PICONE-TYPE INEQUALITIES FOR NONLINEAR ELLIPTIC EQUATIONS WITH FIRST-ORDER TERMS AND THEIR APPLICATIONS

JAROSLAV JAROŠ, KUSANO TAKAŜI, AND NORIO YOSHIDA

Received 24 February 2004; Revised 13 April 2004; Accepted 13 April 2004

Picone-type inequalities are established for nonlinear elliptic equations which are generalizations of nonself-adjoint linear elliptic equations, and Sturmian comparison theorems are derived as applications. Oscillation results are also obtained for forced superlinear elliptic equations and superlinear-sublinear elliptic equations.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Beginning with the work of Picone [11], Picone identity has been investigated by many authors. In particular, we refer the reader to Allegretto [2], Kreith [8], Protter [12], Swanson [13] and the references cited therein for Picone identities and comparison theorems for nonself-adjoint linear elliptic equations.

Recently there has been an increasing interest in studying the forced oscillations of differential equations. We mention the papers $[3-7,10]$ dealing with forced oscillations of differential equations of self-adjoint type.

In Jaroš et al. [6], they have established Picone-type inequalities which connect the self-adjoint linear elliptic operator

$$
\begin{equation*}
p[u] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+c(x) u \tag{1.1}
\end{equation*}
$$

with the nonlinear elliptic operator

$$
\begin{gather*}
P[v] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+C(x)|v|^{\beta-1} v, \\
\tilde{P}[v] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+C(x)|v|^{\beta-1} v+D(x)|v|^{\gamma-1} v, \tag{1.2}
\end{gather*}
$$

where β and γ are positive constants with $\beta>1$ and $0<\gamma<1$. They have derived Sturmian comparison theorems and oscillation theorems for the forced elliptic equation

$$
\begin{equation*}
P[v]=f(x) \tag{1.3}
\end{equation*}
$$

as well as the superlinear-sublinear elliptic equation

$$
\begin{equation*}
\tilde{P}[v]=0 \tag{1.4}
\end{equation*}
$$

The objective of this paper is to extend the results obtained in [6] to the nonlinear elliptic equations with first-order terms

$$
\begin{gather*}
L[v]=f(x), \tag{1.5}\\
\tilde{L}[v]=0, \tag{1.6}
\end{gather*}
$$

where

$$
\begin{gather*}
L[v] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+2 \sum_{i=1}^{n} B_{i}(x) \frac{\partial v}{\partial x_{i}}+C(x)|v|^{\beta-1} v, \\
\tilde{L}[v] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+2 \sum_{i=1}^{n} B_{i}(x) \frac{\partial v}{\partial x_{i}}+C(x)|v|^{\beta-1} v+D(x)|v|^{\gamma-1} v . \tag{1.7}
\end{gather*}
$$

We note that if there exists a C^{1}-function $F(x)$ such that

$$
\begin{equation*}
\nabla F(x)=2 B(x)\left(A_{i j}(x)\right)^{-1} \tag{1.8}
\end{equation*}
$$

where $B(x)=\left(B_{1}(x), B_{2}(x), \ldots, B_{n}(x)\right)$, then (1.5) can be written in the form

$$
\begin{equation*}
\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(e^{F(x)} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+e^{F(x)} C(x)|v|^{\beta-1} v=e^{F(x)} f(x), \tag{1.9}
\end{equation*}
$$

which was studied in [6].
In Section 2 we establish Picone-type inequalities for (1.5), and in Section 3 we obtain oscillation theorems for (1.5) in an unbounded domain $\Omega \subset \mathbb{R}^{n}$. Sections 4 and 5 concern Sturmian comparison theorems and oscillation theorems for (1.6), respectively.

2. Sturmian comparison theorems for (1.5)

Let G be a bounded domain in \mathbb{R}^{n} with piecewise smooth boundary ∂G. It is assumed that
$\left(\mathrm{A}_{1}\right) A_{i j}(x) \in C(\bar{G} ; \mathbb{R}), B_{i}(x) \in C(\bar{G} ; \mathbb{R}), C(x) \in C(\bar{G} ;[0, \infty))$ and $f(x) \in C(\bar{G} ; \mathbb{R}) ;$
$\left(\mathrm{A}_{2}\right)$ the matrix $\left(A_{i j}(x)\right)$ is symmetric and positive definite in G;
$\left(\mathrm{A}_{3}\right) \beta>1$.
The domain $\mathscr{D}_{L}(G)$ of L is defined to be the set of all functions v of class $C^{1}(\bar{G} ; \mathbb{R})$ with the property that $A_{i j}(x)\left(\partial v / \partial x_{j}\right) \in C^{1}(G ; \mathbb{R}) \cap C(\bar{G} ; \mathbb{R})(i, j=1,2, \ldots, n)$.

Theorem 2.1. If $v \in \mathscr{D}_{L}(G), v \neq 0$ in G and $v \cdot f(x) \leq 0$ in G, then the following inequality holds for any $u \in C^{1}(G ; \mathbb{R})$:

$$
\begin{align*}
\sum_{i, j=1}^{n} A_{i j}(x) & \left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) \\
& +\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{u^{2}}{v} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right) \tag{2.1}\\
\leq & \sum_{i, j=1}^{n} A_{i j}(x)\left(\frac{\partial u}{\partial x_{i}}-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(\frac{\partial u}{\partial x_{j}}-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) \\
& \quad-\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta} u^{2}+\frac{u^{2}}{v}\{L[v]-f(x)\},
\end{align*}
$$

where $\left(A^{i j}(x)\right)=\left(A_{i j}(x)\right)^{-1}$.
Proof. The following Picone-type inequality was established by Jaroš et al. [6]:

$$
\begin{align*}
& \sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)\right)+\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{u^{2}}{v} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right) \\
& \quad \leq \sum_{i, j=1}^{n} A_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta} u^{2} \tag{2.2}\\
&+\frac{u^{2}}{v}\left\{\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+C(x)|v|^{\beta-1} v-f(x)\right\} .
\end{align*}
$$

