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The estimation of the positive definite solutions to perturbed discrete Lyapunov equa-
tions is discussed. Several upper bounds of the positive definite solutions are obtained
when the perturbation parameters are norm-bounded uncertain. In the derivation of
the bounds, one only needs to deal with eigenvalues of matrices and linear matrix in-
equalities, and thus avoids solving high-order algebraic equations. A numerical example
is presented.
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1. Introduction

Consider the following perturbed discrete Lyapunov equation for the variable matrix P ∈
Rn×n:

P = (A+ΔA)TP(A+ΔA) +Q, (1.1)

where the matrix A∈Rn×n is given, ΔA∈Rn×n is an uncertain matrix which represents
the structure disturbance of A, and Q ∈Rn×n is a symmetric positive definite or semidef-
inite matrix.

Assume that ΔA satisfies the norm-bounded uncertainty

ΔA=DFE, (1.2)

where D and E are given constant matrices of appropriate dimensions, and F is an un-
known real time-varying matrix with Lebesgue measurable entries satisfying FTF ≤ I
with I being an identity matrix of appropriate dimension. Furthermore, we assume that
A is asymptotically stable.

The discrete Lyapunov equation (1.1) plays an indispensable role in many areas of sci-
ence and technology, such as system design, signal processing and optimal control, and
so forth. Hence, the investigation on its solutions is very important. Recently, there have
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been a lot of results obtained on this aspect and we refer to the survey paper [3] and ref-
erences therein. The estimation on the solutions of discrete Lyapunov equation is getting
more and more accurate. But in practice, perturbed discrete Lyapunov equation is much
more involved, since model error or unmodel dynamic state cannot be avoided. So de-
termining the bounds of positive definite or positive semidefinite solutions of perturbed
discrete Lyapunov equation possesses more practical values. This problem has been stud-
ied in [7], where the solution of a fourth-order algebraic matrix equation is required
during the derivation of the bounds, and the numerical aspect has not been discussed.
In the present paper, we derive the bounds of solutions to (1.1) through a simple way
by straightforwardly applying the properties of matrix eigenvalues and some matrix in-
equalities. Moreover, the uncertainty considered in this paper is much more general than
that in [7].

2. Main results

We first fix some notations which will be used throughout the paper: Rn×n is the set of
n×n real matrices; tr(X), λi(X), and det(X) denote, respectively, the trace, ith eigenvalue,
and determinant of matrix X ∈ Rn×n. The eigenvalues are assumed to be arranged in
decreasing order, that is,

∣
∣λ1(X)

∣
∣≥ ∣∣λ2(X)

∣
∣≥ ···≥∣∣λn(X)

∣
∣. (2.1)

The abbreviation SPD stands for “symmetric positive definite,” while SPSD stands for
“symmetric positive semidefinite.”

Next, we give some preliminary lemmas for the subsequent use.

Lemma 2.1 [5]. Suppose A, D, E are given constant matrices of appropriate dimensions and
F is an uncertain matrix satisfying FTF ≤ I . Let P be an SPD matrix and let ε > 0 be a
constant. Then, if P− εDDT > 0, it holds that

(A+DFE)TP−1(A+DFE)≤ AT
(

P− εDDT
)−1

A+
1
ε
ETE. (2.2)

Lemma 2.2 [1]. For any real symmetric matrices X and Y , the following inequalities hold:

λ1(X +Y)≤ λ1(X) + λ1(Y),

λn(X +Y)≥ λn(X) + λn(Y).
(2.3)

Lemma 2.3 [2]. Matrix
[
A B
C D

]

> 0(< 0) if and only if (a) D > 0(< 0) and A− BD−1C >
0(< 0) or (b) A > 0(< 0) and D−CA−1B > 0(< 0).

