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1. Introduction

This paper deals with a hyperbolic equation with boundary memory source terms:

ρ(x)u′′ −Δu′ −Δu= g(u), x ∈Ω, t > 0,

u= 0, x ∈ Γ0, t > 0,

∂u′

∂ν
+
∂u

∂ν
+ f (u′)=

∫ t

0
K(t− τ)h

(
τ,u(τ)

)
dτ, x ∈ Γ1, t > 0,

u(0,x)= u0(x),
(√

ρu′
)
(0,x)= (√

ρu1
)
(x), x ∈Ω,

(1.1)

where u= u(t,x), Ω is a bounded domain ofRN (N ≥ 1) with sufficiently smooth bound-
ary ∂Ω = Γ0 ∪ Γ1, Γ̄0 ∩ Γ̄1 = ∅, where Γ0 and Γ1 have positive measures. u′ = ∂u/∂t,
u′′ = ∂2u/∂t2. Equations of type (1.1) are of interest in many applications such as in the
theory of electromagnetic materials with memory which obey the Ohm’s law. It can also
describe the temperature evolution in a rigid conductor with a memory. We refer to [8, 9]
to see the details. In many works concerned with equations of type (1.1), we cite Aassila
et al. [1], where the following wave equation was considered:

u′′ −Δu+ f0(∇u)= 0, x ∈Ω, t > 0,

u= 0, x ∈ Γ0, t > 0,

∂u

∂ν
+ g

(
u′
)=

∫ t

0
K(t− τ)h

(
u(τ)

)
dτ, x ∈ Γ1, t > 0,

u(0,x)= u0(x), u′(0,x)= u1(x), x ∈Ω.

(1.2)
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2 Global solutions for a nonlinear hyperbolic equation

Under some conditions on nonlinear terms, they acquired the existence and uniform
decay of solutions. Recently, Park and Park [12] generalized problem (1.2) by endowing
with some discontinuous and multivalued terms. For more related works, we refer to
[3, 4, 7, 11, 13] and the references therein. For problem (1.1) without memory source
term, we point out the work [6] of Cavalcanti et al., where they investigated the following
equation with boundary damping:

ρ(x)u′′ −Δu= 0, x ∈Ω, t > 0,

u= 0, x ∈ Γ0, t > 0,

∂u

∂ν
+ f (u′) + g(u)= 0, x ∈ Γ1, t > 0,

u(0,x)= u0(x),
√
ρu′(0,x)= √

ρu1(x), x ∈Ω.

(1.3)

Through a partition of boundary Γ and Galerkin procedures, they acquired the existence
and decay behavior of the solution to problem (1.3). In another work of theirs [5], using
similar method, they studied problem (1.3) with ρ = 1 and the source term g(u)= |u|pu
coupled in the first equation. Motivated by the above works, we are devoted to study
problem (1.1). By virtue of the potential well method, and through Galerkin procedures,
we acquire the global existence and decay property of perturbed energy of solutions of
problem (1.1). The organization of this paper is as follows. In Section 2, we make as-
sumptions and introduce a potential well, and then state the main results. In Section 3,
making use of Galerkin procedures, we study the existence of solution of problem (1.1).
And in the last section, we derive the uniform decay by the perturbed energy method.

2. Assumptions and main results

In this section, we first give the notations used throughout this paper:

(u,v)=
∫
Ω
u(x)v(x)dx, (u,v)Γ1 =

∫
Γ1

u(x)v(x)dΓ,

‖ · ‖p = ‖·‖Lp(Ω), ‖ · ‖ = ‖ ·‖L2(Ω),

‖ · ‖Γ1,p = ‖·‖Lp(Γ1), ‖ · ‖Γ1 = ‖·‖L2(Γ1),

(2.1)

and r′ denotes the conjugate exponent of r > 1.
Define

V = {
u∈H1(Ω) : u= 0 on Γ0

}
. (2.2)

Since the measure of Γ0 is positive, Poincarè inequality holds and trace embedding theo-
rem holds (see [2]), we know that ‖∇u‖ is equivalent to the norm on V . Let μ1 and μ2 be
the optimal constants such that

‖u‖ ≤ μ1‖∇u‖, ‖u‖Γ1 ≤ μ2‖∇u‖ ∀u∈V. (2.3)

