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1. Introduction and preliminaries

Let Y be a real Hausdorff topological vector space and X be a nonempty convex subset in
a real locally convex Hausdorff topological vector space E. We denote L(E,Y) the space of
all continuous linear operators from E into Y and by 〈u, y〉 the evaluation of u∈ L(E,Y)
at y ∈ E. Let σ be the family of all bounded subsets of X whose union is total in E, that
is, the linear hull of ∪{S : S∈ σ} is dense in X . Let β be a neighbourhood base of 0 in Y .
When S runs through σ , V through β, the family

M(S,V)= {l ∈ L(E,Y) :∪x∈S〈l,x〉 ⊂V
}

(1.1)

is a neighbourhood base of 0 in L(E,Y) at x ∈ E (see [29, pages 79–80]). By the corollary
of Schaefer [29, page 80], L(E,Y) becomes a locally convex topological vector space under
σ-topology, where Y is assumed a locally convex topological space.

Let intA and CoA denote the interior and convex hull of a set A, respectively. Let
C : X → 2Y be a set-valued mapping such that C(x) is a closed pointed and convex cone
with intC(x) �= ∅ for each x ∈ X . Let η : X ×X → E and H : X ×X → Y be vector-valued
mappings, D : X → 2X and T : X → 2L(E,Y) be two set-valued mappings, we introduced a
new model of the generalized vector quasi-variational-like inequality, which is to find x̄
in X such that x̄ ∈D(x̄), and

∀y ∈D(x̄), ∃v̂ ∈ T(x̄) :
〈
v̂,η(y, x̄)

〉
+H(x̄, y) /∈− intC(x̄). (1.2)
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It is easy to see that x̄ is a solution of the problem (1.2) is equivalent to x̄ in X satisfying
x̄ ∈D(x̄), and

∀y ∈D(x̄),
〈
T(x̄),η(y, x̄)

〉
+H(x̄, y) �⊆ − intC(x̄), (1.3)

where 〈T(x̄),η(y, x̄)〉 = ∪v∈T(x̄)〈v,η(y, x̄)〉.
The following problems are the special cases of the problem (1.2).
(i) If H(x, y)≡ 0 for all x, y ∈ X , then the problem (1.2) reduces to finding x̄ in X such

that x̄ ∈D(x̄), and

∀y ∈D(x̄), ∃v̂ ∈ T(x̄) :
〈
v̂,η(y, x̄)

〉
/∈− intC(x̄). (1.4)

This problem was also called generalized vector quasi-variational-like inequality and
studied with certain monotonicity by Ding [13], and problem (1.4) contains as special
cases the generalized vector variational-like inequality in [1, 2, 14, 15, 28] and the gener-
alized vector quasi-variational inequality studied by Chen and Li [10] and Lee et al. [22]
and those vector variational inequalities in [6–9, 11, 12, 16, 19–21, 23, 26, 30, 33–37].

(ii) If T : X → 2L(E,Y) is a zero operator, then the problem (1.2) reduces to the vector
quasi-equilibrium problem, which is to find x̄ in X such that x̄ ∈D(x̄), and

H(x̄, y) /∈− intC(x̄), ∀y ∈D(x̄). (1.5)

Problem (1.5) includes the vector equilibrium problem researched by many authors
(see [4, 5, 17, 24, 25, 27]).

In this paper, we establish existence results of solutions for both problem (1.2) and
problem (1.4) with non-monotonicity and non-compactness. Our results extend and im-
prove some main results of [15, 28].

In order to prove the main results, we need the following definitions and lemmas.

Definition 1.1 (see [15]). Let E, Y be two real topological vector spaces, X be a nonempty
and convex subset of E, C : X → 2Y be a set-valued mapping such that C(x) is a closed
pointed and convex cone with apex at 0 for each x ∈ X . Let η : X ×X → E be a single-
valued mapping. T : X → 2L(E,Y) is said to satisfy the generalized L-η-condition if and
only if for any finite set {y1, y2, . . . , yn} in X , x̄ =∑n

j=1αj y j with αj ≥ 0 and
∑n

j=1αj = 1,
there exists v̄ ∈ T(x̄), such that

〈

v̄,
n∑

j=1

αjη
(
yj , x̄

)
〉

/∈− intC(x̄). (1.6)

Remark 1.2. If η(y,x) is affine in the first argument and∀x ∈ X , ∃v ∈ T(x), such that

〈
v̄,η(x,x)

〉
/∈− intC(x), (1.7)

Then T satisfies the generalized L-η-condition.



