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Let I ⊆ R be an interval and let k : I2 → C be a reproducing kernel on I . We show that
if k(x, y) is in the appropriate differentiability class, it satisfies a 2-parameter family of
inequalities of which the diagonal dominance inequality for reproducing kernels is the
0th order case. We provide an application to integral operators: if k is a positive definite
kernel on I (possibly unbounded) with differentiability class �n(I2) and satisfies an extra
integrability condition, we show that eigenfunctions are Cn(I) and provide a bound for
its Sobolev Hn norm. This bound is shown to be optimal.
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under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Given a set E, a positive definite matrix in the sense of Moore (see, e.g., Moore [5, 6] and
Aronszajn [1]) is a function k : E×E→ C such that

n∑

i, j=1

k
(
xi,xj

)
ξiξ j ≥ 0 (1.1)

for all n∈N, (x1, . . . ,xn)∈ En and (ξ1, . . . ,ξn)∈ Cn; that is, all finite square matrices M of
elements mij = k(xi,xj), i, j = 1, . . . ,n, are positive semidefinite.

From (1.1) it follows that a positive definite matrix in the sense of Moore has the
following basic properties: (1) it is conjugate symmetric, that is, k(x, y) = k(y,x) for all
x, y ∈ E, (2) it satisfies k(x,x) ≥ 0 for all x ∈ E, and (3) |k(x, y)|2 ≤ k(x,x)k(y, y) for all
x, y ∈ E. We sometimes refer to this last basic inequality as the “diagonal dominance”
inequality.

The theorem of Moore-Aronszajn [1, 5, 6] provides an equivalent characterization of
positive definite matrices as reproducing kernels: k : E×E→ C is a positive definite matrix
in the sense of Moore if and only if there exists a (uniquely determined) Hilbert space Hk
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2 Differential inequalities and integral operators

composed of functions on E such that

∀y ∈ E, k(x, y)∈Hk as a function of x,

∀x ∈ E and any f ∈Hk, f (x)= 〈 f (y),k(y,x)
〉
Hk
.

(1.2)

Properties (1.2) are jointly called the reproducing property of k in Hk. The function k itself
is called a reproducing kernel on E and the associated (and unique) Hilbert space Hk a
reproducing kernel Hilbert space; see, for example, Saitoh [8].

Throughout this paper we deal exclusively with the case where E = I ⊆ R is a real
interval, nontrivial but otherwise arbitrary; in particular I may be unbounded. Only in
Section 3 we will need the further assumption that I is closed; this extra condition will at
that point be explicitly required. If x ∈ I is a boundary point of I , a limit at x will mean
the one-sided limit as y→ x with y ∈ I .

Definition 1.1. Let I ⊂R be an interval. A function k : I2 → C is said to be of class �n(I2)
if, for every m1=0,1, . . . ,n and m2= 0,1, . . . ,n, the partial derivatives ∂m1+m2 /∂ym2∂xm1k(x,
y) are continuous in I2.

Remark 1.2. Clearly from the definition C2n(I2) ⊂ �n(I2) ⊂ Cn(I2). It is also clear that
a function of class �n(I2) will not in general be in Cn+1(I2). Note however that in class
�n(I2) equality of all intervening mixed partial derivatives holds.

In [4, Theorem 2.7], the following result is shown to hold for differentiable repro-
ducing kernels as a nontrivial consequence of positive semidefiniteness of the matrices
k(xi,xj) in (1.1).

Theorem 1.3. Let I ⊂R be an interval and let k(x, y) be a reproducing kernel on I of class
�n(I2). Then for all x, y ∈ I and all 0≤m≤ n,

∣∣∣∣
∂mk

∂xm
(x, y)

∣∣∣∣
2

≤ ∂2mk

∂ym∂xm
(x,x)k(y, y). (1.3)

Remark 1.4. An immediate consequence of conjugate symmetry of k is that inequality
(1.3) is equivalent to

∣∣∣∣
∂mk

∂ym
(x, y)

∣∣∣∣
2

≤ ∂2mk

∂ym∂xm
(y, y) k(x,x). (1.4)

Remark 1.5. Observe that the 1-parameter family of inequalities (1.3) coupled with the
condition k(y, y)≥ 0 for all y ∈ I implies that

∂2mk

∂ym∂xm
(x,x)≥ 0 (1.5)

for all x ∈ I and all 0≤m≤ n.

