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Based on the notion of (A,η)-accretive mappings and the resolvent operators associated
with (A,η)-accretive mappings due to Lan et al., we study a new class of multivalued
nonlinear variational inclusion problems with (A,η)-accretive mappings in Banach spaces
and construct some new iterative algorithms to approximate the solutions of the nonlin-
ear variational inclusion problems involving (A,η)-accretive mappings. We also prove the
existence of solutions and the convergence of the sequences generated by the algorithms
in q-uniformly smooth Banach spaces.
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1. Introduction

Recently, in order to study extensively variational inequalities and variational inclusions,
which are providing mathematical models to some problems arising in economics, me-
chanics, and engineering science, Ding [1], Huang and Fang [10], Fang and Huang [3],
Verma [14, 15], Fang and Huang [4, 5], Huang and Fang [9], Fang et al. [2] have in-
troduced the concepts of η-subdifferential operators, maximal η-monotone operators,
generalized monotone operators (named H-monotone operators), A-monotone opera-
tors, (H ,η)-monotone operators in Hilbert spaces, H-accretive operators, generalized m-
accretive mappings and (H ,η)-accretive operators in Banach spaces, and their resolvent
operators, respectively. Very recently, Fang et al. [7], studied the (H ,η)-monotone op-
erators in Hilbert spaces, which are a special case of (H ,η)-accretive operator [2]. Some
works are motivated by this work and some related works. The iterative algorithms for the
variational inclusions with H-accretive operators can be found in the paper [6]. Further,
Lan et al. [11] introduced a new concept of (A,η)-accretive mappings, which generalizes
the existing monotone or accretive operators, studied some properties of (A,η)-accretive
mappings, and defined resolvent operators associated with (A,η)-accretive mappings.
Moreover, by using the resolvent operator technique, many authors constructed some
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perturbed iterative algorithms for some nonlinear variational inclusions in Hilbert space
or Banach spaces. For more detail, see, for example, [1–8, 10, 11, 14, 15] and the refer-
ences therein.

On the other hand, Lan et al. [12] introduced and studied some new iterative algo-
rithms for solving a class of nonlinear variational inequalities with multivalued mappings
in Hilbert spaces, and gave some convergence analysis of iterative sequences generated by
the algorithms.

Motivated and inspired by the above works, the purpose of this paper is to intro-
duce the notion of (A,η)-accretive mappings and the resolvent operators associated with
(A,η)-accretive mappings due to Lan et al., to study a new class of multivalued nonlinear
variational inclusion problems with (A,η)-accretive mappings in Banach spaces, and to
construct some new iterative algorithms to approximate the solutions of the nonlinear
variational inclusion problems involving (A,η)-accretive mappings. We also prove the
existence of solutions and the convergence of the sequences generated by the algorithms
in q-uniformly smooth Banach spaces.

2. Preliminaries

Let X be a real Banach space with dual space X∗, let 〈·,·〉 be the dual pair between X and
X∗, let 2X denote the family of all the nonempty subsets of X , and let CB(X) denote the
family of all nonempty closed bounded subsets of X . The generalized duality mapping
Jq : X → 2X

∗
is defined by

Jq(x)= { f ∗ ∈ X∗ :
〈
x, f ∗

〉= ‖x‖q,
∥
∥ f ∗

∥
∥= ‖x‖q−1}, ∀x ∈ X , (2.1)

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping. It is
known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x 	= 0, and Jq is single valued if X∗ is
strictly convex, and if X =�, the Hilbert space, then J2 becomes the identity mapping on
�.