J.-W. Peng and X.-M. Yang 3

If η(y,x)= y− x,∀x, y ∈ X , then we have that

〈

v̄,
n∑

j=1

αj
(
yj − x̄

)
〉

= 〈v̄, x̄− x̄
〉= 0 /∈− intC(x̄), ∀v ∈ T(x̄), (1.8)

and hence T satisfies the generalized L-η-condition trivially.

Definition 1.3 (see [32]). Let X and Y be two topological spaces and T : X → 2Y be a
set-valued mapping. Then

(1) T is said to be upper semicontinuous if, for any x0 ∈ X and for each open set U
in Y containing T(x0), there is a neighbourhood V of x0 in X such that T(x)⊆U ,
for all x ∈V .

(2) T is said to have open lower sections if the set T−1(y)= {x ∈ X : y ∈ T(x)} is open
in X for each y ∈ Y .

(3) T is said to be closed, if the set {(x, y)∈ X ×Y : y ∈ T(x)} is closed in X ×Y .

Definition 1.4. Let C : X → 2Y be a set-valued mapping. H : X × X → Y is said to be
0-C(x) diagonally convex with respect to the second argument if, for any finite subset
{y1, y2, . . . , yn} in X , and any x ∈ X with x =∑n

j=1αj y j (αj ≥ 0,
∑n

j=1αj = 1), we have

n∑

j=1

αjH
(
x̄, yj

)∈ C(x̄). (1.9)

H : X ×X → Y is said to be 0-C(x) diagonally concave with respect to the second ar-
gument if −H is 0-C(x) diagonally convex with respect to the second argument.

Remark 1.5. If Y = R∪{±∞} and C(x)= {r ∈ R : r ≥ 0}, then the 0-C(x) diagonal con-
cavity of H reduces to the 0-diagonal concavity of H in [38].

Lemma 1.6 (see [32]). Let X and Y be two topological spaces. Suppose T : X → 2Y and K :
X → 2Y are set-valued mappings having open lower sections, then (i) the set-valued mapping
F : X → 2Y defined by, for each x ∈ X , F(x)= Co(T(x)) has open lower sections. (ii) the set-
valued mapping θ : X → 2Y defined by, for each x ∈ X , θ(x)= T(x)∩K(x) has open lower
sections.

Lemma 1.7 (see [3]). Let X and Y be topological spaces. If T : X → 2Y is an upper semicon-
tinuous set-valued mapping with closed values, then T is closed.

Lemma 1.8 (see [31]). Let X and Y be topological spaces and T : X → 2Y be an upper
semicontinuous set-valued mapping with compact values. Suppose {xα} is a net in X such
that xα→ x0. If yα ∈ T(xα) for each α, then there is a y0 ∈ T(x0) and a subset {yβ} of {yα}
such that yβ → y0.

Lemma 1.9 (see [18]). Let X be a nonempty convex subset of a Hausdorff topological vector
space E and S : X → 2X be a set-valued mapping such that for each x ∈ X , x /∈ Co(S(x)) and
for each y ∈ X , S−1(y) is open in X . Suppose further that there exist a nonempty compact
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subset N of X and a nonempty compact convex subset B of X such that Co(S(x))∩B �= ∅
for all x ∈ X \N .

Then there exists a point x̄ ∈ X such that S(x̄)=∅.

2. Main results

In this section, we will present some existence results of solutions for the two types of
generalized vector quasi-variational inequalities without monotonicity and compactness.

Theorem 2.1. Let Y be a real Hausdorff topological vector space, X be a nonempty and con-
vex set in a real locally convex Hausdorff topological vector space E, and L(E,Y) be equipped
with the σ-topology. Let D : X → 2X be a set-valued mapping such that ∀x ∈ X , D(x) is
nonempty and convex, D−1(y) is open in X , ∀y ∈ X , and the set W = {x ∈ X : x ∈D(x)}
is closed in X . Let C : X → 2Y be a set-valued mapping such that C(x) is a closed, pointed
and convex cone with intC(x) �= ∅ for each x ∈ X . Assume that the following conditions are
satisfied.

(i) The set-valued mapping M = Y\(− intC) : X → 2Y is upper semicontinuous on X .
(ii) The set-valued mappingT : X → 2L(E,Y) is upper semicontinuous onX with compact

values and η : X ×X → E is continuous with respect to the second argument, such
that T satisfies the generalized L-η-condition.