Since

$$
\begin{equation*}
-2 u \sum_{i=1}^{n} B_{i}(x) v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)=-2 u \sum_{i=1}^{n} B_{i}(x) \frac{\partial u}{\partial x_{i}}+2 \frac{u^{2}}{v} \sum_{i=1}^{n} B_{i}(x) \frac{\partial v}{\partial x_{i}}, \tag{2.3}
\end{equation*}
$$

combining (2.2) with (2.3) yields

$$
\begin{align*}
\sum_{i, j=1}^{n} A_{i j} & (x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)\right)-2 u \sum_{i=1}^{n} B_{i}(x) v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right) \\
+ & B(x)\left(A_{i j}(x)\right)^{-1} B(x)^{T} u^{2}+\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{u^{2}}{v} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right) \\
\leq & \sum_{i, j=1}^{n} A_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-2 u \sum_{i=1}^{n} B_{i}(x) \frac{\partial u}{\partial x_{i}}+B(x)\left(A_{i j}(x)\right)^{-1} B(x)^{T} u^{2} \tag{2.4}\\
& -\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta} u^{2} \\
& +\frac{u^{2}}{v}\left\{\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+2 \sum_{i=1}^{n} B_{i}(x) \frac{\partial v}{\partial x_{i}}+C(x)|v|^{\beta-1} v-f(x)\right\},
\end{align*}
$$

4 Picone-type inequalities

where $B(x)=\left(B_{1}(x), \ldots, B_{n}(x)\right)$ and the superscript T denotes the transpose. In view of the identities

$$
\begin{align*}
& \sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)\right)-2 u \sum_{i=1}^{n} B_{i}(x) v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right) \\
&+B(x)\left(A_{i j}(x)\right)^{-1} B(x)^{T} u^{2} \\
&= \sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right) \tag{2.5}\\
& \times\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right), \\
& \sum_{i, j=1}^{n} A_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-2 u \sum_{i=1}^{n} B_{i}(x) \frac{\partial u}{\partial x_{i}}+B(x)\left(A_{i j}(x)\right)^{-1} B(x)^{T} u^{2} \tag{2.6}\\
&=\sum_{i, j=1}^{n} A_{i j}(x)\left(\frac{\partial u}{\partial x_{i}}-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(\frac{\partial u}{\partial x_{j}}-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right),
\end{align*}
$$

we observe that (2.4) is equivalent to (2.1).
We consider the comparison operator

$$
\begin{equation*}
\ell[u] \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+2 \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u \tag{2.7}
\end{equation*}
$$

where the coefficients $a_{i j}(x), b_{i}(x), c(x)$ satisfy the following hypotheses:
$\left(\mathrm{A}_{4}\right) a_{i j}(x), b_{i}(x), c(x) \in C(\bar{G} ; \mathbb{R})$;
(A_{5}) the matrix $\left(a_{i j}(x)\right)$ is symmetric and positive definite in G.
The domain $\mathscr{D}_{\ell}(G)$ of ℓ is defined to be the set of all functions u of class $C^{1}(\bar{G} ; \mathbb{R})$ with the property that $a_{i j}(x)\left(\partial u / \partial x_{j}\right) \in C^{1}(G ; \mathbb{R}) \cap C(\bar{G} ; \mathbb{R})(i, j=1,2, \ldots, n)$.

Theorem 2.2. Assume that $u \in \mathscr{D}_{\ell}(G), v \in \mathscr{D}_{L}(G), v \neq 0$ in G and $v \cdot f(x) \leq 0$ in G. Then we have the following Picone-type inequality

$$
\begin{align*}
\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}} & \left(u a_{i j}(x) \frac{\partial u}{\partial x_{j}}-\frac{u^{2}}{v} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right) \\
\geq & \sum_{i, j=1}^{n}\left(a_{i j}(x)-A_{i j}(x)\right) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-2 u \sum_{i=1}^{n}\left(b_{i}(x)-B_{i}(x)\right) \frac{\partial u}{\partial x_{i}} \\
& +\left(\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta}-c(x)-B(x)\left(A^{i j}(x)\right) B(x)^{T}\right) u^{2} \\
& +\sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) \\
& +\frac{u}{v}\{v \ell[u]-u(L[v]-f(x))\} . \tag{2.8}
\end{align*}
$$

Proof. To prove the theorem it suffices to combine the inequalities (2.4) and (2.5) with the identity

$$
\begin{equation*}
u \ell[u]=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(u a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)-\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}+2 u \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u^{2} . \tag{2.9}
\end{equation*}
$$

Now we consider the first-order partial differential system

$$
\begin{equation*}
\nabla w-P(x) w=0 \tag{2.10}
\end{equation*}
$$

where $P(x)=\left(P_{1}(x), P_{2}(x), \ldots, P_{n}(x)\right)$ is a continuous vector function, and define the sequence of functions $\left\{q_{k}(x)\right\}_{k=1}^{n}$ by

$$
\begin{gather*}
q_{1}(x)=\int P_{1}(x) d x_{1} \\
q_{k}(x)=q_{k-1}(x)+\int\left(P_{k}(x)-\frac{\partial}{\partial x_{k}} q_{k-1}(x)\right) d x_{k} \quad(k=2,3, \ldots, n) . \tag{2.11}
\end{gather*}
$$

Lemma 2.3. The system (2.10) has a C^{1}-solution if and only if

$$
\begin{equation*}
\frac{\partial}{\partial x_{k-1}}\left(P_{k}(x)-\frac{\partial}{\partial x_{k}} q_{k-1}(x)\right)=0 \quad(k=2,3, \ldots, n) . \tag{2.12}
\end{equation*}
$$

Then any C^{1}-solution w of (2.10) can be written in the form

$$
\begin{equation*}
w=C_{n} \exp q_{n}(x) \tag{2.13}
\end{equation*}
$$

for some constant C_{n}.
Proof. Suppose that (2.10) has a C^{1}-solution w. Then we obtain

$$
\begin{equation*}
\frac{\partial w}{\partial x_{1}}-P_{1}(x) w=0 \tag{2.14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
w=C_{1}\left(x_{2}, \ldots, x_{n}\right) \exp \int P_{1}(x) d x_{1}=C_{1}\left(x_{2}, \ldots, x_{n}\right) \exp q_{1}(x) \tag{2.15}
\end{equation*}
$$

for some function $C_{1}\left(x_{2}, \ldots, x_{n}\right)$. From

$$
\begin{equation*}
\frac{\partial w}{\partial x_{2}}-P_{2}(x) w=0 \tag{2.16}
\end{equation*}
$$

we see that $C_{1}\left(x_{2}, \ldots, x_{n}\right)$ must satisfy

$$
\begin{equation*}
\frac{\partial C_{1}}{\partial x_{2}}-\left(P_{2}(x)-\frac{\partial}{\partial x_{2}} \int P_{1}(x) d x_{1}\right) C_{1}=0 . \tag{2.17}
\end{equation*}
$$