2. Differentiable reproducing kernel inequalities

Let I ⊆R be an interval and k : I × I → C. Denote by IR the set of all x ∈ I such that x+h
is in I for |h| < R. For sufficiently small R, IR is a nonempty open interval. For |h| < R we
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define δh : I2
R→ C by

δh(x, y)= k(x+h, y +h)− k(x+h, y)− k(x, y +h) + k(x, y). (2.1)

We then have the following lemma.

Lemma 2.1. If k(x, y) is a reproducing kernel on I2 and |h| < R, then δh(x, y) is a reproduc-
ing kernel in I2

R.

Proof. Let l ∈ N, (x1, . . . ,xl) ∈ Ilh and (ξ1, . . . ,ξl) ∈ Cl. We are required to show that
∑l

i, j=1 δh(xi,xj) ξiξ j ≥ 0. Define xl+i = xi + h and ξl+i = −ξi for i = 1, . . . , l. Since k is a re-

producing kernel on I2, we have
∑2l

i, j=1 k(xi,xj) ξiξ j ≥ 0. Rewriting the left-hand side, we
obtain

2l∑

i, j=1

k
(
xi,xj

)
ξiξ j =

l∑

i, j=1

k
(
xi,xj

)
ξiξ j

+
l∑

i=1

2l∑

j=l+1

k
(
xi,xj

)
ξiξ j +

2l∑

i=l+1

l∑

j=1

k
(
xi,xj

)
ξiξ j +

2l∑

i, j=l+1

k
(
xi,xj

)
ξiξ j

=
l∑

i, j=1

k
(
xi,xj

)
ξiξ j+

l∑

i, j=1

k
(
xi,xj +h

)
ξi
(− ξj

)
+

l∑

i, j=1

k
(
xi +h,xj

)(− ξi
)
ξj

+
l∑

i, j=1

k
(
xi +h,xj +h

)(− ξi
)(− ξj

)

=
l∑

i, j=1

[
k
(
xi +h,xj +h

)− k
(
xi +h,xj

)− k
(
xi,xj +h

)
+ k
(
xi,xj

)]
ξiξ j

=
l∑

i, j=1

δh
(
xi,xj

)
ξiξ j ≥ 0.

(2.2)

Thus δh(x, y) is a reproducing kernel on I2
R as stated. �

We will frequently denote, for ease of notation, km(x, y)= (∂2mk/∂ym∂xm)(x, y).

Proposition 2.2. Let I ⊂ R be an interval and let k(x, y) be a reproducing kernel of class
�n(I2). Then, for all 0≤m≤ n, km(x, y)= (∂2m/∂ym∂xm)k(x, y) is a reproducing kernel of
class �n−m(I2).

Proof. Since in the case n = 0 the statement is empty, we begin by concentrating on the
case m= n= 1. Suppose k is of class �1(I2). Then, by [4, Lemma 2.5], if |h| < R, we have

k1(x, y)= lim
h→0

δh(x, y)
h2

, (2.3)

for every (x, y)∈ I2
R. By Lemma 2.1, δh(x, y) is a reproducing kernel on I2

R. Hence the last



4 Differential inequalities and integral operators

inequality in (2.2) implies that

l∑

i, j=1

k1
(
xi,xj

)
ξiξ j ≥ 0 (2.4)

for any natural l, (x1, . . . ,xl)∈ IlR and (ξ1, . . . ,ξl)∈ Cl. Therefore, k1(x, y) is a reproducing
kernel on I2

R. By continuity of k1 inequality (2.4) holds for boundary points in I2 (if they
exist) with the interpretation of partial derivatives as appropriate one-sided limits. Thus
(2.4) holds for all (x1, . . . ,xl)∈ Il and every choice of l ∈N and (ξ1, . . . ,ξl)∈ Cl. Therefore
k1 is a reproducing kernel on I2.