Lemma 2.4 [6]. Let Y , M, and N be constant matrices of appropriate dimensions and, in
particular, let Y be symmetric. For any matrix F satisfying FTF ≤ I , the inequality

Y +MFN +NTFTMT < 0 (2.4)
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holds if and only if there is a constant ε > 0, such that

ε2MMT + εY +NTN < 0. (2.5)

Lemma 2.5. The following statements are equivalent:
(a) there exists a matrix P1 such that P1 = PT

1 > 0 and

ATP1A−P1 +Q < 0; (2.6)

(b) there exists a symmetric positive semidefinite solution matrix P2 to the Lyapunov
equation

ATP2A−P2 +Q = 0. (2.7)

Furthermore, if the above conditions hold, then P2 < P1.

Proof. The lemma is a straightforward corollary of [7, Theorem 7.2.2]. �

Now, we are ready to present the main results.

Theorem 2.6. If there is a constant ε > 0 such that

λ1

(

AT
(

I−εDTD
)−1

A+
1
ε
ETE

)

< 1, (2.8)

I−εDTD > 0, (2.9)

then the solution of the perturbed discrete Lyapunov equation (1.1) satisfies the following
inequality:

P ≤ λ1(Q)
[

AT
(

I − εDTD
)−1

A+ (1/ε)ETE
]

1− λ1
(

AT
(

I − εDTD
)−1

A+ (1/ε)ETE
) . (2.10)

Proof. Let P be a solution of the perturbed discrete Lyapunov equation (1.1). Then for all
x ∈Rn, x �= 0, we have

xTPx = xT(A+ΔA)TP(A+ΔA)x+ xTQx

≤ λ1(P)xT(A+ΔA)T(A+ΔA)x+ xTQx.
(2.11)

By Lemma 2.1, it holds that

(A+ΔA)T(A+ΔA)≤ AT
(

I − εDDT
)−1

A+
1
ε
ETE. (2.12)
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Then, by combining (2.11) and (2.12), we obtain

P ≤ λ1(P)
[

AT
(

I − εDDT
)−1

A+
1
ε
ETE

]

+Q. (2.13)

Taking the maximum eigenvalue λ1(·) on both sides of (2.13), and by using Lemma 2.2,
we further get

λ1(P)≤ λ1(P)λ1

(

AT
(

I − εDDT
)−1

A+
1
ε
ETE

)

+ λ1(Q), (2.14)

which together with (2.8) implies

λ1(P)≤ λ1(Q)

1− λ1
(

AT
(

I − εDTD
)−1

A+ (1/ε)ETE
) . (2.15)

Now, (2.10) follows directly from (2.13) and (2.15). �

Theorem 2.7. For any ε > 0, set

a= b−√b2− c

2ελ1
(

DDT
) ,

b = 1− λ1
(

ATA
)

+ ελ1
(

DDT
)

λ1

(
1
ε
ETE+Q

)

,

c = 4ελ1
(

DDT
)

λ1

(
1
ε
ETE+Q

)

.

(2.16)

If there exists ε > 0, such that P−1− εDDT > 0 and b > 0, b2 ≥ c, then the solution of (1.1)
satisfies the following inequality:

P ≤ aAT

1− εaλ1
(

DDT
) +

1
ε
ETE+Q. (2.17)

Proof. By Lemma 2.1, it holds that

P ≤ AT
(

P− εDDT
)−1

A+
1
ε
ETE+Q. (2.18)

Using the properties of matrix eigenvalues, we have

AT
(

P−1− εDDT
)−1

A≤ λ1

((

P−1− εDDT
)−1
)

ATA

= 1
λn
(

P−1− εDDT
)ATA

≤ 1
1/λ1(P)− ελ1

(

DDT
)ATA

≤ λ1(P)
1− ελ1(P)λ1

(

DDT
)ATA,

(2.19)
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which when applied to (2.18) gives

P ≤ λ1(P)
1− ελ1(P)λ1

(

DDT
)ATA+

1
ε
ETE+Q. (2.20)

Taking the maximum eigenvalues λ1(·) on both sides of (2.20), we obtain

ελ1
(

DDT
)

λ2
1(P) +

[

λ1
(

ATA
)− ελ1

(

DDT
)

λ1

(
1
ε
ETE+Q

)

− 1
]

λ1(P) + λ1

(
1
ε
ETE+Q

)

≥0,

(2.21)

which then implies

λ1(P)≤ b−√b2− c

2ελ1
(

DDT
) = a, (2.22)

where a, b, c are defined in the statement of the theorem. Finally, from (2.20) and (2.22),
we get (2.17). The proof is completed. �

Theorem 2.8. If there exist an SPD matrix X and a constant ε > 0 satisfying the linear
matrix inequality (LMI)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
ε
I DTX 0 0

XD −X XA 0

0 ATX −X +Q ET

0 0 E −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (2.23)

then (1.1) has positive definite solutions P and P < X .