6 Picone-type inequalities
Hence, it is necessary that

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}}\left(P_{2}(x)-\frac{\partial}{\partial x_{2}} \int P_{1}(x) d x_{1}\right)=0 \tag{2.18}
\end{equation*}
$$

and we have

$$
\begin{equation*}
C_{1}=C_{2}\left(x_{3}, \ldots, x_{n}\right) \exp \int\left(P_{2}(x)-\frac{\partial}{\partial x_{2}} \int P_{1}(x) d x_{1}\right) d x_{2} \tag{2.19}
\end{equation*}
$$

for some function $C_{2}\left(x_{3}, \ldots, x_{n}\right)$, and therefore

$$
\begin{align*}
w & =C_{2}\left(x_{3}, \ldots, x_{n}\right) \exp \left(\int P_{1}(x) d x_{1}+\int\left(P_{2}(x)-\frac{\partial}{\partial x_{2}} \int P_{1}(x) d x_{1}\right) d x_{2}\right) \tag{2.20}\\
& =C_{2}\left(x_{3}, \ldots, x_{n}\right) \exp q_{2}(x) .
\end{align*}
$$

Repeating this procedure, we observe that (2.12) is necessary and the solution w has the form (2.13). From the above consideration it is obvious that the condition (2.12) is sufficient for (2.10) to have a C^{1}-solution.

Theorem 2.4. If there exists a nontrivial function $u \in C^{1}(\bar{G} ; \mathbb{R})$ such that $u=0$ on ∂G and

$$
\begin{align*}
M[u] \equiv \int_{G} & {\left[\sum_{i, j=1}^{n} A_{i j}(x)\left(\frac{\partial u}{\partial x_{i}}-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(\frac{\partial u}{\partial x_{j}}-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right)\right.} \tag{2.21}\\
& \left.-\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta} u^{2}\right] d x \leq 0,
\end{align*}
$$

then every solution $v \in \mathscr{D}_{L}(G)$ of (1.5) satisfying $v \cdot f(x) \leq 0$ in G vanishes at some point of \bar{G}. Furthermore, if $\partial G \in C^{1}$, then either every solution $v \in \mathscr{D}_{L}(G)$ of (1.5) satisfying v. $f(x) \leq 0$ in G has a zero in G or else $u=C_{0} v \exp q(x)$ for some nonzero constant C_{0} and some continuous function $q(x)$.
Proof
The first statement. Suppose to the contrary that there exists a solution $v \in \mathscr{D}_{L}(G)$ of (1.5) satisfying $v \cdot f(x) \leq 0$ in G and $v \neq 0$ on \bar{G}. We find that the inequality (2.1) of Theorem 2.1 holds. Integrating (2.1) over G and then using the divergence theorem yield

$$
\begin{align*}
M[u] \geq \int_{G} & \sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right) \tag{2.22}\\
& \times\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) d x .
\end{align*}
$$

If

$$
\begin{equation*}
v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u \equiv 0 \quad \text { in } G(i=1,2, \ldots, n), \tag{2.23}
\end{equation*}
$$

then it follows from Lemma 2.3 that

$$
\begin{equation*}
\frac{u}{v}=C_{0} \exp q(x) \tag{2.24}
\end{equation*}
$$

in G, by continuity on \bar{G}, where C_{0} is some constant and $q(x)$ is some continuous function. Since $u=0$ on ∂G, we see that $C_{0}=0$, which contradicts the fact that u is nontrivial. Therefore, we observe that

$$
\begin{equation*}
\nabla\left(\frac{u}{v}\right)-\left(\sum_{k=1}^{n} B_{k}(x) A^{k i}(x)\right)\left(\frac{u}{v}\right) \not \equiv 0 \quad \text { in } G . \tag{2.25}
\end{equation*}
$$

Hence, we conclude that the right-hand side of (2.22) is positive, and hence $M[u]>0$. This contradicts the hypothesis (2.21).
The second statement. Next we consider the case where $\partial G \in C^{1}$. Let $v \in \mathscr{D}_{L}(G)$ be a solution of (1.5) such that $v \cdot f(x) \leq 0$ in G and $v \neq 0$ in G. Since $\partial G \in C^{1}, u \in C^{1}(\bar{G} ; \mathbb{R})$ and $u=0$ on ∂G, we see that u belongs to the Sobolev space $H_{1}(G)$ which is the closure in the norm

$$
\begin{equation*}
\|u\|=\|u\|_{1}=\left(\int_{G} \sum_{|\alpha| \leq 1}\left|D^{\alpha} u\right|^{2} d x\right)^{1 / 2} \tag{2.26}
\end{equation*}
$$

of the class $C_{0}^{\infty}(G)$ of infinitely differentiable functions with compact support in G (see, e.g., Agmon [1, page 131]). Let $\left\{u_{k}\right\}$ be a sequence of functions in $C_{0}^{\infty}(G)$ converging to u in the norm (2.26). Then, the inequality (2.1) with $u=u_{k}$ holds. In view of the fact that (2.22) with $u=u_{k}$ holds, we find that $M\left[u_{k}\right] \geq 0$. Since

$$
\begin{align*}
M[u]=\int_{G} & {\left[\sum_{i, j=1}^{n} A_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-2 u \sum_{i=1}^{n} B_{i}(x) \frac{\partial u}{\partial x_{i}}\right.} \\
& \left.+\left(B(x)\left(A_{i j}(x)\right)^{-1} B(x)^{T}-\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta}\right) u^{2}\right] d x \tag{2.27}
\end{align*}
$$

and $A_{i j}(x), B_{i}(x), B(x)\left(A_{i j}(x)\right)^{-1} B(x)^{T}-\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta}$ are uniformly bounded in G, there is a constant $K>0$ such that

$$
\begin{align*}
\left|M\left[u_{k}\right]-M[u]\right| \leq & K \int_{G}\left|\sum_{i, j=1}^{n}\left(\frac{\partial u_{k}}{\partial x_{i}} \frac{\partial\left(u_{k}-u\right)}{\partial x_{j}}+\frac{\partial\left(u_{k}-u\right)}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right)\right| d x \\
& +K \int_{G}\left|\sum_{i=1}^{n}\left(u_{k} \frac{\partial\left(u_{k}-u\right)}{\partial x_{i}}+\left(u_{k}-u\right) \frac{\partial u}{\partial x_{i}}\right)\right| d x \tag{2.28}\\
& +K \int_{G}\left|u_{k}\left(u_{k}-u\right)+\left(u_{k}-u\right) u\right| d x .
\end{align*}
$$