(iii) H : X ×X → Y is continuous with respect to the first argument and 0-C(x) diago-
nally convex with respect to the second argument.

(iv) There exist a nonempty and compact subset N of X and a nonempty, compact
and convex subset B of X such that ∀x ∈ X\N , ∃ ȳ ∈ B, such that ȳ ∈ D(x) and
〈v,η( ȳ,x)〉+H(x, ȳ)∈− intC(x),∀v ∈ T(x).

Then, there exists a point x̄ ∈ X such that x̄ ∈D(x̄), and

∀y ∈D(x̄), ∃v̂ ∈ T(x̄) :
〈
v̂,η(y, x̄)

〉
+H(x̄, y) /∈− intC(x̄). (2.1)

Proof. Define a set-valued mapping P : X → 2X by

P(x)= {y ∈ X :
〈
T(x),η(y,x)

〉
+H(x, y)⊆− intC(x)

}

= {y ∈ X :
〈
v,η(y,x)

〉
+H(x, y)∈− intC(x), ∀v ∈ T(x)}, ∀x ∈ X.

(2.2)

We first prove that x /∈ CoP(x) for all x ∈ X . To see this, suppose, by way of con-
tradiction, that there exists some point x̄ ∈ X such that x̄ ∈ Co(P(x̄)). Then there exists
finite points y1, y2, . . . , yn in X , and αj ≥ 0 with

∑n
j=1αj = 1 such that x̄ =∑n

j=1αj y j and
yj ∈ P(x̄) for all j = 1,2, . . . ,n. That is,

〈
v,η
(
yj , x̄

)〉
+H

(
x̄, yj

)∈− intC(x̄), ∀v ∈ T(x), j = 1,2, . . . ,n. (2.3)

Since intC(x̄) is a convex set, we obtain

〈

v,
n∑

j=1

αjη
(
yj , x̄

)
〉

+
n∑

j=1

αjH
(
x̄, yj

)∈− intC(x̄), ∀v ∈ T(x). (2.4)
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From the 0-C(x) diagonal convexity with respect to the second argument of H , we have

n∑

j=1

αjH
(
x̄, yj

)∈ C(x̄). (2.5)

By (2.4) and (2.5), we get, for all v ∈ T(x̄),

〈

v,
n∑

j=1

αjη
(
yj , x̄

)
〉

∈−
n∑

j=1

αjH
(
x̄, yj

)− intC(x̄)⊆−C(x̄)− intC(x̄)⊆− intC(x̄),

(2.6)

which contradicts the fact that T satisfies the generalized L-η-condition. Therefore x /∈
CoP(x) for all x ∈ X . �

Now we prove that the set

P−1(y)= {x ∈ X :
〈
T(x),η(y,x)

〉
+H(x, y)⊆− intC(x)

}

= {x ∈ X :
〈
v,η(y,x)

〉
+H(x, y)∈− intC(x), ∀v ∈ T(x)

} (2.7)

is open for each y ∈ X . That is, P has open lower sections in X . Consider the set-valued
mapping Q : X → 2X defined by

Q(y)= {x ∈ X :
〈
T(x),η(y,x)

〉
+H(x, y) /∈− intC(x)

}

= {x ∈ X : ∃v ∈ T(x) such that
〈
v,η(y,x)

〉
+H(x, y) /∈− intC(x)

}
.

(2.8)

We only need to prove that Q(y) is closed for all y ∈ X . In fact, consider a net xt ∈Q(y)
such that xt → x ∈ X . Since xt ∈Q(y), there exists st ∈ T(xt) such that

〈
st,η

(
y,xt

)〉
+H

(
xt, y

)
/∈− intC

(
xt
)
. (2.9)

From the upper semicontinuity and compact values of T and Lemma 1.8, it suffices to
find a subset {stj} which converges to some s ∈ T(x). By [15, Lemma 1, page 114], we
know that 〈·〉 is continuous, and hence

〈
stj ,η

(
y,xtj

)〉
+H

(
xtj , y

)−→ 〈s,η(y,x)
〉

+H(x, y). (2.10)

By Lemma 1.7 and upper semicontinuity of M, we have 〈s,η(y,x)〉+H(x, y) /∈− intC(x),
and hence x ∈ Q(y), Q(y) is closed. Therefore, P has open lower sections in X , and by
Lemma 1.6, we know that CoP : X → 2X also has open lower sections. Also define another
set-valued mapping S : X → 2X by