Proof. Since

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
ε
I DTX 0 0

XD X XA 0

0 ATX −X +Q ET

0 0 E −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

I 0 0 0
0 X 0 0
0 0 I 0
0 0 0 I

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
ε
I DT 0 0

D −X−1
A 0

0 AT −X +Q ET

0 0 E −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

I 0 0 0
0 X 0 0
0 0 I 0
0 0 0 I

⎤

⎥
⎥
⎥
⎦

(2.24)
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and therefore if (2.23) holds, we have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
ε
I DT 0 0

D −X−1
A 0

0 AT −X +Q ET

0 0 E −εI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (2.25)

By Lemma 2.3, it holds that

⎡

⎢
⎢
⎣

−X−1
+ εDDT A 0

AT −X +Q ET

0 E −εI

⎤

⎥
⎥
⎦
< 0, (2.26)

and furthermore
⎡

⎢
⎣

−X−1
+ εDDT A

AT −X +Q+
1
ε
ETE

⎤

⎥
⎦

=
⎡

⎣
−X−1

A

AT −X +Q

⎤

⎦+ ε

[

D
0

]
[

DT 0
]

+
1
ε

[

0

ET

]
[

0 E
]

< 0.

(2.27)

By using Lemma 2.4, we obtain

⎡

⎣
−X−1

A

AT −X +Q

⎤

⎦+

[

0

ET

]

FT
[

DT 0
]

+

[

D
0

]

F
[

0 E
]

< 0, (2.28)

that is,
⎡

⎣
−X−1

A+ΔA

AT +ΔAT −X +Q

⎤

⎦ < 0. (2.29)

Next, by Lemma 2.3, we further obtain

(A+ΔA)TX(A+ΔA)−X +Q < 0, (2.30)

which immediately implies that X satisfies the inequality corresponding to (1.1).
Finally, by Lemma 2.5, we know that there exist positive definite solutions P to (1.1)

and P < X . The proof is completed. �

Remark 2.9. From the relations between the solution of the perturbed discrete Lyapunov
equation and that of an appropriate perturbed discrete Riccati equation (see [4]), we
know that the upper bound of the matrix solution in Theorem 2.7 is also an upper bound
of the matrix solution to the corresponding perturbed discrete Riccati equation.
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Remark 2.10. The upper bounds for the trace, eigenvalue, and determinant of the solu-
tion to (1.1) can also be obtained similarly.

Remark 2.11. Existing results on the bound of solutions to (1.1) are scarce, since it usually
heavily depends on the estimations of solutions to some corresponding Riccati equation.
But it is always very difficult to handle with the Riccati equation. Sometimes, in prac-
tice, we only need an effective estimation of the solutions, hence the results in this paper
cannot be directly compared with the above-mentioned existing results. Due to space
limitation, we only give one example to illustrate the effectiveness of our results in the
section which follows.

3. Numerical example

In the perturbed discrete Lyapunov equation (1.1), let

A=
[

0.5 0.1
0 0.4

]

, Q =
[

0.223 0
0 0.1

]

,

ΔA=MFN =
[

0.049 0.014
0.014 0.038

][

sinβ 0
0 cosβ

][

1 0
0 1

]

.

(3.1)

Taking ε = 2 in (2.10) and (2.17), we obtain the solutions, respectively,

P ≤ P1 =
[

0.4169 0.0222
0.0222 0.2591

]

,

P ≤ P2 =
[

0.5707 0.0295
0.0295 0.4004

]

,

(3.2)

and clearly P2 ≥ P1.
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