Application of Schwarz inequality yields

$$
\begin{equation*}
\left|M\left[u_{k}\right]-M[u]\right| \leq K\left(n^{2}+n+1\right)\left(\left\|u_{k}\right\|+\|u\|\right)\left\|u_{k}-u\right\| . \tag{2.29}
\end{equation*}
$$

Since $\lim _{k \rightarrow \infty}\left|u_{k}-u\right|=0$, we see that $\lim _{k \rightarrow \infty} M\left[u_{k}\right]=M[u] \geq 0$, and therefore $M[u]=0$ in view of (2.21). Let B denote an arbitrary ball with $\bar{B} \subset G$ and define

$$
\begin{align*}
J_{B}[u] \equiv \int_{B} & \sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right) \tag{2.30}\\
& \times\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) d x
\end{align*}
$$

for $u \in C^{1}(G ; \mathbb{R})$. We easily see that

$$
\begin{equation*}
0 \leq J_{B}\left[u_{k}\right] \leq M\left[u_{k}\right] \tag{2.31}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left|J_{B}\left[u_{k}\right]-J_{B}[u]\right| \leq K_{1}\left(\left\|w_{k}\right\|_{B}+\|w\|_{B}\right)\left\|w_{k}-w\right\|_{B} \tag{2.32}
\end{equation*}
$$

holds, where K_{1} is a positive constant, $w_{k}=u_{k} / v, w=u / v$ and the subscript B indicates the integrals involved in the norm (2.26) are taken over B. As $v \neq 0$ on \bar{B}, we observe that $\lim _{k \rightarrow \infty}\left\|w_{k}-w\right\|_{B}=0$ when $\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|=0$, and hence $\lim _{k \rightarrow \infty} J_{B}\left[u_{k}\right]=J_{B}[u]$. Since $\lim _{k \rightarrow \infty} M\left[u_{k}\right]=M[u]=0$, we obtain $\lim _{k \rightarrow \infty} J_{B}\left[u_{k}\right]=J_{B}[u]=0$. It follows from Lemma 2.3 that $u / v=C_{0} \exp q(x)$ in B, by arbitrariness of B in G, and hence by continuity on \bar{G} for nonzero constant C_{0} and some continuous function $q(x)$. This completes the proof of the second statement.

Corollary 2.5. Assume that $f(x) \geq 0$ (or $f(x) \leq 0)$ in G. If there exists a nontrivial function $u \in C^{1}(\bar{G} ; \mathbb{R})$ such that $u=0$ on ∂G and $M[u] \leq 0$, then (1.5) has no negative (or positive) solution on \bar{G}.

Proof. Let (1.5) have a solution v which is negative (or positive) on \bar{G}. Then, it is obvious that $v \cdot f(x) \leq 0$ in G, and hence Theorem 2.4 implies that v must vanish at some point of \bar{G}. This is a contradiction and the proof is complete.

Theorem 2.6. If there exists a nontrivial solution $u \in \mathscr{D}_{\ell}(G)$ of $\ell[u]=0$ in G such that $u=0$ on ∂G and

$$
\begin{align*}
& V[u] \equiv \int_{G}\left[\sum_{i, j=1}^{n}\left(a_{i j}(x)-A_{i j}(x)\right) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-2 u \sum_{i=1}^{n}\left(b_{i}(x)-B_{i}(x)\right) \frac{\partial u}{\partial x_{i}}\right. \\
&\left.\quad+\left(\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta}-c(x)-B(x)\left(A^{i j}(x)\right) B(x)^{T}\right) u^{2}\right] d x \\
& \geq 0, \tag{2.33}
\end{align*}
$$

then every solution $v \in \mathscr{D}_{L}(G)$ of (1.5) satisfying $v \cdot f(x) \leq 0$ in G vanishes at some point of \bar{G}. Furthermore, if $\partial G \in C^{1}$, then either every solution $v \in \mathscr{D}_{L}(G)$ of (1.5) satisfying v. $f(x) \leq 0$ in G has a zero in G or else $u=C_{0} v \exp q(x)$ for some nonzero constant C_{0} and some continuous function $q(x)$.

Proof. It suffices to start the inequality (2.8) instead of (2.1) and use the same arguments as in the proof of Theorem 2.4.

Corollary 2.7. Assume that $f(x) \geq 0$ (or $f(x) \leq 0)$ in G. If there exists a nontrivial solution $u \in \mathscr{D}_{\ell}(G)$ of $\ell[u]=0$ in G such that $u=0$ on ∂G and $V[u] \geq 0$, then (1.5) has no negative (or positive) solution on \bar{G}.

Proof. It is easily verified that

$$
\begin{equation*}
V[u]=-\int_{G} u \ell[u] d x-M[u] \tag{2.34}
\end{equation*}
$$

for any $u \in C^{1}(\bar{G} ; \mathbb{R})$ satisfying $u=0$ on ∂G. Hence, we conclude that

$$
\begin{equation*}
V[u]=-M[u] \tag{2.35}
\end{equation*}
$$

for the solution u of $\ell[u]=0$ such that $u=0$ on ∂G. The conclusion follows from Corollary 2.5.

Remark 2.8. If $\left(a_{i j}(x)-A_{i j}(x)\right)$ is positive definite in G and

$$
\begin{align*}
& \beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta} \\
& \geq \tag{2.36}\\
& \quad c(x)+B(x)\left(A^{i j}(x)\right) B(x)^{T} \\
& \quad+(b(x)-B(x))\left(a_{i j}(x)-A_{i j}(x)\right)^{-1}(b(x)-B(x))^{T}
\end{align*}
$$

then $V[u] \geq 0$ for any $u \in C^{1}(\bar{G} ; \mathbb{R})$, where

$$
\begin{equation*}
b(x)-B(x)=\left(b_{1}(x)-B_{1}(x), b_{2}(x)-B_{2}(x), \ldots, b_{n}(x)-B_{n}(x)\right) . \tag{2.37}
\end{equation*}
$$

In the case where $b_{i}(x)=B_{i}(x)(i=1,2, \ldots, n)$, we see that $V[u] \geq 0$ for any $u \in C^{1}(\bar{G} ; \mathbb{R})$ if $\left(a_{i j}(x)-A_{i j}(x)\right)$ is positive semidefinite in G and

$$
\begin{equation*}
\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta} \geq c(x)+B(x)\left(A^{i j}(x)\right) B(x)^{T} . \tag{2.38}
\end{equation*}
$$

Theorem 2.9. Suppose that G is divided into two subdomains G_{1} and G_{2} by an $(n-1)$ dimensional piecewise smooth hypersurface in such a way that

$$
\begin{equation*}
f(x) \geq 0 \quad \text { in } G_{1}, \quad f(x) \leq 0 \quad \text { in } G_{2} \tag{2.39}
\end{equation*}
$$

If there exist nontrivial functions $u_{p} \in C^{1}\left(\overline{G_{p}} ; \mathbb{R}\right)(p=1,2)$ such that $u_{p}=0$ on ∂G_{p} and

$$
\begin{align*}
M_{p}\left[u_{p}\right] \equiv \int_{G_{p}} & {\left[\sum_{i, j=1}^{n} A_{i j}(x)\left(\frac{\partial u_{p}}{\partial x_{i}}-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u_{p}\right)\left(\frac{\partial u_{p}}{\partial x_{j}}-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u_{p}\right)\right.} \\
& \left.-\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta} u_{p}^{2}\right] d x \leq 0, \tag{2.40}
\end{align*}
$$

then every solution $v \in \mathscr{D}_{L}(G)$ of (1.5) has a zero on \bar{G}.