Now we make the following assumptions.
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(A1) f ∈ C(R), f (s)s≥ 0, and there exist positive constants k1 and k2 such that

k1|s|q−1 ≤ | f (s)| ≤ k2|s|q−1, (2.4)

where 2 < q <∞ if N = 1,2; 2 < q ≤ 2(N − 1)/(N − 2) if N ≥ 3.
(A2) g ∈ C(R), g(s) s≥ 0, and there exists positive constant k3 such that

∣∣g(s)
∣∣≤ k3|s|p, (2.5)

where 1 < p <∞ if N = 1,2; 1 < p ≤N/(N − 2) if N ≥ 3.
(A3) K :R+ →R+ is a continuously differentiable function verifying

K ′(t)≤−k4K(t) ∀t ≥ 0, K(0) > 0, 1−μ2
2

∫∞
0
K(s)ds� L > 0, (2.6)

where k4 > 0.
(A4) h(τ,s) is measurable with τ and continuous with s, and it satisfies

∣∣h(τ,s)− s
∣∣≤

√
K(τ)
K(0)

|s| ∀s∈R, τ ≥ 0. (2.7)

(A5) ρ(x)≥ 0, ρ �≡ 0 and ρ ∈ L∞(Ω).
(A6) Assume that the initial data

u0,u1 ∈V ∩H3/2(Ω) (2.8)

and satisfy the compatibility conditions

−Δ(u0 +u1
)= g

(
u0
)
, x ∈Ω,

u0 = 0, u1 = 0, x ∈ Γ0,

∂u0

∂ν
+
∂u1

∂ν
+ f

(
u1
)= 0, x ∈ Γ1.

(2.9)

Remark 2.1. (i) The assumptions (A3) and (A4) imply that h(τ,s)≈ (1 +
√
K(τ))s.

(ii) Given u1 ∈ V ∩H3/2(Ω), by the assumption (A2) and the theory of elliptic prob-
lems, we see that problem (2.9) admits a weak solution u0 ∈V ∩H3/2(Ω).

Let B∗ > 0 be the optimal constant such that

‖v‖p+1 ≤ B∗‖∇v‖ ∀v ∈V , (2.10)

where p is the number given in the assumption (A2).
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If we define

B∞ � sup
v∈V ,v �=0

(
(1/(p+ 1))‖v‖p+1

p+1

‖∇v‖p+1

)
, (2.11)

then

B∞ ≤ B
p+1
∗

p+ 1
,

1
p+ 1

‖v‖p+1
p+1 ≤ B∞‖∇v‖p+1 ∀v ∈V. (2.12)

Now for some function u, we define

J(u)= L

2
‖∇u‖2− k3

p+ 1
‖u‖p+1

p+1,

E(t)= 1
2

∥∥√ρu′∥∥2
+

1
2
‖∇u‖2−

∫
Ω
G(u)dx− 1

2

(∫ t

0
K(τ)dτ

)∥∥u(t)
∥∥2
Γ1

+
1
2

(K�u)(t),

(2.13)

where

G(s)=
∫ s

0
g(η)dη, (K�u)(t)=

∫ t

0
K(t− τ)

∥∥h(τ,u(τ)
)−u(t)

∥∥2
Γ1
dτ. (2.14)

Putting

d � inf
u∈V ,u�=0

{
sup
λ>0

J(λu)

}
, H(λ) � L

2
λ2− k3B∞λp+1, λ > 0. (2.15)

We have the following result.

Proposition 2.2. Let the assumptions (A2)–(A4) be fulfilled. It holds that

d =max
λ>0

H(λ)=H
(
λ∞

)= (p− 1)L
2(p+ 1)

λ2
∞, (2.16)

where λ∞ = (L/(p+ 1)k3B∞)1/(p−1).
If ‖∇u‖ < λ∞, then

J(u)≥ 0, ‖∇u‖2 ≤ 2(p+ 1)
(p− 1)L

E(t). (2.17)

Proof. From

H′(λ)= Lλ− (p+ 1)k3B∞λp =
[
L− (p+ 1)k3B∞λp−1]λ, (2.18)
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we see that λ∞ = [L/((p+ 1)k3B∞)]1/(p−1) is the maximum point of H . Hence,

max
λ>0

H(λ)=H
(
λ∞

)= (p− 1)L
2(p+ 1)

λ2
∞. (2.19)

Note the definition of B∞, by the direct computation, we have

d = inf
u∈V ,u�=0

{
sup
λ>0

J(λu)

}

=
[
L

2

(
L

k3

)2/(p−1)

− k3

p+ 1

(
L

k3

)(p+1)/(p−1)
]

inf
u∈V ,u�=0

⎛
⎝‖∇u‖p+1

‖u‖p+1
p+1

⎞
⎠

2/(p−1)

= (p− 1)L
2(p+ 1)

(
L

(p+ 1)k3B∞

)2/(p−1)

= (p− 1)L
2(p+ 1)

λ2
∞.