S(x)=
⎧
⎪⎨

⎪⎩

D(x)∩CoP(x) if x ∈W ,

D(x) if x /∈W.
(2.11)
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Then, it is clear that∀x ∈ X , S(x) is convex, and x /∈ S(x)= CoS(x). Since∀y ∈ X ,

S−1(y)= {x ∈ X : y ∈ S(x)
}

= {x ∈W : y ∈D(x)∩CoP(x)
}∪ {x ∈ X \W : y ∈D(x)

}

= (W ∩D−1(y)∩CoP−1(y)
)∪ [(X \W)∩D−1(y)

]

= [(W∩D−1(y)∩CoP−1(y)
)∪(X \W)

]∩[(W ∩D−1(y)∩CoP−1(y)
)∪D−1(y)

]

= {X ∩ [(D−1(y)∩CoP−1(y)
)∪ (X \W)

]}∩ [(W ∪D−1(y)
)∩ (D−1(y)

)]

= [(D−1(y)∩CoP−1(y)
)∪ (X \W)

]∩D−1(y)

= (D−1(y)∩ (CoP−1(y)
))∪ ((X \W)∩ (D−1(y)

))
,

(2.12)

and D−1(y), CoP−1(y) and X \W are open in X , we have S−1(y) is open in X .
Condition (iii) implies that there exist a nonempty compact subset N of X and a

nonempty compact convex subset B of X such that S(x)∩ B = CoS(x)∩ B �= ∅ for all
x ∈ X \N . Hence, by Lemma 1.9, ∃x̄ ∈ X such that S(x̄) = ∅. Since ∀x ∈ X , D(x) is
nonempty, we have x̄ ∈W , and D(x̄)∩CoP(x̄)=∅. This implies x̄ ∈D(x̄) and D(x̄)∩
P(x̄) =∅. Consequently, x̄ ∈ D(x̄), and ∀y ∈ D(x̄), ∃v ∈ T(x̄) satisfying 〈v,η(y, x̄)〉+
H(x̄, y) /∈− intC(x̄).

By Theorem 2.1 and Remark 1.2, we have the following corollary.

Corollary 2.2. Let Y be a real Hausdorff topological vector space, X be a nonempty and
convex set in a real locally convex Hausdorff topological vector space E, and L(E,Y) be
equipped with the σ-topology. Let D : X → 2X be a set-valued mapping such that ∀x ∈ X ,
D(x) is nonempty and convex, D−1(y) is open in X ,∀y ∈ X , and the set W = {x ∈ X : x ∈
D(x)} is closed in X . Let C : X → 2Y be a set-valued mapping such that C(x) is a closed,
pointed and convex cone with intC(x) �= ∅ for each x ∈ X . Assume that the following con-
ditions are satisfied.

(i) The set-valued mapping M = Y\(− intC) : X → 2Y is upper semicontinuous on X .
(ii) The set-valued mappingT : X → 2L(E,Y) is upper semicontinuous onX with compact

values and η : X ×X → E is continuous with respect to the second argument and
affine with respect to the first argument such that ∀x ∈ X , ∃v ∈ T(x), satisfying
〈v̄,η(x,x)〉 /∈− intC(x).

(iii) H : X ×X → Y is continuous with respect to the first argument and 0-C(x) diago-
nally convex with respect to the second argument.

(iv) There exist a nonempty and compact subset N of X and a nonempty, compact
and convex subset B of X such that ∀x ∈ X\N , ∃ ȳ ∈ B, such that ȳ ∈ D(x) and
〈v,η( ȳ,x)〉+H(x, ȳ)∈− intC(x),∀v ∈ T(x).

Then, there exists a point x̄ ∈ X such that x̄ ∈D(x̄), and

∀y ∈D(x̄), ∃v̂ ∈ T(x̄) :
〈
v̂,η(y, x̄)

〉
+H(x̄, y) /∈− intC(x̄). (2.13)
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If H(x,x)= 0 ∀x ∈ X , then by Theorem 2.1 and Corollary 2.2, we have the following
corollary.