To conclude the proof, we now fix n∈N, suppose that k is a reproducing kernel of class
�n(I2) and that km is a reproducing kernel for some m< n. It is immediate to see that km
is of class �n−m(I2). Repeating the argument used in the proof of the case m= n= 1, we
conclude that km+1 is a reproducing kernel. Therefore km is a reproducing kernel for all
0≤m≤ n. This finishes the proof. �

Theorem 2.3. Let I ⊆R be an interval and k(x, y) be a reproducing kernel of class �n(I2).
Then, for every m1, m2 = 0,1, . . . ,n and all x, y ∈ I ,

∣∣∣∣
∂m1+m2

∂ym2∂xm1
k(x, y)

∣∣∣∣
2

≤ ∂2m1

∂ym1∂xm1
k(x,x)

∂2m2

∂ym2∂xm2
k(y, y). (2.5)

Proof. Since k is a reproducing kernel of class �n(I2), by Proposition 2.2 km is a re-
producing kernel of class �n−m(I2) for every 0 ≤ m ≤ n. Let 0 ≤ m1 ≤ m2 ≤ n. Then
km1 (x, y) = (∂2m1 /∂ym1∂xm1 )k(x, y) is a reproducing kernel of class �n−m1 (I2). We may
write

∂m1+m2

∂ym2∂xm1
k(x, y)= ∂m2−m1

∂ym2−m1

∂2m1

∂ym1∂xm1
k(x, y)

= ∂m2−m1

∂ym2−m1
km1 (x, y).

(2.6)

Since m2−m1 ≤ n−m1, application of Theorem 1.3 to km1 yields

∣∣∣∣
∂m2−m1

∂ym2−m1
km1 (x, y)

∣∣∣∣
2

≤ km1 (x,x)
∂2(m2−m1)

∂y(m2−m1)∂x(m2−m1)
km1 (y, y). (2.7)

Hence
∣∣∣∣

∂m2+m1

∂ym2∂xm1
k(x, y)

∣∣∣∣
2

≤ ∂2m1

∂ym1∂xm1
k(x,x)

∂2m2

∂ym2∂xm2
k(y, y) (2.8)

as stated. The proof of the case 0 ≤m2 ≤m1 ≤ n can be obtained in a similar way using
the corresponding inequalities derived by conjugate symmetry (see Remark 1.4). �

Remark 2.4. Setting n = 0 in Theorem 2.3 yields the statement that if the reproducing
kernel k(x, y) is continuous then the diagonal dominance inequality |k(x, y)|2 ≤ k(x,
x)k(y, y) holds. Even though continuity is not necessary, this means that the diagonal
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dominance inequality for reproducing kernels may be thought of as the particular case
n= 0 in Theorem 2.3.

In this precise sense, Theorem 2.3 yields a 2-parameter family of inequalities which is
the generalization of the diagonal dominance inequality for (sufficiently) differentiable
reproducing kernels.

3. Sobolev bounds for eigenfunctions of positive integral operators

Throughout this section I ⊆Rwill denote a closed, but not necessarily bounded, interval.
A linear integral operator K : L2(I)→ L2(I)

K(φ)=
∫

I
k(x, y)φ(y)dy (3.1)

with kernel k(x, y)∈ L2(I2) is said to be positive if

∫∫

I
k(x, y)φ(x)φ(y)dxdy ≥ 0 (3.2)

for all φ ∈ L2(I). The corresponding kernel k(x, y) is an L2(I)-positive definite kernel. A
positive definite kernel is conjugate symmetric for almost all x, y ∈ I , so the associated
operator K is self-adjoint. All eigenvalues of K are real and nonnegative as a consequence
of (3.2).

Definition 3.1. A positive definite kernel k(x, y) in an interval I ⊆R is said to be in class
�0(I) if

(1) it is continuous in I2,
(2) k(x,x)∈ L1(I),
(3) k(x,x) is uniformly continuous in I .