Proof. Assume that (1.5) has a solution v which has no zero on \bar{G}. Then, either $v<0$ on \bar{G} or $v>0$ on \bar{G}. If $v<0$ on \bar{G}, then $v<0$ on $\overline{G_{1}}$, and therefore $v \cdot f(x) \leq 0$ in G_{1}. It follows from Corollary 2.5 that (1.5) has no negative solution on $\overline{G_{1}}$. This is a contradiction. The case where $v>0$ on \bar{G} can be treated similarly, and we are also led to a contradiction. The proof is complete.

Theorem 2.10. Suppose that G is divided into two adjacent subdomains G_{1} and G_{2} as mentioned in Theorem 2.9. If there exist nontrivial solutions $u_{p} \in \mathscr{D}_{\ell}\left(G_{p}\right)(p=1,2)$ of $\ell\left[u_{p}\right]=0$ in G_{p} such that $u_{p}=0$ on ∂G_{p} and

$$
\begin{align*}
& V_{p}\left[u_{p}\right] \equiv \int_{G_{p}} {\left[\sum_{i, j=1}^{n}\left(a_{i j}(x)-A_{i j}(x)\right) \frac{\partial u_{p}}{\partial x_{i}} \frac{\partial u_{p}}{\partial x_{j}}-2 u_{p} \sum_{i=1}^{n}\left(b_{i}(x)-B_{i}(x)\right) \frac{\partial u_{p}}{\partial x_{i}}\right.} \\
&\left.\quad+\left(\beta(\beta-1)^{(1-\beta) / \beta} C(x)^{1 / \beta}|f(x)|^{(\beta-1) / \beta}-c(x)-B(x)\left(A^{i j}(x)\right) B(x)^{T}\right) u_{p}^{2}\right] d x \\
& \geq 0 \tag{2.41}
\end{align*}
$$

then every solution $v \in \mathscr{D}_{L}(G)$ of (1.5) has a zero on \bar{G}.
Proof. By using the same arguments as in the proof of Theorem 2.9, we conclude that the conclusion follows from Corollary 2.7.

3. Oscillation theorems for (1.5)

In this section we derive an oscillation criterion for (1.5) in an unbounded domain $\Omega \subset$ \mathbb{R}^{n}. Assume that
$\left(\mathrm{H}_{1}\right) A_{i j}(x), A_{i}(x), C(x), f(x) \in C(\Omega ; \mathbb{R}) ;$
$\left(\mathrm{H}_{2}\right)$ the matrix $\left(A_{i j}(x)\right)$ is symmetric and positive definite in Ω.
The domain $\mathscr{D}_{L}(\Omega)$ of L is defined to be the set of all functions v of class $C^{1}(\Omega ; \mathbb{R})$ with the property that $A_{i j}(x)\left(\partial v / \partial x_{j}\right) \in C^{1}(\Omega ; \mathbb{R})(i, j=1,2, \ldots, n)$.

Definition 3.1. A function $v: \Omega \rightarrow \mathbb{R}$ is said to be oscillatory in Ω if v has a zero in Ω_{r} for any $r>0$, where

$$
\begin{equation*}
\Omega_{r}=\Omega \cap\{x \in \mathbb{R} ;|x|>r\} . \tag{3.1}
\end{equation*}
$$

Theorem 3.2. Assume that for any $r>0$ there is a bounded domain G in Ω_{r} with piecewise smooth boundary, which can be divided into two subdomains G_{1} and G_{2} by an ($n-1$)dimensional hypersurface in such a way that $f(x) \geq 0$ in G_{1} and $f(x) \leq 0$ in G_{2}. Furthermore, assume that $C(x) \geq 0$ in G and there exist nontrivial functions $u_{p} \in C^{1}\left(\overline{G_{p}} ; \mathbb{R}\right)$ ($p=1,2$) such that $u_{p}=0$ on ∂G and $M_{p}\left[u_{p}\right] \leq 0$, where M_{p} are given by (2.40). Then every solution $v \in \mathscr{D}_{L}(\Omega)$ of (1.5) is oscillatory in Ω.

Proof. We need only to apply Theorem 2.9 to make sure that every solution v has a zero in any domain as mentioned in the hypotheses of Theorem 3.2.

Example 3.3. We consider the forced superlinear elliptic equation

$$
\begin{equation*}
\Delta v+2 \frac{\partial v}{\partial x_{1}}+2 \frac{\partial v}{\partial x_{2}}+K\left(\sin \left(x_{1}-\pi\right) \sin x_{2}\right)|v|^{\beta-1} v=\cos x_{1} \sin x_{2}, \quad\left(x_{1}, x_{2}\right) \in \Omega \tag{3.2}
\end{equation*}
$$

where $K>0$ is a constant, Δ is the two-dimensional Laplacian, and Ω is an unbounded domain in \mathbb{R}^{2} containing a horizontal strip such that

$$
\begin{equation*}
[\pi, \infty) \times[0, \pi] \subset \Omega \tag{3.3}
\end{equation*}
$$