The modulus of smoothness of X is the function ρX : [0,∞)→ [0,∞) defined by

ρX(t)= sup
{

1
2

(‖x+ y‖+‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t
}
. (2.2)

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)
t

= 0. (2.3)

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t)≤ ctq, q > 1. (2.4)

Note that Jq is single valued if X is uniformly smooth, and Hilbert space and Lp (or lp)
(2 ≤ p <∞) spaces are 2-uniformly Banach spaces. In what follows, we will denote the
single valued generalized duality mapping by Jq.
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In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu
[16] proved the following result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. Then X is q-uniformly smooth
if and only if there exists a constant cq > 0 such that for all x, y ∈ X ,

‖x+ y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ cq‖y‖q. (2.5)

Definition 2.2. Let X be a real q-uniformly smooth Banach space and let T ,A : X → X be
two single-valued mappings. T is said to be

(i) accretive if

〈
T(x)−T(y), Jq(x− y)

〉≥ 0, ∀x, y ∈ X ; (2.6)

(ii) strictly accretive if T is accretive and 〈T(x)−T(y), Jq(x− y)〉 = 0 if and only if
x = y;

(iii) r-strongly accretive if there exists a constant r > 0 such that

〈
T(x)−T(y), Jq(x− y)

〉≥ r‖x− y‖q, ∀x, y ∈ X ; (2.7)

(iv) γ-strongly accretive with respect to A if there exists a constant γ > 0 such that

〈
T(x)−T(y), Jq

(
A(x)−A(y)

)〉≥ γ‖x− y‖q, ∀x, y ∈ X ; (2.8)

(v) m-relaxed cocoercive with respect to A if there exists a constant m> 0 such that

〈
T(x)−T(y), Jq

(
A(x)−A(y)

)〉≥−m∥∥T(x)−T(y)
∥
∥q, ∀x, y ∈ X ; (2.9)

(vi) (α,ξ)-relaxed cocoercive with respect to A if there exist constants α,ξ > 0 such that

〈
T(x)−T(y), Jq

(
A(x)−A(y)

)〉≥−α∥∥T(x)−T(y)
∥
∥q + ξ‖x− y‖q, ∀x, y ∈ X ;

(2.10)

(vii) s-Lipschitz continuous if there exists a constant s > 0 such that

∥
∥T(x)−T(y)

∥
∥≤ s‖x− y‖, ∀x, y ∈ X. (2.11)

Remark 2.3. When X =�, (i)–(iv) of Definition 2.2 reduce to the definitions of mono-
tonicity, strict monotonicity, strong monotonicity, and strong monotonicity with respect
to A, respectively (see [1, 3, 5]).
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Example 2.4. Consider a nonexpansive mapping T : �→�. If we set F = I −T , where I
is the identity mapping, then F is (1/2)-cocoercive.

Proof. For any two elements x, y ∈�, we have

∥
∥F(x)−F(y)

∥
∥2 = ∥∥(I −T)(x)− (I −T)(y)

∥
∥2

= 〈(I −T)(x)− (I −T)(y),(I −T)(x)− (I −T)(y)
〉

≤ 2
[‖x− y‖2− 〈x− y,T(x)−T(y)

〉]

= 2
〈
x− y,F(x)−F(y)

〉
,

(2.12)

that is, F is (1/2)-cocoercive. �

Example 2.5. Consider a projection P : � → C, where C is a nonempty closed convex
subset of �. Then P is 1-cocoercive since P is nonexpansive.

Proof. For any x, y ∈�, we have

∥
∥P(x)−P(y)

∥
∥2 = 〈P(x)−P(y), P(x)−P(y)

〉

≤ 〈x− y, P(x)−P(y)
〉
.

(2.13)

Thus, P is 1-cocoercive. �

Example 2.6. An r-strongly monotone (and hence r-expanding) mapping T : �→� is
(r + r2,1)-relaxed cocoercive with respect to I .

Proof. For any two elements x, y ∈�, we have

∥
∥T(x)−T(y)

∥
∥≥ r‖x− y‖,

〈
T(x)−T(y), x− y

〉≥ r‖x− y‖2,
(2.14)

and so

∥
∥T(x)−T(y)

∥
∥2

+
〈
T(x)−T(y), x− y

〉≥ (r + r2)‖x− y‖2, (2.15)

that is, for all x, y ∈�, we get

〈
T(x)−T(y), x− y

〉≥ (−1)
∥
∥T(x)−T(y)

∥
∥2

+
(
r + r2)‖x− y‖2. (2.16)

Therefore, T is (r + r2,1)-relaxed cocoercive with respect to I . �

Remark 2.7. Clearly, every m-cocoercive mapping is m-relaxed cocoercive, while each
r-strongly monotone mapping is (r + r2,1)-relaxed cocoercive with respect to I .
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Definition 2.8. A single valued mapping η : X ×X → X is said to be τ-Lipschitz continu-
ous if there exists a constant τ > 0 such that ‖η(x, y)‖ ≤ τ‖x− y‖, for all x, y ∈ X .