Remark 3.2. If I is compact, the first condition trivially implies the other two, so �0(I) co-
incides with the continuous functions C(I2). Definition 3.1 is therefore especially mean-
ingful in the case where I is unbounded. It has recently been shown [2] that, if k is a posi-
tive definite kernel in class �0(I), then the corresponding operator is compact, trace class
and satisfies (the analog of) Mercer’s theorem [7], irrespective of whether I is bounded or
unbounded. For this reason a positive definite kernel in class �0(I) is sometimes called a
Mercer-like kernel [4].

It may easily be shown [2] that, if I is unbounded, the simultaneous conditions of
k(x,x) ∈ L1(I) and uniform continuity of k(x,x) in I in Definition 3.1 may be equiva-
lently replaced by k(x,x) ∈ L1(I) and k(x,x)→ 0 as |x| → +∞. This equivalent charac-
terization of �0(I) may sometimes be useful in applications (e.g., [3] or the proof of
Theorem 3.5 below).

The following summarizes the properties of positive definite kernels relevant for this
paper. If k(x, y)∈ L2(I) is a positive definite kernel, then K is a Hilbert-Schmidt operator;
in particular it is compact, so its eigenvalues have finite multiplicity and accumulate only
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at 0. The spectral expansion

k(x, y)=
∑

i≥1

λiφi(x)φi(y) (3.3)

holds, where the {φi}i≥1 are an L2(I)-orthonormal set of eigenfunctions spanning the
range of K , the {λi}i≥1 are the nonzero eigenvalues of K and convergence of the series
(3.3) is in L2(I). If in addition k is in class �0(I), then for all x ∈ I k(x,x) ≥ 0 and for
all x, y ∈ I |k(x, y)|2 ≤ k(x,x)k(y, y), eigenfunctions φi associated to nonzero eigenvalues
are uniformly continuous on I , convergence of the series (3.3) is absolute and uniform on
I , and the operator K is trace class and satisfies the trace formula

∫
I k(x,x)dx =∑i≥1 λi.

In the case where I is compact, the last statements are the classical theorem of Mercer;
for proofs see, for example, [7] for compact I and [2] for noncompact I . Finally, it is not
difficult to show that continuous positive definite kernels are reproducing kernels on I
[4], so that the results of Section 2 apply.

Definition 3.3. Let n≥ 1 be an integer and I ⊆ R. A positive definite kernel k : I2 → C is
said to belong to class �n(I) if k ∈�n(I) and

k(x, y),
∂2k

∂y∂x
(x, y), . . . ,

∂2nk

∂yn∂xn
(x, y) (3.4)

are in class �0(I).

Remark 3.4. Trivially �n(I) ⊂�n−1(I) ⊂ ··· ⊂�1(I) ⊂�0(I). More significantly, ob-
serve that a positive definite kernel in class �n(I) possesses a delicate but precise mix of
local (differentiability class �n(I)) and global (integrability and uniform continuity of
each km, m= 0, . . . ,n, along the diagonal y = x) properties.

For k in class �n(I), we set for each m= 0, . . . ,n

�m ≡
∫

I
km(x,x)dx. (3.5)

From Theorem 2.3 it follows that 0≤ |km(x, y)|2 ≤ km(x,x)km(y, y) for all x, y ∈ I . Thus
for each m= 0, . . . ,n, �m > 0 unless km(x, y) is identically zero. In the result below Hn(I)
denotes, as usual, the Sobolev Hilbert space Wn,2(I) normed by ‖φ‖2

Hn(I) =∑n
m=0‖φ(m)‖2

L2(I). For 0≤ l ≤ n, we define

Cn,l =�1/2
l

( n∑

m=l
�m

)1/2

. (3.6)

Theorem 3.5. Suppose k(x, y) is a positive definite kernel in class �n(I). Let 0≤ l ≤ n and

let φ[l]
i be a normalized eigenfunction of kl(x, y) associated with a nonzero eigenvalue λ[l]

i .

