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If p(z)=∑n
v=0 avz

v is a polynomial of degree n, having all its zeros in |z| ≤ 1, then it was
proved by Turán that |p′(z)| ≥ (n/2)max|z|=1 |p(z)|. This result of Turán was generalized
by Govil, who proved that if p(z) has all its zeros in |z| ≤ K ,K ≥ 1, then max|z|=1 |p′(z)| ≥
(n/(1 +Kn))max|z|=1 |p(z)|, K ≥ 1. In this paper, we sharpen this, and some other related
results.
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1. Introduction and statement of results

If p(z)=∑n
v=0 avz

v is a polynomial of degree n, then it is well known that

max
|z|=1

∣
∣p′(z)

∣
∣≤ nmax

|z|=1

∣
∣p(z)

∣
∣. (1.1)

The above inequality, which is an immediate consequence of Bernstein’s inequality on
the derivative of a trigonometric polynomial, is best possible with equality holding for
the polynomial p(z)= λzn, λ being a complex number.

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then the
above inequality can be sharpened. In fact Erdös conjectured and later Lax [7] proved
that if p(z) �= 0 in |z| < 1, then

max
|z|=1

∣
∣p′(z)

∣
∣≤ n

2
max
|z|=1

∣
∣p(z)

∣
∣. (1.2)

If the polynomial p(z) of degree n has all its zeros in |z| ≤ 1, then it was proved by Turán
[9], that

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

2
max
|z|=1

∣
∣p(z)

∣
∣. (1.3)
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The inequalities (1.2) and (1.3) are also best possible, and become equality for poly-
nomials which have all its zeros on |z| = 1.

The above inequality (1.3) of Turán [9] was generalized by Govil [3], who proved that
if p(z) is a polynomial of degree n having all its zeros in |z| ≤ K , then

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

1 +K
max
|z|=1

∣
∣p(z)

∣
∣, if K ≤ 1, (1.4)

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

1 +Kn
max
|z|=1

∣
∣p(z)

∣
∣, if K ≥ 1. (1.5)

Both the above inequalities are best possible, with equality in (1.4) holding for p(z)=
(z+K)n, while in (1.5) the equality holds for the polynomial p(z)= zn +Kn. The inequal-
ity (1.4) was also proved by Malik [8].

The inequality (1.5) was later sharpened by Govil [4, page 67], who proved the
following theorem.

Theorem 1.1. If p(z) =∑n
v=0 avz

v, an �= 0, is a polynomial of degree n having all its zeros
in |z| ≤ K , K ≥ 1, then

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

1 +Kn
max
|z|=1

∣
∣p(z)

∣
∣

+
n
∣
∣an−1

∣
∣

K
(
1 +Kn

)

(
Kn− 1

n
− Kn−2− 1

n− 2

)

+
∣
∣a1
∣
∣
(

1− 1
K2

) (1.6)

if n > 2, and

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

1 +Kn
max
|z|=1

∣
∣p(z)

∣
∣+

Kn− 1
Kn + 1

∣
∣a1
∣
∣ (1.7)

if n= 2.
The above inequalities are best possible and are attained for the polynomial p(z) = zn +

Kn.

In this paper, we prove the following refinement of Theorem 1.1, which in turn gives
the refinements of inequalities (1.3), and (1.5).

Theorem 1.2. If p(z) =∑n
v=0 avz

v, an �= 0, is a polynomial of degree n having all its zeros
in |z| ≤ K , K ≥ 1, then

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

1 +Kn

{
max
|z|=1

∣
∣p(z)

∣
∣+ min

|z|=K
∣
∣p(z)

∣
∣
}

+
∣
∣a1
∣
∣
(

1− 1
K2

)

+
n
∣
∣an−1

∣
∣

K
(
1 +Kn

)

(
Kn− 1

n
− Kn−2− 1

n− 2

) (1.8)
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if n > 2, and

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

1 +Kn

{

max
|z|=1

∣
∣p(z)

∣
∣+ min

|z|=K
∣
∣p(z)

∣
∣
}

+
Kn− 1
Kn + 1

∣
∣a1
∣
∣ (1.9)

if n= 2.
Both the above inequalities are best possible and are attained for the polynomial p(z) =

zn +Kn.