Corollary 2.3. Let Y be a real Hausdorff topological vector space, X be a nonempty and
convex set in a real locally convex Hausdorff topological vector space E, and L(E,Y) be
equipped with the σ-topology. Let D : X → 2X be a set-valued mapping such that ∀x ∈ X ,
D(x) is nonempty and convex, D−1(y) is open in X ,∀y ∈ X , and the set W = {x ∈ X : x ∈
D(x)} is closed in X . Let C : X → 2Y be a set-valued mapping such that C(x) is a closed,
pointed and convex cone with intC(x) �= ∅ for each x ∈ X . Assume that the following con-
ditions are satisfied.

(i) The set-valued mapping M = Y\(− intC) : X → 2Y is upper semicontinuous on X .
(ii) There exist a nonempty and compact subset N of X and a nonempty, compact

and convex subset B of X such that ∀x ∈ X\N , ∃ ȳ ∈ B, such that ȳ ∈ D(x) and
〈v,η( ȳ,x)〉 ∈ − intC(x),∀v ∈ T(x).

(iii) The set-valued mapping T : X → 2L(E,Y) is upper semicontinuous on X with com-
pact values and η : X ×X → E is continuous with respect to the second argument.
Moreover, one of the following conditions satisfied

(iv) T : X → 2L(E,Y) satisfies the generalized L-η-condition.
Or

(v) η : X ×X → E is affine with respect to the first argument such that ∀x ∈ X , ∃v ∈
T(x), satisfying 〈v̄,η(x,x)〉 /∈− intC(x).

Then, there exists a point x̄ ∈ X such that x̄ ∈D(x̄), and

∀y ∈D(x̄), ∃v̂ ∈ T(x̄) :
〈
v̂,η(y, x̄)

〉
/∈− intC(x̄). (2.14)

Remark 2.4. Theorem 2.1, Corollaries 2.2 and 2.3 extend and improve [15, Theorem 1
and Corollary 1] and [28, Theorem 1] without monotonicity and compactness.

If T is a zero operator, then by Theorem 2.1, we have the following corollary.

Corollary 2.5. Let Y be a real Hausdorff topological vector space, X be a nonempty and
convex set in a real locally convex Hausdorff topological vector space E. Let D : X → 2X be a
set-valued mapping such that∀x ∈ X , D(x) is nonempty and convex, D−1(y) is open in X ,
∀y ∈ X , and the set W = {x ∈ X : x ∈D(x)} is closed in X . Let C : X → 2Y be a set-valued
mapping such that C(x) is a closed, pointed and convex cone with intC(x) �= ∅ for each
x ∈ X . Assume that the following conditions are satisfied.

(i) The set-valued mapping M = Y\(− intC) : X → 2Y is upper semicontinuous on X .
(ii) H : X ×X → Y is continuous with respect to the first argument and 0-C(x) diago-

nally convex with respect to the second argument.
(iii) There exist a nonempty and compact subset N of X and a nonempty, compact

and convex subset B of X such that ∀x ∈ X\N , ∃ ȳ ∈ B, such that ȳ ∈ D(x) and
H(x, ȳ)∈− intC(x).

Then, there exists a point x̄ ∈ X such that x̄ ∈D(x̄), and H(x̄, y) /∈− intC(x̄),∀y ∈D(x̄).

Theorem 2.6. Let Y be a real Hausdorff topological vector space, X be a nonempty and con-
vex set in a real locally convex Hausdorff topological vector space E, and L(E,Y) be equipped
with the σ-topology. Let D : X → 2X be a set-valued mapping such that ∀x ∈ X , D(x) is
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nonempty and convex, D−1(y) is open in X , ∀y ∈ X , and the set W = {x ∈ X : x ∈D(x)}
is closed in X . Let C : X → 2Y be a set-valued mapping such that C(x) is a closed, pointed
and convex cone with intC(x) �= ∅ for each x ∈ X . Assume that the following conditions are
satisfied.

(i) The set-valued mapping M = Y\(− intC) : X → 2Y is upper semicontinuous on X .
(ii) The set-valued mappingT : X → 2L(E,Y) is upper semicontinuous onX with compact

values and η : X ×X → E is continuous with respect to the second argument, and
there exists a mapping h : X ×X → Y , such that:

(a) ∀x, y ∈ X , ∃v ∈ T(x), such that

h(x, y)− 〈v,η(y,x)
〉∈− intC(x). (2.15)

(b) For any finite set {y1, y2, . . . , yn} ⊆ X and x̄ = ∑n
j=1αj y j with αj ≥ 0 and

∑n
j=1αj = 1, there is a j ∈ {1,2, . . . ,n}, such that h(x̄, yj) /∈− intC(x̄).