Definition 2.9. Let X be a real q-uniformly smooth Banach space and let η : X ×X → X
and A,H : X → X be single valued mappings. A set-valued mapping M : X → 2X is said to
be

(i) accretive if

〈
u− v, Jq(x− y)

〉≥ 0, ∀x, y ∈ X , u∈M(x), v ∈M(y); (2.17)

(ii) η-accretive if

〈
u− v, Jq

(
η(x, y)

)〉≥ 0, ∀x, y ∈ X , u∈M(x), v ∈M(y); (2.18)

(iii) strictly η-accretive if M is η-accretive and equality holds if and only if x = y;
(iv) r-strongly η-accretive if there exists a constant r > 0 such that

〈
u− v, Jq

(
η(x, y)

)〉≥ r‖x− y‖q, ∀x, y ∈ X , u∈M(x), v ∈M(y); (2.19)

(v) α-relaxed η-accretive if there exists a constant α > 0 such that

〈
u− v, Jq

(
η(x, y)

)〉≥−α‖x− y‖q, ∀x, y ∈ X , u∈M(x), v ∈M(y); (2.20)

(vi) m-accretive if M is accretive and (I + ρM)(X) = X for all ρ > 0, where I denotes
the identity operator on X ;

(vii) generalized m-accretive if M is η-accretive and (I + ρM)(X)= X for all ρ > 0;
(viii) H-accretive if M is accretive and (H + ρM)(X)= X for all ρ > 0;

(ix) (H ,η)-accretive if M is η-accretive and (H + ρM)(X)= X for every ρ > 0.

Remark 2.10. (1) The class of generalized m-accretive operators was first introduced by
Huang and Fang [9], and includes that of m-accretive operators as a special case. The
class of H-accretive operators was first introduced and studied by Fang and Huang [5],
and also includes that of m-accretive operators as a special case.

(2) When X = �, (i)–(ix) of Definition 2.9 reduce to the definitions of monotone
operators, η-monotone operators, strictly η-monotone operators, strongly η-monotone
operators, relaxed η-monotone operators, maximal monotone operators, maximal η-
monotone operators, H-monotone operators, and (H ,η)-monotone operators, respec-
tively.

Definition 2.11. Let A : X → X and η : X ×X → X be two single-valued mappings. A mul-
tivalued mapping M : X → 2X is called (A,η)-accretive if M is m-relaxed η-accretive and
(A+ ρM)(X)= X for every ρ > 0.
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Remark 2.12. For appropriate and suitable choices of m, A, η, and X , it is easy to see that
Definition 2.11 includes a number of definitions of monotone operators and accretive
operators (see [11]).

Proposition 2.13 [11]. Let A : X → X be a r-strongly η-accretive mapping, let M : X → 2X

be an (A,η)-accretive mapping. Then the operator (A+ ρM)−1 is single valued.

Remark 2.14. Proposition 2.13 generalizes and improves [3, Theorem 2.1], [5, Theorem
2.2], [4, Theorem 3.2], [2, Theorem 3.2], [10, (2) of Theorem 2.1], and [9], respectively,

Based on Proposition 2.13, we can define the resolvent operator R
ρ,A
η,M associated with

an (A,η)-accretive mapping M as follows.

Definition 2.15. Let A : X → X be a strictly η-accretive mapping and let M : X → 2X be an

(A,η)-accretive mapping. The resolvent operator R
ρ,A
η,M : X → X is defined by

R
ρ,A
η,M(x)= (A+ ρM)−1(x), ∀x ∈ X. (2.21)

Remark 2.16. Resolvent operators associated with (A,η)-accretive mappings include as
special cases the corresponding resolvent operators associated with (H ,η)-accretive map-
pings [2], (H ,η)-monotone operators [4, 7], H-accretive operators [5, 6], generalized
m-accretive operators [9], maximal η-monotone operators [10], H-monotone operators
[3],A-monotone operators [14], η-subdifferential operators [1], the classicalm-accretive,
and maximal monotone operators [17].