If we take K = 1 in the above theorem, we get the following result, which was proved
by Aziz and Dawood [1].

Corollary 1.3. If p(z)=∑n
v=0 avz

v, an �= 0, is a polynomial of degree n having all its zeros
in |z| ≤ 1, then

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

2

{

max
|z|=1

∣
∣p(z)

∣
∣+ min

|z|=1

∣
∣p(z)

∣
∣
}

. (1.10)

2. Lemmas

We will need the following lemmas.

Lemma 2.1. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ 1, then

max
|z|=1

∣
∣p′(z)

∣
∣≥ n

2

{

max
|z|=1

∣
∣p(z)

∣
∣+ min

|z|=1

∣
∣p(z)

∣
∣
}

. (2.1)

The result is best possible and the equality holds for the polynomial p(z)= (z+ 1)n.

The above result is due to Aziz and Dawood [1] (also see Govil [5, Theorem 2, inequal-
ity (1.7)]).

Lemma 2.2. If p(z)=∑n
v=0 avz

v is a polynomial of degree n, having no zeros on |z| < 1, then
for R≥ 1,

max
|z|=R≥1

∣
∣p(z)

∣
∣≤

(
Rn + 1

2

)

max
|z|=1

|p(z)|−
(
Rn− 1

2

)

min
|z|=1

∣
∣p(z)

∣
∣

−∣∣a1
∣
∣
(
Rn− 1
n

− Rn−2− 1
n− 2

)

, if n > 2,

(2.2)

max
|z|=R≥1

|p(z)| ≤
(
Rn + 1

2

)

max
|z|=1

∣
∣p(z)

∣
∣−

(
Rn− 1

2

)

min
|z|=1

∣
∣p(z)

∣
∣

−∣∣a1
∣
∣ (R− 1)n

2
, if n= 2.

(2.3)

The above result is a special case, with s= 1 and K = 1, of a result due to Govil [6, page
625].
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Lemma 2.3. If p(z)=∑n
v=0 avz

v is a polynomial of degree n, n≥ 1, then for all R≥ 1,

max
|z|=R

∣
∣p(z)

∣
∣≤ Rn max

|z|=1

∣
∣p(z)

∣
∣− (Rn−Rn−2)∣∣p(0)

∣
∣, if n≥ 2, (2.4)

max
|z|=R

∣
∣p(z)

∣
∣≤ Rmax

|z|=1

∣
∣p(z)

∣
∣− (R− 1)

∣
∣p(0)

∣
∣, if n= 1. (2.5)

The inequality (2.4) is due to Frappier et al. [2, Theorem 2], while (2.5) follows triv-
ially.

3. Proof of the theorem

We first consider the case when p(z) is degree n > 2. Since p(z) has all its zeros in |z| ≤ K ,
K ≥ 1, the polynomial P(z)= p(Kz) is of degree n, and has all its zeros in |z| ≤ 1. Hence
if we apply Lemma 2.1 to the polynomial P(z), we will get

max
|z|=1

∣
∣P′(z)

∣
∣≥ n

2

{

max
|z|=1

|P(z)|+ min
|z|=1

∣
∣P(z)

∣
∣
}

, (3.1)

which is equivalent to

K max
|z|=K

∣
∣p′(z)

∣
∣≥ n

2

{

max
|z|=K

∣
∣p(z)

∣
∣+ min

|z|=K
∣
∣p(z)

∣
∣
}

. (3.2)

The polynomial p(z) is of degree n > 2, and so the polynomial p′(z) is of degree n−
1, where n− 1 ≥ 2, and hence applying Lemma 2.3 to the polynomial p′(z), we get for
K ≥ 1,

max
|z|=K

∣
∣p′(z)