(iii) There exist a nonempty and compact subset N of X and a nonempty, compact and
convex subset B of X such that∀x ∈ X\N , ∃ ȳ ∈ B, such that ȳ ∈D(x) and

〈
v,η( ȳ,x)

〉∈− intC(x), ∀v ∈ T(x). (2.16)

Then, there exists a point x̄ ∈ X such that x̄ ∈D(x̄), and

∀y ∈D(x̄), ∃v̂ ∈ T(x̄) :
〈
v̂,η(y, x̄)

〉
/∈− intC(x̄). (2.17)

Proof. Define two set-valued mappings P : X → 2X , P1 : X → 2X by

P(x)= {y ∈ X :
〈
v,η(y,x)

〉∈− intC(x), ∀v ∈ T(x)
}

, ∀x ∈ X.

P1(x)= {y ∈ X : h(x, y)∈− intC(x)
}

, ∀x ∈ X.
(2.18)

We first prove that x /∈ Co(P1(x)) for all x ∈ X . To see this, suppose, by way of con-
tradiction, that there exists some point x̄ ∈ X such that x̄ ∈ Co(P1(x̄)). Then there exists
finite points y1, y2, . . . , yn in X , and αj ≥ 0 with

∑n
j=1αj = 1 such that x̄ =∑n

j=1αj y j and
yj ∈ P1(x̄) for all j = 1,2, . . . ,n. That is,

h
(
x̄, yj

)∈− intC(x̄), j = 1,2, . . . ,n. (2.19)

This contradicts to the condition (ii)(b). Therefore x /∈ Co(P1(x)) for all x ∈ X .
The condition (ii)(a) implies that P1(x) ⊇ P(x) for all x ∈ X . Hence, x /∈ Co(P(x)),

∀x ∈ X .
The remainder of the proof is similar to that in the proof of Theorem 2.1. �

Corollary 2.7. Let Y be a real Hausdorff topological vector space, X be a nonempty and
convex set in a real locally convex Hausdorff topological vector space E, and L(E,Y) be
equipped with the σ-topology. Let D : X → 2X be a set-valued mapping such that ∀x ∈ X ,
D(x) is nonempty and convex, D−1(y) is open in X ,∀y ∈ X , and the set W = {x ∈ X : x ∈
D(x)} is closed in X . Let C : X → 2Y be a set-valued mapping such that C(x) is a closed,
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pointed and convex cone with intC(x) �= ∅ for each x ∈ X . Assume that the following con-
ditions are satisfied.

(i) The set-valued mapping M = Y\(− intC) : X → 2Y is upper semicontinuous on X .
(ii) The set-valued mappingT : X → 2L(E,Y) is upper semicontinuous onX with compact

values and η : X ×X → E is continuous with respect to the second argument, and
there exists a mapping h : X ×X → Y , such that:

(a) ∀x, y ∈ X , ∃v ∈ T(x), such that

h(x, y)− 〈v,η(y,x)
〉∈− intC(x); (2.20)

(b) the set {y ∈ X : h(x, y)∈− intC(x)} is convex for all x ∈ X ;
(c) h(x,x) /∈− intC(x),∀x ∈ X .

Then, there exists x̄ ∈ X , such that x̄ ∈ D(x̄) and 〈T(x̄),η(y, x̄)〉 /∈ − intC(x̄), ∀y
∈D(x̄).

(iii) There exist a nonempty and compact subset N of X and a nonempty, compact
and convex subset B of X such that ∀x ∈ X\N , ∃ ȳ ∈ B, such that ȳ ∈ D(x) and
〈v,η( ȳ,x)〉 ∈ − intC(x),∀v ∈ T(x).

Then, there exists a point x̄ ∈ X such that x̄ ∈D(x̄), and

∀y ∈D(x̄), ∃v̂ ∈ T(x̄) :
〈
v̂,η(y, x̄)

〉
/∈− intC(x̄). (2.21)

Proof. Following the same argument of the proof of [15, Corollary 3], by the condi-
tion (ii)(b) and (ii)(c), we know that the condition (ii)(b) of Theorem 2.6 holds. By
Theorem 2.6, we know that the conclusion is correct. �

Remark 2.8. Theorem 2.6 and Corollary 2.7, respectively, extend and improve [15, Theo-
rem 2 and Corollary 3].
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