(2.20)

Thus the first conclusion is valid.
If ‖∇u‖ < λ∞, then we obtain

E(t)≥ J
(
u(t)

)≥ L

2
‖∇u‖2− k3B∞‖∇u‖p+1 > ‖∇u‖2

(
L

2
− k3B∞λ

p−1
∞

)

= ‖∇u‖2
(
L

2
− L

p+ 1

)
= (p− 1)L

2(p+ 1)
‖∇u‖2.

(2.21)

Thus the second conclusion is valid. �

Remark 2.3. The number d defined in Proposition 2.2 is the Mountain Pass level related
to the elliptic problem

−LΔu= k3|u|p−1u, x ∈Ω,

u= 0, x ∈ Γ0,

∂u

∂ν
= 0, x ∈ Γ1,

(2.22)

see [5] or [14]. In fact, d is equal to the number

inf
α∈Λ

sup
t∈[0,1]

J
(
α(t)

)
, (2.23)

where

Λ= {
α∈ C

(
[0,1];V

)
; α(0)= 0, J(α(1)) < 0

}
. (2.24)
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Now we are in a position to state the main results of this paper.

Theorem 2.4. Let the assumptions (A1)–(A6) hold. If in addition, the initial data satisfy

∥∥∇u0
∥∥ < λ∞, E(0) < d, (2.25)

then for any T > 0, problem (1.1) admits a solution u ∈ L∞(0,T ;V) and satisfies √ρu′ ∈
L∞(0,T ;L2(Ω)), u′ ∈ L2(0,T ;V), ρu′′ ∈ Lq

′
(0,T ;L2(Ω)).

Theorem 2.5. Let u be the solution obtained in Theorem 2.4. If q = 2, then the solution u
verifies the following decay estimate:

E(t)≤ 3d exp
(
− 2

3
Ct
)

∀t ≥ 0 (2.26)

for some positive constant C.

3. Proof of Theorem 2.4

In this section, we will use Faedo-Galerkin procedure to prove Theorem 2.4.
Step 1. Let {ωk}∞k=1 be a basis in V , which is orthogonal in L2(Ω). For fixed n, let

Vn =
[
ω1, . . . ,ωn

]
(3.1)

be the linear span of {ωk}nk=1, and let

ρε = ρ+ ε (ε > 0), uεn(t)=
n∑

k=1

qεkn(t)ωk ∈Vn. (3.2)

Consider the Cauchy problem:

(
ρεu

′′
εn,ω

)
+
(∇u′εn(t),∇ω)+

(∇uεn(t),∇ω)+
(
f
(
u′εn

)
,ω
)
Γ1

= (
g
(
uεn

)
,ω
)

+
∫ t

0
K(t− τ)

(
h
(
τ,uεn(τ)

)
,ω
)
Γ1
dτ, ∀ω ∈Vn,

(3.3)

uεn(0)=
n∑

k=1

qεkn(0)ωk −→ u0 strongly in V , (3.4)

u′εn(0)=
n∑

k=1

q′εkn(0)ωk −→ u1 strongly in L2(Ω). (3.5)

By the standard method of ordinary differential equations, system (3.3)-(3.4) has a local
solution uεn(t) on interval (0, tεn) with qεkn(t) ∈W2,1(0, tεn). The extension of this solu-
tion to the whole interval [0,∞) will be deduced by a series a priori estimates.
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Using the method exploited in the paper [15], we can construct the energy function
and the energy identity associated to problem (3.3)-(3.4) as follows:

Eεn(t)= 1
2

∥∥√ρεu′εn
∣∣2

+
1
2

∥∥∇uεn∥∥2−
∫
Ω
G
(
uεn

)
dx

− 1
2

(∫ t

0
K(τ)dτ

)∥∥uεn(t)
∥∥2
Γ1

+
1
2

(
K�uεn

)
(t),

(3.6)