Let m be any fixed natural number, and consider the square

$$
\begin{equation*}
G=((2 m-1) \pi, 2 m \pi) \times(0, \pi), \tag{3.4}
\end{equation*}
$$

which is divided into two subdomains

$$
\begin{gather*}
G_{1}=((2 m-1) \pi,(2 m-(1 / 2)) \pi) \times(0, \pi), \\
G_{1}=((2 m-(1 / 2)) \pi, 2 m \pi) \times(0, \pi) \tag{3.5}
\end{gather*}
$$

by the vertical line $x_{1}=(2 m-(1 / 2)) \pi$. It is easy to see that $C(x)=K \sin \left(x_{1}-\pi\right) \sin x_{2} \geq 0$ in $G, f(x)=\cos x_{1} \sin x_{2} \leq 0$ in G_{1} and $f(x) \geq 0$ in G_{2}. Letting $u_{p}=\sin 2 x_{1} \sin x_{2}(p=$ $1,2)$, we observe that $u_{p}=0$ on ∂G_{p}. An easy calculation shows that

$$
\begin{align*}
M_{p}\left[u_{p}\right]=\int_{G_{p}}[& \sum_{i=1}^{2}\left(\frac{\partial u_{p}}{\partial x_{i}}-u_{p}\right)^{2}-\beta(\beta-1)^{(1-\beta) / \beta}\left(K\left(\sin \left(x_{1}-\pi\right) \sin x_{2}\right)\right)^{1 / \beta} \\
& \left.\times\left|\cos x_{1} \sin x_{2}\right|^{(\beta-1) \beta} u_{p}^{2}\right] d x_{1} d x_{2} \tag{3.6}\\
= & \frac{7}{8} \pi^{2}-\frac{8}{3} K^{1 / \beta} \beta(\beta-1)^{(1-\beta) / \beta} B\left(\frac{3}{2}+\frac{1}{2 \beta}, 2-\frac{1}{2 \beta}\right),
\end{align*}
$$

where $B(s, t)$ denotes the beta function. Hence, we find that $M_{p}\left[u_{p}\right] \leq 0(p=1,2)$ if $K>0$ is chosen so large that

$$
\begin{equation*}
K \geq\left[\frac{21}{64} \pi^{2} \cdot\left(\beta(\beta-1)^{(1-\beta) / \beta} B\left(\frac{3}{2}+\frac{1}{2 \beta}, 2-\frac{1}{2 \beta}\right)\right)^{-1}\right]^{\beta} \tag{3.7}
\end{equation*}
$$

It follows from Theorem 3.2 that every solution $v \in C^{2}(\Omega ; \mathbb{R})$ of (3.2) is oscillatory in Ω for all sufficiently large $K>0$.

4. Sturmian comparison theorems for (1.6)

We deal with the elliptic equation (1.6) and establish Picone-type inequalities for (1.6). Sturmian comparison theorems for (1.6) are derived by using the Picone-type inequalities.

We assume that the coefficients $A_{i j}(x), B_{i}(x), C(x), D(x)$ and the constants β, γ appearing in (1.6) satisfy the following:
$\left(\tilde{\mathrm{A}}_{1}\right) A_{i j}(x) \in C(\bar{G} ; \mathbb{R}), B_{i}(x) \in C(\bar{G} ; \mathbb{R}), C(x) \in C(\bar{G} ;[0, \infty))$ and $D(x) \in C(\bar{G} ;[0, \infty))$;
$\left(\tilde{\mathrm{A}}_{2}\right)$ the matrix $\left(A_{i j}(x)\right)$ is symmetric and positive definite in $G ;$
$\left(\tilde{\mathrm{A}}_{3}\right) \beta>1$ and $0<\gamma<1$.
he domain $\mathscr{D}_{\tilde{L}}(G)$ of \tilde{L} is defined to be the same as that of L, that is, $\mathscr{D}_{\tilde{L}}(G)=\mathscr{D}_{L}(G)$.
Theorem 4.1. If $v \in \mathscr{D}_{\tilde{L}}(G)$ and $v \neq 0$ in G, then the following inequality holds for any $u \in C^{1}(G ; \mathbb{R}):$

$$
\begin{align*}
\sum_{i, j=1}^{n} A_{i j}(x) & \left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) \\
& +\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{u^{2}}{v} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right) \tag{4.1}\\
\leq & \sum_{i, j=1}^{n} A_{i j}(x)\left(\frac{\partial u}{\partial x_{i}}-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(\frac{\partial u}{\partial x_{j}}-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) \\
& -\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)} u^{2}+\frac{u^{2}}{v} \tilde{L}[v] .
\end{align*}
$$

Proof. Starting with the following inequality

$$
\begin{align*}
& \sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)\right)+\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{u^{2}}{v} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right) \\
& \leq \tag{4.2}\\
& \sum_{i, j=1}^{n} A_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} \\
& \quad \times D(x)^{(\beta-1) /(\beta-\gamma)} u^{2} \\
& \quad+\frac{u^{2}}{v}\left\{\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right)+C(x)|v|^{\beta-1} v+D(x)|v|^{\gamma-1} v\right\},
\end{align*}
$$

which was established by Jaroš et al. [6, Theorem 7], and proceeding as in the proof of Theorem 2.1, we find that the inequality (4.1) holds.

Theorem 4.2. Assume that $u \in \mathscr{D}_{\ell}(G), v \in \mathscr{D}_{\tilde{L}}(G)$ and $v \neq 0$ in G. Then we have the following Picone-type inequality:

$$
\begin{align*}
\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}} & \left(u a_{i j}(x) \frac{\partial u}{\partial x_{j}}-\frac{u^{2}}{v} A_{i j}(x) \frac{\partial v}{\partial x_{j}}\right) \\
\geq & \sum_{i, j=1}^{n}\left(a_{i j}(x)-A_{i j}(x)\right) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-2 u \sum_{i=1}^{n}\left(b_{i}(x)-B_{i}(x)\right) \frac{\partial u}{\partial x_{i}} \\
& +\left(\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)}\right. \\
& \left.\quad-c(x)-B(x)\left(A^{i j}(x)\right) B(x)^{T}\right) u^{2} \\
& +\sum_{i, j=1}^{n} A_{i j}(x)\left(v \frac{\partial}{\partial x_{i}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(v \frac{\partial}{\partial x_{j}}\left(\frac{u}{v}\right)-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right) \\
& +\frac{u}{v}(v \ell[u]-u \tilde{L}[v]) . \tag{4.3}
\end{align*}
$$

Proof. Arguing as in the proof of Theorem 2.2, we observe that the conclusion follows from (4.1).