Proposition 2.17 [11]. Let X be a real q-uniformly smooth Banach space and let η : X ×
X → X be τ-Lipschitz continuous, let A : X → X be an r-strongly η-accretive mapping, and

let M : X → 2X be an (A,η)-accretive mapping. Then the resolvent operator R
ρ,A
η,M : X → X is

τq−1/(r− ρm)-Lipschitz continuous, that is,

∥
∥R

ρ,A
η,M(x)−R

ρ,A
η,M(y)

∥
∥≤ τq−1

r− ρm
‖x− y‖, ∀x, y ∈ X , (2.22)

where ρ ∈ (0,r/m) is a constant.

Remark 2.18. Proposition 2.17 extends [2, Theorem 3.3] and [15, Lemma 2], and so
extends [10, Theorem 2.2], [3, Theorem 2.2], [5, Theorem 2.3], [4, Theorem 3.3], [1,
Theorem 2.2], and [9, Theorem 2.3].

Definition 2.19. Let T : X → 2X be a set-valued mapping. For all x, y ∈ X , T is said to be
ζ-Ĥ-Lipschitz continuous, if there exists a constant ζ > 0 such that

Ĥ
(
T(x),T(y)

)≤ ζ‖x− y‖, ∀x, y ∈ X , (2.23)

where Ĥ : 2X × 2X → (−∞,+∞)∪{+∞} is the Hausdorff pseudometric, that is,

Ĥ(D,B)=max

{

sup
x∈D

inf
y∈B
‖x− y‖, sup

x∈B
inf
y∈D

‖x− y‖
}

, ∀D,B ∈ 2X . (2.24)
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Note that if the domain of Ĥ is restricted to closed bounded subsets CB(X), then Ĥ is the
Hausdorff metric.

Let f ,g : X → X and let T : X → 2X be nonlinear mappings and let M : X → 2X be an
(A,η)-accretive mapping with g(X)∩DomM 	= ∅. For any given λ > 0, the following
multivalued nonlinear variational inclusion problem will be considered.

Find x ∈ X such that u∈ T(x) and

0∈ f (x) +u+ λM
(
g(x)

)
. (2.25)

Example 2.20. (1) If g = I and λ = 1, then a special case of the problem (2.25) is deter-
mining elements x ∈ X and u∈ T(x) such that

0∈ f (x) +u+M(x). (2.26)

(2) Further, if X = X∗ =�, η(x, y)= x− y, and M = Δϕ, where Δϕ denotes the sub-
differential of a proper convex lower semicontinuous function ϕ on �, then the problem
(2.26) becomes the following classical variational inequality.

Find x ∈ X such that

〈
f (x) +u, y− x

〉
+ϕ(y)−ϕ(x)≥ 0, ∀y ∈ X. (2.27)

(3) If M(x)= ∂δK (x) for all x ∈ K , where K is a nonempty closed convex subset of X ,
and ∂δK denotes indicator function of K , then the problem (2.27) becomes to determin-
ing elements x ∈ K and u∈ T(x) such that

〈
f (x) +u, y− x

〉≥ 0, ∀y ∈ X , (2.28)

which is the problem studied by Lan et al. [12].

Remark 2.21. For appropriate and suitable choices of f , T , M, g, and X , it is easy to
see that the problem (2.25) includes a number of quasi-variational inclusions, general-
ized quasi-variational inclusions, quasi-variational inequalities, implicit quasi-variational
inequalities studied by many authors as special cases, see, for example, [1, 5, 8, 12, 17] and
the references therein.

3. Iterative algorithms and convergence

In this section, we firstly suggest and analyze a new iterative method for solving the mul-
tivalued nonlinear variational inclusion problem (2.25).