Eεn(t)−Eεn(s)=−
∫ t

s

∫
Γ1

f
(
u′εn(η)

)
u′εn(η)dΓdη

−
∫ t

s
‖∇u′εn(η)‖2dη+

1
2

∫ t

s

(
K ′�uεn

)
(η)dη

+
K(0)

2

∫ t

s

∥∥h(η,uεn(η)
)−uεn(η)

∥∥2
Γ1
dη− 1

2

∫ t

s
K(η)

∥∥uεn(η)
∥∥2
Γ1
dη

(3.7)

for 0≤ s≤ t < tεn.
Using the assumption (A4), it is easily known that

K(0)
2

∫ t

s

∥∥h(η,uεn(η)
)−uεn(η)

∥∥2
Γ1
dη− 1

2

∫ t

s
K(η)

∥∥uεn(η)
∥∥2
Γ1
dη ≤ 0. (3.8)

Then using the assumption (A3), (3.7) and (3.8) imply that Eεn(t) is a decreasing function.
By the assumption (A2), we see that

∣∣G(u)
∣∣≤ C1|u|p+1, (3.9)

Here and in the sequel Ci, i= 1,2, . . . , will denote various constants independent of ε and
n. Exploiting the continuity of the Nemyskii operator and (3.4), it follows that

∫
Ω
G
(
u0εn

)
dx −→

∫
Ω
G
(
u0
)
dx as n−→∞. (3.10)

Therefore, using (3.4) and (3.5), it entails

Eεn(0)−→ E(0) as n−→∞, ε−→ 0. (3.11)

Define

Bn � sup
u∈Vn,u�=0

(
(1/(p+ 1))‖u‖p+1

p+1

‖∇u‖p+1

)
, λn �

(
L

(p+ 1)k3Bn

)1/(p−1)

,

dn � (p− 1)L
2(p+ 1)

λ2
n.

(3.12)
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By the assumption (A2), it follows that

0 < Bn ≤ Bn+1 ≤ ··· ≤ B∞, λ∞ ≤ ··· ≤ λn+1 ≤ λn,d ≤ ··· ≤ dn+1 ≤ dn, n≥ 1.
(3.13)

By (2.25), (3.4), (3.5), (3.11), and (3.13), we know that, for sufficiently large n0 and suf-
ficiently small ε0,

∥∥∇uεn(0)
∥∥ < λn, Eεn(0) < dn, n≥ n0, ε ≤ ε0. (3.14)

From now on, we may assume that n≥ n0 and ε ≤ ε0. By (3.6) and the assumptions (A2)
and (A3), we deduce that

Eεn(t)≥ L

2

∥∥∇uεn(t)
∥∥2− k3Bn

∥∥∇uεn(t)
∥∥p+1 =Hn

(∥∥∇uεn(t)
∥∥), (3.15)

where Hn(λ)= (L/2)λ2− k3Bnλp+1 has the similar property of the function H defined in
Proposition 2.2. It is easy to verify that Hn is increasing for 0 < λ < λn and decreasing for
λ > λn, Hn(λn)= dn, and Hn(λ)→−∞ as λ→ +∞. Since Eεn(0) < dn, there exist λ1

n < λn <
λ2
n such that Hn(λ1

n)=Hn(λ2
n)= Eεn(0). From (3.7) and (3.8), we have

Eεn(t)≤ Eεn(0) ∀t ∈ [
0, tεn

)
. (3.16)

Denote λ0
n = ‖∇uεn(0)‖, so λ0

n < λn. By (3.15), we have Hn(λ0
n)≤ Eεn(0), thus λ0

n < λ1
n.

We claim that ‖∇uεn(t)‖ ≤ λ1
n for all t ∈ [0, tεn). Suppose, by contradiction, that

‖∇uεn(t0)‖ > λ1
n for some t0 ∈ (0, tεn). From the continuity of ‖∇uεn(·)‖, we can sup-

pose that ‖∇uεn(t0)‖ < λn. Then by (3.15), Eεn(t0)≥Hn(‖∇uεn(t0)‖) > Hn(λ1
n)= Eεn(0),

which contradicts (3.16). From (3.14) and (3.16), it yields Eεn(t) < dn for t ∈ [0, tεn). Then
using (3.13), one gets