∣
∣≤ Kn−1 max

|z|=1

∣
∣p′(z)

∣
∣− (Kn−1−Kn−3)∣∣a1

∣
∣. (3.3)

Combining (3.2) and (3.3), we get for K ≥ 1,

Kn−1 max
|z|=1

∣
∣p′(z)

∣
∣− (Kn−1−Kn−3)∣∣a1

∣
∣≥ n

2K

{

max
|z|=K

∣
∣p(z)

∣
∣+ min

|z|=K
∣
∣p(z)

∣
∣
}

, (3.4)

which is equivalent to

Kn max
|z|=1

∣
∣p′(z)

∣
∣− (Kn−Kn−2)∣∣a1

∣
∣≥ n

2

{

max
|z|=K

∣
∣p(z)

∣
∣+ min

|z|=K
∣
∣p(z)

∣
∣
}

. (3.5)

Since the polynomial p(z) has all its zeros in |z| ≤ K , K ≥ 1, the polynomial q(z) =
znp(1/z) has no zeros in |z| < 1/K , hence the polynomial q(z/K) is of degree n > 2, and
has no zeros in |z| < 1. Therefore, on applying Lemma 2.2 to the polynomial q(z/K), we
get

max
|z|=K≥1

∣
∣q(z/K)

∣
∣≤ Kn + 1

2
max
|z|=1

∣
∣q(z/K)

∣
∣− Kn− 1

2
min
|z|=1

∣
∣q(z/K)

∣
∣

−
∣
∣an−1

∣
∣

K

(
Kn− 1

n
− Kn−2− 1

n− 2

)

,

(3.6)
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which is equivalent to

max
|z|=1

∣
∣p(z)

∣
∣≤ Kn + 1

2Kn
max
|z|=K

∣
∣p(z)

∣
∣− Kn− 1

2Kn
min
|z|=K

∣
∣p(z)

∣
∣

−
∣
∣an−1

∣
∣

K

(
Kn− 1

n
− Kn−2− 1

n− 2

)

.

(3.7)

The above inequality easily gives

max
|z|=K

∣
∣p(z)

∣
∣≥ 2Kn

Kn + 1
max
|z|=1

∣
∣p(z)

∣
∣+

Kn− 1
Kn + 1

min
|z|=K

∣
∣p(z)

∣
∣

+
2Kn−1

1 +Kn

∣
∣an−1

∣
∣
(
Kn− 1

n
− Kn−2− 1

n− 2

)

,

(3.8)

and this when combined with (3.5) gives

2Kn

n
max
|z|=1

∣
∣p′(z)

∣
∣− 2

(
Kn−Kn−2

)

n

∣
∣a1
∣
∣−min

|z|=K
∣
∣p(z)

∣
∣

≥ 2Kn

Kn + 1
max
|z|=1

∣
∣p(z)

∣
∣+

Kn− 1
Kn + 1

min
|z|=K

∣
∣p(z)

∣
∣+

2Kn−1

1 +Kn

∣
∣an−1

∣
∣
(
Kn− 1

n
− Kn−2− 1

n− 2

)

.

(3.9)

The above inequality (3.9) is clearly equivalent to

max
|z|=1

∣
∣p′(z)

∣
∣≥ ∣∣a1

∣
∣
(

1− 1
K2

)

+
n

Kn + 1

(

max
|z|=1

∣
∣p(z)

∣
∣+ min

|z|=K
∣
∣p(z)

∣
∣
)

+
n
∣
∣an−1

∣
∣

K
(
1 +Kn

)

(
Kn− 1

n
− Kn−2− 1

n− 2

)

,

(3.10)

which is inequality (1.8), and thus our theorem, in the case n > 2, is proved.
The proof of the theorem in the case n = 2 follows on the same lines as above except

that instead of inequalities (2.2) and (2.4), we use inequalities (2.3) and (2.5), respectively.
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