Lemma 3.1. Let A : X → X be r-strongly η-accretive, let M : X → 2X be (A,η)-accretive, and
let T : X → CB(X) and f : X → X be any nonlinear mappings. If

Q(x)= g(x)−R
ρλ,A
η,M

[
A
(
g(x)

)− ρ( f +T)(x)
]
, (3.1)
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where R
ρλ,A
η,M = (A+ ρλM)−1 and ρ > 0 is a constant, then the nonlinear variational inclusion

problem (2.25) has a solution if and only if 0∈Q(x).

Proof. It is obvious that “only if” part holds.
Now, if 0∈Q(x), then there exists a u∈ T(x) such that

g(x)= R
ρλ,A
η,M

[
A
(
g(x)

)− ρ
(
f (x) +u

)]
. (3.2)

From the definition of the resolvent operators associated with (A,η)-accretive mappings,
we know that for any u∈ T(x),

A
(
g(x)

)− ρ
(
f (x) +u

)∈A
(
g(x)

)
+ ρλM

(
g(x)

)
, (3.3)

that is,

0∈ f (x) +u+ λM
(
g(x)

)
. (3.4)

Therefore, (x,u) is a solution of the problem (2.25). This completes the proof. �

From Lemma 3.1, we can suggest the following iterative algorithm.

Algorithm 3.2. Let μ∈ (0,1] be a constant, let T : X → 2X be a multivalued mapping, and
let f : X → X be a single-valued mapping. For given x0 ∈ X , u0 ∈ T(x0), let

x1 = (1−μ)x0−μ
{
x0− g

(
x0
)

+R
ρλ,A
η,M

[
A
(
g
(
x0
))− ρ

(
f
(
x0
)

+u0
)]}

. (3.5)

By Nadler’s theorem [13], there exists u1 ∈ T(x1) such that

∥
∥u0−u1

∥
∥≤ (1 + 1)Ĥ

(
T
(
x0
)
,T
(
x1
))
. (3.6)

Set

x2 = (1−μ)x1−μ
{
x1− g

(
x1
)

+R
ρλ,A
η,M

[
A
(
g
(
x1
))− ρ

(
f
(
x1
)

+u1
)]}

. (3.7)

By induction, we can define sequences {xn} and {un} inductively satisfying

xn+1 = (1−μ)xn−μ
{
xn− g

(
xn
)

+R
ρλ,A
η,M

[
A
(
g
(
xn
))− ρ

(
f
(
xn
)

+un
)]}

,

un ∈ T
(
xn
)
,
∥
∥un−un+1

∥
∥≤ [1 + (n+ 1)−1]Ĥ

(
T
(
xn
)
,T
(
xn+1

))
.

(3.8)
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Algorithm 3.3. If g ≡ I and λ= μ= 1, then Algorithm 3.2 can be written as follows:

xn+1 = R
ρ,A
η,M

[
A
(
xn
)− ρ

(
f
(
xn
)

+un
)]

,

un ∈ T
(
xn
)
,
∥
∥un−un+1

∥
∥≤ [1 + (n+ 1)−1]Ĥ

(
T
(
xn
)
,T
(
xn+1

))
.

(3.9)

We now discuss the existence of a solution of the problem (2.25) and the convergence
of Algorithm 3.2.

Theorem 3.4. Let X be a q-uniformly smooth Banach space and let A : X → X be r-
strongly η-accretive and ε-Lipschitz continuous, respectively. Suppose that T : X → CB(X)
is γ-Ĥ-Lipschitz continuous, η : X ×X → X is τ-Lipschitz continuous, and M : X → 2X is
(A,η)-accretive. Let g be (d,α)-relaxed cocoercive and β-Lipschitz continuous, let f be (e,δ)-
relaxed cocoercive with respect to g1 and σ-Lipschitz continuous, where g1 : X → X is defined
by g1(x)= A◦ g(x)= A(g(x)) for all x ∈ X . If there exists a constant ρ ∈ (0,r/λm) such that

k = q
√

1− qα+
(
cq +dq

)
βq < 1− ργτq−1

r− ρλm
,

εqβq− qρδ + qρeσq + cqρ
qσq <

[
(1− k)(r− ρλm)τ1−q− ργ

]q
,

(3.10)

where cq is the constant as in Lemma 2.1, then the iterative sequences {xn} and {un} gener-
ated by Algorithm 3.2 converge strongly to x∗ and u∗, respectively, and (x∗,u∗) is a solution
of problem (2.25).