Theorem 4.3. If there exists a nontrivial function $u \in C^{1}(\bar{G} ; \mathbb{R})$ such that $u=0$ on ∂G and

$$
\begin{align*}
\tilde{M}[u] \equiv \int_{G} & {\left[\sum_{i, j=1}^{n} A_{i j}(x)\left(\frac{\partial u}{\partial x_{i}}-\sum_{k=1}^{n} B_{k}(x) A^{k i}(x) u\right)\left(\frac{\partial u}{\partial x_{j}}-\sum_{k=1}^{n} B_{k}(x) A^{k j}(x) u\right)\right.} \tag{4.4}\\
& \left.-\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)} u^{2}\right] d x \leq 0,
\end{align*}
$$

then every solution $v \in \mathscr{D}_{\tilde{L}}(G)$ of (1.6) vanishes at some point of \bar{G}. Furthermore, if $\partial G \in C^{1}$, then either every solution $v \in \mathscr{D}_{\tilde{L}}(G)$ of (1.6) has a zero in G or else $u=C_{0} v \exp q(x)$ for some nonzero constant C_{0} and some continuous function $q(x)$.
Proof. Suppose that there is a solution v of (1.6) such that $v \neq 0$ on \bar{G}. Then, the inequality (4.1) of Theorem 4.1 holds for the nontrivial function u. Integrating (4.1) over G and proceeding as in the proof of Theorem 2.4 yield the conclusion $\tilde{M}[u]>0$, which contradicts the hypothesis (4.4). This completes the proof of the first statement. Next we consider the case where $\partial G \in C^{1}$. Let v be a solution of (1.6) satisfying $v \neq 0$ in G. Using the same arguments as in the proof of Theorem 2.4 , we see that $\tilde{M}[u]=0$, which implies that $u=C_{0} v \exp q(x)$ for some nonzero constant C_{0} and some continuous function $q(x)$. This completes the proof of the second statement.

Theorem 4.4. If there exists a nontrivial solution $u \in \mathscr{D}_{\ell}(G)$ of $\ell[u]=0$ in G such that $u=0$ on ∂G and

$$
\begin{align*}
\tilde{V}[u] \equiv \int_{G}[& \sum_{i, j=1}^{n}\left(a_{i j}(x)-A_{i j}(x)\right) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-2 u \sum_{i=1}^{n}\left(b_{i}(x)-B_{i}(x)\right) \frac{\partial u}{\partial x_{i}} \\
& +\left(\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)}\right. \tag{4.5}\\
& \left.\left.-c(x)-B(x)\left(A^{i j}(x)\right) B(x)^{T}\right) u^{2}\right] d x \geq 0,
\end{align*}
$$

then every solution $v \in \mathscr{D}_{\tilde{L}}(G)$ of (1.6) vanishes at some point of \bar{G}. Furthermore, if $\partial G \in C^{1}$, then either every solution $v \in \mathscr{D}_{\tilde{L}}(G)$ of (1.6) has a zero in G or else $u=C_{0} v \exp q(x)$ for some nonzero constant C_{0} and some continuous function $q(x)$.

Proof. The proof follows by using the same arguments as in Theorem 2.6.
Remark 4.5. In the case where $b_{i}(x)=0(i=1,2, \ldots, n)$ and $B_{i}(x) \in C^{1}(\bar{G} ; \mathbb{R})(i=1,2, \ldots$, n), it can be shown that $\tilde{V}[u] \geq 0$ for any $u \in C^{1}(\bar{G} ; \mathbb{R})$ if $\left(a_{i j}(x)-A_{i j}(x)\right)$ is positive semidefinite in G and

$$
\begin{align*}
& \frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)} \tag{4.6}\\
& \geq c(x)+\nabla \cdot B(x)+B(x)\left(A^{i j}(x)\right) B(x)^{T} \quad \text { in } G .
\end{align*}
$$

5. Oscillation theorems for (1.6)

Now we establish oscillation criteria for (1.6) in an unbounded domain $\Omega \subset \mathbb{R}^{n}$. It is assumed that
$\left(\tilde{\mathrm{H}}_{1}\right) A_{i j}(x) \in C(\Omega ; \mathbb{R})$ and the matrix $\left(A_{i j}(x)\right)$ is symmetric and positive definite in Ω; and the same is true of $a_{i j}(x)$;
$\left(\tilde{H}_{2}\right) B_{i}(x) \in C^{1}(\Omega ; \mathbb{R}), C(x) \in C(\Omega ;[0, \infty)), D(x) \in C(\Omega ;[0, \infty))$ and $b_{i}(x), c(x)$ $\in C(\Omega ; \mathbb{R})$;
$\left(\tilde{\mathrm{H}}_{3}\right) \beta>1$ and $0<\gamma<1$.
The domain $\mathscr{D}_{\tilde{L}}(\Omega)$ of \tilde{L} is defined to be the same as that of L, that is, $\mathscr{D}_{\tilde{L}}(\Omega)=\mathscr{D}_{L}(\Omega)$. The domain $\mathscr{D}_{\ell}(\Omega)$ of ℓ is defined similarly.

Definition 5.1. A bounded domain G with $\bar{G} \subset \Omega$ is said to be a nodal domain for $\ell[u]=0$ if there is a nontrivial function $u \in \mathscr{D}_{\ell}(G)$ such that $\ell[u]=0$ in G and $u=0$ on ∂G. The equation $\ell[u]=0$ is called nodally oscillatory in Ω if it has a nodal domain contained in Ω_{r} for any $r>0$.

Theorem 5.2. Let $b_{i}(x)=0(i=1,2, \ldots, n)$, and assume that

$$
\begin{align*}
& \left(a_{i j}(x)-A_{i j}(x)\right) \text { is positive semidefinite in } \Omega, \tag{5.1}\\
& \begin{aligned}
c(x) \leq & \frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)} \\
& -\nabla \cdot B(x)-B(x)\left(A^{i j}(x)\right) B(x)^{T} \quad \text { in } \Omega .
\end{aligned} \tag{5.2}
\end{align*}
$$

Every solution $v \in \mathscr{D}_{\tilde{L}}(\Omega)$ of (1.6) is oscillatory in Ω if $\ell[u]=0$ is nodally oscillatory in Ω.
Proof. Since $\ell[u]=0$ is nodally oscillatory in Ω, there exists a nodal domain $G \subset \Omega_{r}$ for any $r>0$, and therefore there is a nontrivial solution u of $\ell[u]=0$ in G such that $u=0$ on ∂G. It follows from the hypotheses (5.1) and (5.2) that $\tilde{V}[u] \geq 0$. Theorem 4.4 implies that every solution $v \in \mathscr{D}_{\tilde{L}}(\Omega)$ of (1.6) must vanish at some point of \bar{G}, that is, v has a zero in Ω_{r} for any $r>0$. This implies that v is oscillatory in Ω.