∥∥∇uεn(t)
∥∥≤ λ1, Eεn(t) < d1 (3.17)

for t ∈ [0, tεn). By (3.17), the assumption (A2), and the Sobolev embedding theorem, we
deduce that

∫
Ω
G
(
uεn

)
dx ≤ k3

p+ 1

∥∥uεn∥∥p+1
p+1 ≤ C2. (3.18)

Therefore, from (3.6), (3.17), and (3.18), it follows that

∥∥√ρεu′εn(t)
∥∥≤ C3. (3.19)

Estimates (3.17) and (3.19) imply that tεn =∞.
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For any T > 0 and for all t ∈ [0,T], by the assumptions (A1), (A3), and (A4), we get
from (3.7), (3.14), and (3.16) that

∫ t

0

∥∥∇u′εn(τ)
∥∥2
dτ ≤ C4,

∫ t

0

∥∥u′εn(τ)
∥∥q
Γ1,qdτ ≤ k−1

1

∫ t

0

(
f
(
u′εn(τ)

)
,u′εn(τ)

)
Γ1
dτ ≤ C5.

(3.20)

Then using the assumptions (A1)-(A2), the Sobolev embedding theorem, (3.13), and
(3.20), we derive that, for all t ∈ [0,T],

∫ t

0

∥∥ f (u′εn)
∥∥q′
Γ1,q′dτ ≤ C6,

∥∥g(uεn)∥∥(p+1)′

(p+1)′ ≤ C7. (3.21)

Similarly, by the assumptions (A3)-(A4) and the Sobolev embedding theorem, it leads to

∫ t

0

∥∥h(τ,uεn(τ)
)∥∥

Γ1
dτ ≤ C8,

∥∥∥∥∥
∫ t

0
K(t− τ)h

(
τ,uεn(τ)

)
dτ

∥∥∥∥∥
Γ1

≤ C9 ∀t ∈ [0,T].

(3.22)

Replacing ω in (3.3) with v ∈ V , and exploiting the Hölder inequality, the Sobolev em-
bedding theorem, (3.17), (3.21), and (3.22), it entails

∣∣(ρεu′′εn,v
)∣∣≤ C10

(∥∥∇u′εn
∥∥+

∥∥∇uεn∥∥+
∥∥ f (u′εn)

∥∥
Γ1,q′ +

∥∥g(uεn)∥∥(p+1)′

+

∥∥∥∥∥
∫ t

0
K(t− τ)h

(
τ,uεn(τ)

)
dτ

∥∥∥∥∥
Γ1

)
‖∇v‖,

∥∥ρεu′′εn
∥∥≤ C11

(
1 +

∥∥∇u′εn
∥∥+

∥∥ f (u′εn)
∥∥
Γ1,q′

)

(3.23)

for all t ∈ [0,T].
Integrating the above inequality over [0, t], using (3.20)-(3.21) and the Hölder in-

equality, we get

∫ t

0

∥∥ρεu′′εn
∥∥q′dτ ≤ C12

∫ t

0

(
1 +

∥∥∇u′εn
∥∥q′ +

∥∥ f (u′εn)
∥∥q′
Γ1,q′

)
dτ ≤ C13. (3.24)
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Step 2. The limiting process. From the estimates (3.17), (3.19)–(3.24), using the standard
arguments, it yields that, up to a subsequence, as n→∞,

uεn −→ uε weakly∗ in L∞(0,T ;V),
√
ρεu

′
εn −→

√
ρεu

′
ε weakly∗ in L∞

(
0,T ;L2(Ω)

)
,

(3.25)

u′εn −→ u′ε weakly in L2(0,T ;V), (3.26)

f
(
u′εn

)−→ γ weakly∗ in Lq
′(

(0,T)×Γ1
)
, (3.27)

g
(
uεn

)−→ χ weakly∗ in L∞
(
0,T ;L(p+1)′(Ω)

)
, (3.28)

h
(
t,uεn

)−→ ξ weakly in L2(0,T ;L2(Ω)
)
, (3.29)

ρεu
′′
εn −→ ρεu

′′
ε weakly∗ in Lq

′(
0,T ;L2(Ω)

)
. (3.30)