Proof. It follows from (3.8) and Proposition 2.17 that

∥
∥xn+1− xn

∥
∥

= ∥∥(1−μ)xn−μ
{
xn− g

(
xn
)

+R
ρλ,A
η,M

[
A
(
g
(
xn
))− ρ

(
f
(
xn
)

+un
)]}

−(1−μ)xn−1+μ
{
xn−1−g

(
xn−1

)
+R

ρλ,A
η,M

[
A
(
g
(
xn−1

))−ρ( f (xn−1
)

+un−1
)]}∥∥

≤ (1−μ)
∥
∥xn− xn−1

∥
∥+μ

∥
∥xn− xn−1−

[
g
(
xn
)− g

(
xn−1

)]∥∥

+μ
∥
∥R

ρλ,A
η,M

[
A
(
g
(
xn
))−ρ( f (xn

)
+un

)]−Rρλ,A
η,M

[
A
(
g
(
xn−1

))−ρ( f (xn−1
)

+un−1
)]∥∥

≤ (1−μ)
∥
∥xn− xn−1

∥
∥+μ

∥
∥xn− xn−1−

[
g
(
xn
)− g

(
xn−1

)]∥∥

+μ
τq−1

r−ρλm
∥
∥A
(
g
(
xn
))−ρ( f (xn

)
+un

)−[A(g(xn−1
))−ρ( f (xn−1

)
+un−1

)]∥∥

≤ (1−μ)
∥
∥xn− xn−1

∥
∥+μ

∥
∥xn− xn−1−

[
g
(
xn
)− g

(
xn−1

)]∥∥

+
μτq−1

r−ρλm
∥
∥A
(
g
(
xn
))−A(g(xn−1

))−ρ( f (xn
)− f

(
xn−1

))∥∥+
μρτq−1

r−ρλm
∥
∥un−un−1

∥
∥.

(3.11)
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By the assumptions and Lemma 2.1, we know that

∥
∥xn− xn−1−

(
g
(
xn
)− g

(
xn−1

))∥∥q

≤ ∥∥xn− xn−1
∥
∥q− q

〈
g
(
xn
)− g

(
xn−1

)
, Jq
(
xn− xn−1

)〉

+ cq
∥
∥g
(
xn
)− g

(
xn−1

)∥∥q

≤ (1− qα+
(
cq +dq

)
βq
)∥∥xn− xn−1

∥
∥q,

(3.12)

∥
∥A
(
g
(
xn
))−A

(
g
(
xn−1

))− ρ
(
f
(
xn
)− f

(
xn−1

))∥∥q

≤ ∥∥A(g(xn
))−A

(
g
(
xn−1

))∥∥q + cqρ
q
∥
∥ f
(
xn
)− f

(
xn−1

)∥∥q

− qρ
〈
f
(
xn
)− f

(
xn−1

)
, Jq
(
A
(
g
(
xn
))−A

(
g
(
xn−1

)))〉

≤ (εqβq + cqρ
qσq
)∥∥xn− xn−1

∥
∥q

− qρ
(− e

∥
∥ f
(
xn
)− f

(
xn−1

)∥∥q + δ
∥
∥xn− xn−1

∥
∥q)

≤ (εqβq− qρδ + qρeσq + cqρ
qσq
)∥∥xn− xn−1

∥
∥q,

(3.13)

∥
∥un−un−1

∥
∥≤ (1 +n−1)Ĥ

(
T
(
xn
)
,T
(
xn−1

))≤ γ
(
1 +n−1)∥∥xn− xn−1

∥
∥. (3.14)

Combining (3.11)–(3.14), we have

∥
∥xn+1− xn

∥
∥≤ (1−μ+μθn

)∥∥xn− xn−1
∥
∥, (3.15)

where

θn = q
√

1− qα+
(
cq +dq

)
βq +

τq−1 q
√
εqβq− qρδ + qρeσq + cqρqσq

r− ρλm
+
ργτq−1

(
1 +n−1

)

r− ρλm
.