The following corollary is an immediate consequence of Theorem 5.2.
Corollary 5.3. If the elliptic equation

$$
\begin{equation*}
\Delta u+\left(\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)}-\nabla \cdot B(x)-|B(x)|^{2}\right) u=0 \tag{5.3}
\end{equation*}
$$

is nodally oscillatory in Ω, then every solution $v \in C^{2}(\Omega ; \mathbb{R})$ of

$$
\begin{equation*}
\Delta v+2 \sum_{i=1}^{n} B_{i}(x) \frac{\partial v}{\partial x_{i}}+C(x)|v|^{\beta-1} v+D(x)|v|^{\gamma-1} v=0 \tag{5.4}
\end{equation*}
$$

is oscillatory in Ω.
Various nodal oscillation criteria for

$$
\begin{equation*}
\Delta u+d(x) u=0, \quad x \in \mathbb{R}^{n} \tag{5.5}
\end{equation*}
$$

have been obtained by Kreith and Travis [9]. They have shown that (5.5) is nodally oscillatory in \mathbb{R}^{n} if

$$
\begin{gather*}
\int_{\mathbb{R}^{2}} d(x) d x=\infty \quad(n=2) \\
\int^{\infty} S[d(x)](r) d r=\infty \quad(n \geq 3), \tag{5.6}
\end{gather*}
$$

where $S[d(x)](r)$ denotes the spherical mean of $d(x)$ over the sphere $\left\{x \in \mathbb{R}^{n} ;|x|=r\right\}$.
Corollary 5.4. Let $\Omega=\mathbb{R}^{n}$ and assume that

$$
\begin{gather*}
\int_{\mathbb{R}^{2}} \Psi(x) d x=\infty \quad(n=2) \tag{5.7}\\
\int^{\infty} S[\Psi(x)](r) d r=\infty \quad(n \geq 3)
\end{gather*}
$$

where

$$
\begin{align*}
\Psi(x)= & \frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} C(x)^{(1-\gamma) /(\beta-\gamma)} D(x)^{(\beta-1) /(\beta-\gamma)} \tag{5.8}\\
& -\nabla \cdot B(x)-|B(x)|^{2} .
\end{align*}
$$

Then every solution $v \in C^{2}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ of (5.4) is oscillatory in \mathbb{R}^{n}.
Proof. The conclusion follows by combining the oscillation results due to Kreith and Travis [9] with Corollary 5.3.

Corollary 5.5. Let $\Omega=\mathbb{R}^{n}$ and assume that there are positive constants $k_{0}, k_{i}(i=1,2, \ldots$, n) such that

$$
\begin{equation*}
C(x) \geq k_{0}, \quad D(x) \geq k_{0}, \quad B_{i}(x)=k_{i} \quad(i=1,2, \ldots, n) \tag{5.9}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} k_{0}>k_{1}^{2}+\cdots+k_{n}^{2}, \tag{5.10}
\end{equation*}
$$

then every solution $v \in C^{2}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ of (5.4) is oscillatory in \mathbb{R}^{n}.
Proof. Since

$$
\begin{equation*}
\Psi(x) \geq \frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} k_{0}-\left(k_{1}^{2}+\cdots+k_{n}^{2}\right)>0 \tag{5.11}
\end{equation*}
$$

we find that the hypotheses of Corollary 5.4 are satisfied, and consequently the conclusion follows from Corollary 5.4.

Example 5.6. We consider the elliptic equation

$$
\begin{equation*}
\Delta u+4 \frac{\partial v}{\partial x_{1}}+2 \frac{\partial v}{\partial x_{2}}+4|v|^{2} v+5|v|^{-1 / 2} v=0 \quad \text { in } \mathbb{R}^{2} \tag{5.12}
\end{equation*}
$$

Here $n=2, k_{1}=2, k_{2}=1, k_{0}=4, \beta=3$, and $\gamma=1 / 2$. It is easily seen that

$$
\begin{equation*}
\frac{\beta-\gamma}{1-\gamma}\left(\frac{\beta-1}{1-\gamma}\right)^{(1-\beta) /(\beta-\gamma)} k_{0}=5 \cdot 2^{2 / 5}, \quad k_{1}^{2}+k_{2}^{2}=5 . \tag{5.13}
\end{equation*}
$$

From Corollary 5.5 it follows that every solution $v \in C^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ of (5.12) is oscillatory in \mathbb{R}^{2}.

References

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, no. 2, D. Van Nostrand, New Jersey, 1965.
[2] W. Allegretto, A comparison theorem for nonlinear operators, Annali della Scuola Normale Superiore di Pisa. Seris III 25 (1971), 41-46.
[3] M. A. El-Sayed, An oscillation criterion for a forced second order linear differential equation, Proceedings of the American Mathematical Society 118 (1993), no. 3, 813-817.
[4] J. Jaroš and T. Kusano, Second-order semilinear differential equations with external forcing terms, Sūrikaisekikenkyūsho Kōkyūroku (1997), no. 984, 191-197 (Japanese).
[5] J. Jaroš, T. Kusano, and N. Yoshida, Forced superlinear oscillations via Picone's identity, Acta Mathematica Universitatis Comenianae. New Series 69 (2000), no. 1, 107-113.
[6] , Picone-type inequalities for nonlinear elliptic equations and their applications, Journal of Inequalities and Applications 6 (2001), no. 4, 387-404.
[7] _, Generalized Picone's formula and forced oscillations in quasilinear differential equations of the second order, Universitatis Masarykianae Brunensis. Facultas Scientiarum Naturalium. Archivum Mathematicum 38 (2002), no. 1, 53-59.
[8] K. Kreith, A comparison theorem for general elliptic equations with mixed boundary conditions, Journal of Differential Equations 8 (1970), 537-541.
[9] K. Kreith and C. C. Travis, Oscillation criteria for selfadjoint elliptic equations, Pacific Journal of Mathematics 41 (1972), 743-753.
[10] A. H. Nasr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proceedings of the American Mathematical Society 126 (1998), no. 1, 123-125.
[11] M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine, Annali della Scuola Normale Superiore di Pisa 11 (1909), 1-141 (Italian).
[12] M. H. Protter, A comparison theorem for elliptic equations, Proceedings of the American Mathematical Society 10 (1959), 296-299.
[13] C. A. Swanson, A comparison theorem for elliptic differential equations, Proceedings of the American Mathematical Society 17 (1966), 611-616.

Jaroslav Jaroš: Department of Mathematical Analysis, Faculty of Mathematics and Physics, Comenius University, 84215 Bratislava, Slovak Republic
E-mail address: jaros@fmph.uniba.sk
Kusano Takaŝi: Department of Applied Mathematics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
E-mail address: tkusano@cis.fukuok-au.ac.jp
Norio Yoshida: Department of Mathematics, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
E-mail address: nori@sci.toyama-u.ac.jp

