecreasing. Therefore, we have

μ1
(
p∗∗,q∗

)≥
∫ l

0 y
′′2
1 dx+

∫ l
0 py

2
1 dx

∫ l
0 qy

2
1 dx

≥ μ1(p,q), (4.5)

and it is easily seen that equality holds only when (p,q)= (p∗∗,q∗). �

Once again, by using Theorem 4.2 and arguments from [9], we prove

Theorem 4.3. Let λn(p,q) be the nth eigenvalue of

y(4)− [λq(x)− p(x)
]
y = 0,

y(0)= y′′(0)= 0, y(l)= y′′(l)= 0.
(4.6)

Then, λn(p,q)≤ λn(p−n ,q+
n ) for all n, and equality holds only if (p,q)= (p−n ,q+

n ).

We have in particular the following.

Corollary 4.4. Let λn(p) denote the first eigenvalue of the problem

y(4)− [λ− p(x)
]
y = 0,

y(0)= y′′(0)= 0, y(l)= y′′(l)= 0.
(4.7)

If maxx p(x)−minx p(x)≤ π4/(2l)4, then

λn(p)≤ λn
(
p−n
)
. (4.8)

Moreover, equality holds only if p = p−n .
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