Then φ[l]
i is in Cn−l(I)∩Hn−l(I) and

∥∥∥φ[l]
i

∥∥∥
Hn−l(I)

≤ Cn,l

λ[l]
i

. (3.7)



J. Buescu and A. C. Paixão 7

Proof. Let k be in �n(I). Then kl is in �n−l(I). For fixed l = 0, . . . ,n, suppose φ[l]
i is a

normalized eigenfunction of kl associated to λ[l]
i = 0, that is

φ[l]
i (x)= 1

λ[l]
i

∫

I
kl(x, y)φ[l]

i (y)dy (3.8)

with ‖φ[l]
i ‖L2(I) = 1. In the case where I is compact, differentiation of (3.8) n− l times

under the integral sign holds automatically, and so eigenfunctions are Cn−l(I). For un-
bounded I this is no longer automatic. We will show, however, that in this case it is also
true, but as specific consequence of k being a positive definite kernel in class �n(I). Thus
for the rest of the proof of the first statement I will, without loss of generality, be taken to
be R.

By hypothesis, for 0 ≤ l ≤m ≤ n the integrand function (∂m−lkl(x, y))/(∂xm−l)φ[l]
i (y)

corresponding to the (m− l)th differentiation under the integral sign exists and is con-
tinuous. We have

∣∣∣∣
∂m−l

∂xm−l
kl(x, y)φ[l]

i (y)
∣∣∣∣=

∣∣∣∣
∂m−l

∂xm−l
kl(x, y)

∣∣∣∣
∣∣∣φ[l]

i (y)
∣∣∣

≤
(

∂2(m−l)

∂ym−l∂x(m−l) kl(x,x)
)1/2

kl(y, y)1/2
∣∣∣φ[l]

i (y)
∣∣∣

≤ km(x,x)1/2kl(y, y)1/2
∣∣∣φ[l]

i (y)
∣∣∣,

(3.9)

where we have used Theorem 2.3 with m1 =m− l, m2 = 0, and k replaced with kl. The
fact that kl(y, y)1/2|φ[l]

i (y)| is in L1(I) follows from the Cauchy-Schwartz inequality since

∫

I
kl(y, y)1/2

∣∣∣φ[l]
i

∣∣∣dy ≤
(∫

I
kl(y, y)dy

)1/2∥∥∥φ[l]
i

∥∥∥
L2(I)

=
(∫

I
kl(y, y)dy

)1/2

=�1/2
l < +∞.

(3.10)

Thus differentiation under the integral sign holds, the integral (3.8) is n− l times dif-

ferentiable, and so are the eigenfunctions φ[l]
i . An analogous argument shows that the

integral corresponding to the (n− l)th derivative under the integral sign is continuous in
I . Thus eigenfunctions corresponding to nonzero eigenvalues are Cn−l(I).

The norm estimates work identically for bounded or unbounded I , so from now on we
need not make any assumption about it. By the Cauchy-Schwartz inequality and Theorem
2.3 we have

∥∥∥φ[l](m−l)
i

∥∥∥
2

L2(I)
=
∫

I

∣∣∣φ[l](m−l)
i (x)

∣∣∣
2
dx

=
∫

I

∣∣∣∣∣
1

λ[l]
i

∫

I

(
∂m−l

∂xm−l
kl(x, y)

)
φ[l]
i (y)dy

∣∣∣∣∣

2

dx

≤
(

1

λ[l]
i

)2∫ +∞

−∞

[∫

I

∣∣∣∣
∂m−l

∂xm−l
kl(x, y)

∣∣∣∣
2

dy
∫

I

∣∣∣φ[l]
i (y)

∣∣∣
2
dy

]
dx
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≤
(

1

λ[l]
i

)2∫

I

[∫

I

∂2(m−l)kl(x,x)
∂ym−l∂xm−l

kl(y, y)dy

]
dx ·

∥∥∥φ[l]
i

∥∥∥
2

L2(I)