SinceV↩L2(Ω) andV↩L2(Γ1), then by the Aubin-Lions compactness lemma [10, The-
orem 5.1], we get from (3.25) and (3.26) that, as n→∞,

uεn −→ uε strongly in L2(0,T ;L2(Ω)
)

and a.e. on (0,T)×Ω, (3.31)

uεn −→ uε strongly in L2(0,T ;L2(Γ1
))

and a.e. on (0,T)×Γ1,

u′εn −→ u′ε strongly in L2(0,T ;L2(Ω)
)

and a.e. on (0,T)×Ω,
(3.32)

u′εn −→ u′ε strongly in L2(0,T ;L2(Γ1
))

and a.e. on (0,T)×Γ1, (3.33)

From (3.25), (3.26), and (3.30), we acquire, as n→∞,

(
uεn,ω

)−→ (
uε,ω

)
weakly in L2[0,T], (3.34)

(
u′εn,ω

)−→ (
u′ε,ω

)
weakly in L2[0,T],

(
ρεu

′′
εn,ω

)−→ (
ρεu

′′
ε ,ω

)
weakly in Lq

′
[0,T].

(3.35)

Note that W1,2[0,T]↩C[0,T] and W1,q′↩C[0,T], from (3.35), we get that

(
uεn(0),ω

)−→ (
uε(0),ω

)
,
(
u′εn(0),ω

)−→ (
u′ε(0),ω

)
, (3.36)

and hence

uε(0)= u0 in V , u′ε(0)= u1 in L2(Ω). (3.37)

Now letting n→∞ in (3.3) and using (3.25)–(3.37), we acquire

∫ T

0

[(
ρεu

′′
ε ,v

)
+
(∇u′ε,∇v)+

(∇uε,∇v)+ (γ,v)Γ1 − (χ,v)
]
dt

=
∫ T

0

∫ t

0
K(t− τ)(ξ,v)Γ1dτ dt

(3.38)

for any v ∈V .
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Step 3. We first prove γ = f (u′ε). By (3.33), the continuity of f (s), we see that f (u′εn)→
f (u′ε) and a.e. on (0,T)× Γ1. Thus by use of (3.21), and of Lions’ [10, Lemma 1.3], we
have f (u′εn)→ f (u′ε) weakly in Lq

′
((0,T)×Γ1). Then (3.27) and the uniqueness of weak∗

limit give γ = f (u′ε) in Lq
′
((0,T)× Γ1). By analogous analysis, one can get ξ = h(t,uε(t))

in L2((0,T)×Γ1).
Below we show χ = g(uε) along the line of the paper [16]. By (3.31) and the continuity

of g(s), we have g(uεn)→ g(uε) a.e. on QT = (0,T)×Ω. Therefore, exploiting Lusin and
Egoroff ’s theorem, for any δ > 0, there exists a measurable set Q ⊂QT such that |Q| < δ,
and g(uεn)→ g(uε) uniformly on QT \Q as n→∞. By the Sobolev embedding theorem,
we know from (3.25) that uε ∈ Lp+1(QT). And hence the assumption (A2) implies that
g(uε)∈ L(p+1)′(QT). For any p̂ > p, by the use of (3.28), we get

∥∥g(uεn)− g
(
uε
)∥∥

L( p̂+1)′ (Q) ≤
∥∥g(uεn)− g

(
uε
)∥∥

L(p+1)′ (Q)δ
( p̂−p)/( p̂+1)(p+1)

≤ C14δ
( p̂−p)/( p̂+1)(p+1).

(3.39)

So, as n→∞,

∥∥g(uεn)− g
(
uε
)∥∥

L( p̂+1)′ (QT )

≤ ∥∥g(uεn)− g
(
uε
)∥∥

L( p̂+1)′ (Q) +
∥∥g(uεn)− g

(
uε
)∥∥

L( p̂+1)′ (QT\Q)

≤ C15δ
( p̂−p)/( p̂+1)(p+1).

(3.40)

By the arbitrariness of δ, we get that, as n→∞,

g
(
uεn

)−→ g
(
uε
)

strongly in L( p̂+1)′(QT
)
. (3.41)

Using (3.28), (3.41), and the uniqueness of weak∗ limit, we acquire that χ = g(uε) in
L( p̂+1)′(QT).