(3.16)

Let θ = q
√

1− qα+ (cq +dq)βq + τq−1 q
√
εqβq− qρδ + qρeσq + cqρqσq/(r− ρλm) + ργτq−1/

(r− ρλm). Then we know that

θn ↓ θ as n−→∞. (3.17)

From the condition (3.10), we know that 0 < θ < 1, and hence there exist an n0 > 0 and
θ0 ∈ (θ,1) such that θn ≤ θ0 for all n≥ n0. Therefore, by (3.15), we have

∥
∥xn+1− xn

∥
∥≤ θ0

∥
∥xn− xn−1

∥
∥, n≥ n0. (3.18)

It follows from (3.18) that

∥
∥xn+1− xn

∥
∥≤ θn−n0

0

∥
∥xn0+1− xn0

∥
∥, n≥ n0. (3.19)
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Hence, for any m≥ n > n0, it follows that

∥
∥xm− xn

∥
∥≤

m−1∑

i=n

∥
∥xi+1− xi

∥
∥≤

m−1∑

i=n
θi−n0

0

∥
∥xn0+1− xn0

∥
∥. (3.20)

Since θ0 < 1, it follows from (3.20) that ‖xm − xn‖ → 0 as n→∞ and hence {xn} is a
Cauchy sequence in X . Let xn → x∗. It follows from (3.14) that {un} is also a Cauchy
sequence in X and so we can suppose that un → u∗ ∈ E. Now we show that u∗ ∈ T(x∗).
In fact, noting that un ∈ T(xn), we have

d
(
u∗,Tx∗

)= inf
{∥∥un− y

∥
∥ : y ∈ T

(
x∗
)}≤ ∥∥u∗ −un

∥
∥+d

(
un,T

(
xn
))

≤ ∥∥u∗ −un
∥
∥+ Ĥ

(
T
(
xn
)
,T
(
x∗
))

≤ ∥∥u∗ −un
∥
∥+ γ

∥
∥xn− xn−1

∥
∥−→ 0.

(3.21)

Hence d(u∗,T(x∗))= 0 and so u∗ ∈ T(x∗).
By continuity, x∗, u∗ satisfy

g
(
x∗
)= R

ρλ,A
η,M

[
A
(
g
(
x∗
))− ρ

(
f
(
x∗
)

+u∗
)]
. (3.22)

By Lemma 3.1, now we know that (x∗,u∗) is a solution of problem (2.25). This completes
the proof. �

From Theorem 3.4, we have the following results.

Theorem 3.5. Let X be a q-uniformly smooth Banach space and let A : X → X be r-
strongly η-accretive and ε-Lipschitz continuous, respectively. Suppose that T : X → CB(X)
is γ-Ĥ-Lipschitz continuous, η : X ×X → X is τ-Lipschitz continuous, M : X → 2X is (A,η)-
accretive, and f is (e,δ)-relaxed cocoercive with respect to A and σ-Lipschitz continuous. If

ρ <
r

m+ γτq−1 ,

εq− qρδ + qρeσq + cqρ
qσq <

(
(r− ρm)τ1−q− ργ

)q
,

(3.23)

where cq is the constant as in Lemma 2.1, then the iterative sequences {xn} and {un} gener-
ated by Algorithm 3.3 converge strongly to x∗ and u∗, respectively, and (x∗,u∗) is a solution
of problem (2.25).

Remark 3.6. (1) In problem (2.25), if M is an (H ,η)-accretive operator or other the exist-
ing accretive operator in Banach space, g is strongly accretive, and f is δ-strongly accretive
with respect to g1, then we can obtain the corresponding results of Theorems 3.4 and 3.5
(see, e.g., [2, Theorems 5.1 and 6.1] and the results of [5, 6, 8], and the references therein).

(2) In problem (2.25), if M is an A-monotone operator or other the existing monotone
operator in Hilbert space, g is strongly monotone, and f is δ-strongly monotone with
respect to g1, then we can obtain the corresponding results of Theorems 3.4 and 3.5 (see,
e.g., [15, Theorem 1], [16, Theorem 1], and [12, Theorems 3.1 and 4.1]).

Thus, our results improve and generalize the corresponding results of recent works.
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