=
(

1

λ[l]
i

)2∫

I
km(x,x)dx

∫

I
kl(y, y)dy =

(
1

λ[l]
i

)2

�m�l

(3.11)

for all 0≤ l ≤m≤ n with l+m≤ n. Thus

∥∥∥φ[l]
i

∥∥∥
2

Hn−l(I)
=

n∑

m=l

∥∥∥φ[l](m−l)
i

∥∥∥
2

L2(I)
≤
(

1

λ[l]
i

)2 n∑

m=l
�m�l (3.12)

or, recalling definition (3.6), ‖φ[l]
i ‖Hn−l(I) ≤ Cn,l/λ

[l]
i as asserted. �

Since the operators with kernels kl are compact and positive, for each l the eigenvalue

sequence {λ[l]
i }i∈N may be assumed to be decreasing to 0. We denote by E[l]

N = ⊕N
i=1Eλ[l]

i

the direct sum of the eigenspaces associated with the first N eigenvalues of kl.

Corollary 3.6. Suppose k(x, y) is a positive definite kernel in class �n(I) and let 0≤ l ≤ n.

Suppose λ[l]
N is a nonzero eigenvalue of kl. Then for any φ ∈ E[l]

N ,

‖φ‖Hn−l(I) ≤ Cn,l

⎡
⎣

N∑

i=1

(
1

λ[l]
i

)2
⎤
⎦

1/2

‖φ‖L2(I). (3.13)

Proof. Since {φ[l]
i }Ni=1 constitute an L2(I)-orthonormal basis for E[l]

N , we have φ=∑N
i=1 ciφ

[l]
i

with ‖φ‖2
L2(I) =

∑N
i=1 |ci|2. For l ≤m≤ n,

∥∥φ(m)
∥∥2
L2(I) =

∥∥∥∥∥

N∑

i=1

ciφ
[l](m)
i

∥∥∥∥∥

2

L2(I)

≤
( N∑

i=1

|ci|
∥∥∥φ[l](m)

i

∥∥∥
L2(I)

)2

≤
( N∑

i=1

|ci|2
)( N∑

i=1

∥∥∥φ[l](m)
i

∥∥∥
2

L2(I)

)

≤ ‖φ‖2
L2(I)

N∑

i=1

(
1

λ[l]
i

)2

�m�l .

(3.14)

Therefore

‖φ‖Hn−l(I) =
( n∑

m=l

∥∥φ(m)
∥∥2
L2(I)

)1/2

≤�1/2
l

( n∑

m=l
�m

)1/2
⎡
⎣

N∑

i=1

(
1

λ[l]
i

)2
⎤
⎦

1/2

‖φ‖L2(I)

= Cn,l

⎡
⎣

N∑

i=1

(
1

λ[l]
i

)2
⎤
⎦

1/2

‖φ‖L2(I)

(3.15)

as stated. �

Remark 3.7. The norm bound obtained in (3.7) cannot, in general, be improved. To show
this let I ⊂R and choose φ ∈ Cn−l(I)∩Hn−l(I) with ‖φ‖L2(I) = 1 and φ(x)→ 0 as |x| →∞
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if I is unbounded. By Remark 3.2 these choices imply that kl(x, y)= φ(x)φ(y) is a rank-
1 positive definite kernel in class �n−l(I) irrespective of whether I is bounded or not.
In particular the only nonzero eigenvalue is λ[l] = 1 and the corresponding normalized
eigenvector is φ. Recalling the definition (3.5) of �m, we have in this case

�m =
∫

I
km(x,x)dx =

∫

I

∣∣∣φ(m−l)(x)
∣∣∣

2
dx =

∥∥∥φ(m−l)
∥∥∥

2

L2(I)
(3.16)

for 0 ≤ l ≤m ≤ n. By our choice of kl we have �l = ‖φ‖2
L2(I) = 1 and, since λ[l] = 1, we

may write

‖φ‖2
Hn−l =

n∑

m=l

∥∥∥φ(m−l)
∥∥∥

2

L2(I)
=

n∑

m=l
�m = �l

λ[l]

n∑

m=l
�m, (3.17)

and so in this case equality holds in (3.11). This shows that the bound in Theorem 3.5 is
sharp and cannot be improved.
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