Because C∞0 (QT) is dense in Lp+1(QT), for any φ ∈ Lp+1(QT), we can choose a sequence
{φn}, φn in C∞0 (QT) (n= 1,2, . . .), such that φn→ φ strongly in Lp+1(QT), and

∣∣∣∣∣
∫ T

0

(
g
(
uε
)− χ,φn−φ

)
dt

∣∣∣∣∣≤
∥∥g(uε)− χ

∥∥
L(p+1)′ (QT )

∥∥φn−φ
∥∥
Lp+1(QT ) −→ 0 (3.42)

as n→∞. From (3.42), it follows that

∫ T

0

(
g
(
uε
)− χ,φ

)
dt = lim

n→∞

∫ T

0

(
g
(
uε
)− χ,φn

)
dt −→ 0,

g
(
uε
)= χ in L(p+1)′(QT

)
.

(3.43)

Note that all the estimates above are independent of ε, then using the similar arguments as
above and letting ε→ 0, there exists a limit function u of uε being the solution of problem
(1.1). The proof of Theorem 2.4 is completed.



12 Global solutions for a nonlinear hyperbolic equation

4. Proof of Theorem 2.5

In order to derive the decay property of the solution given by Theorem 2.4, we divide the
proof into two cases.
Case 1. Suppose that

∫ t

0

(∥∥√ρu′(τ)
∥∥2

+
∥∥∇u(τ)

∥∥2
)
dτ ≤ E(t) (4.1)

for all t ≥ 0. In this situation, we first prove two lemmas, then based on them, we complete
the proof.

Define

m(t)= (
ρu′(t),u(t)

)− k
∫ t

0

[∥∥√ρu′(τ)
∥∥2

+
∥∥∇u(τ)

∥∥2]
dτ, Eσ(t)= E(t) + σm(t),

(4.2)

where k = μ2
2‖K‖L1(0,∞) + (p+ 1)L/2.

Lemma 4.1. There exists K1 > 0 such that for each σ > 0,
∣∣Eσ(t)−E(t)

∣∣≤ σK1E(t) ∀t ≥ 0. (4.3)

Proof. By the definition of Bn and B∞, it is easy to get limn→∞Bn = B∞, and so

lim
n→∞λn = λ∞, lim

n→∞dn = d∞. (4.4)

Since ‖∇uεn(t)‖ ≤ λn and Eεn(t) ≤ dn, by letting n → ∞ and ε → 0, we know that
‖∇u(t)‖ ≤ λ∞ and E(t)≤ d∞. Therefore, by the conclusion of Proposition 2.2, we know
that

∥∥∇u(t)
∥∥2 ≤ 2(p+ 1)

(p− 1)L
E(t), (4.5)

1
2

∥∥∇u(t)
∥∥2−

∫
Ω
G
(
u(t)

)
dx ≥ J

(
u(t)

)≥ 0. (4.6)

Then by the assumptions (A3)-(A4) and the second inequality of (2.3), it is easy to show

E(t)≥ 1
2

∥∥√ρu′(t)∥∥2
+
L

2

∥∥∇u(t)
∥∥2−

∫
Ω
G
(
u(t)

)
dx. (4.7)

Applying the Hölder inequality, the Young inequality, (2.3), and (4.5)–(4.7), we have
∣∣(ρu′(t),u(t)

)∣∣≤ ∥∥√ρ∥∥∞
∥∥√ρu′(t)∥∥∥∥u(t)

∥∥

≤ ‖
√
ρ‖2∞
2

∥∥√ρu′(t)∥∥2
+
μ2

1

2

∥∥∇u(t)
∥∥2

≤
(∥∥√ρ∥∥2

∞ +
p+ 1
p− 1

L−1μ2
1

)
E(t).

(4.8)

Take K1 = k+‖√ρ‖2∞ + ((p+ 1)/(p− 1))L−1μ2
1, we conclude the result. �
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Lemma 4.2. There exist K2 > 0 and σ1 > 0 such that
(
Eσ
)′

(t)≤−σK2E(t) ∀t ≥ 0, ∀σ ∈ (
0,σ1

]
. (4.9)

Proof. Using problem (1.1), we get that

m′(t)= (
ρu′′(t),u(t)

)
+
(
ρu′(t),u′(t)

)− k
[∥∥√ρu′(t)∥∥2

+
∥∥∇u(t)

∥∥2
]

=−(∇u′(t),∇u(t)
)−∥∥∇u(t)

∥∥2− (
f (u′(t)

)
,u(t)

)
Γ1

+
(
g
(
u(t)

)
,u(t)

)

+
∫ t

0
K(t− τ)

(
h
(
τ,u(τ)

)
,u(t)

)
Γ1
dτ +

(
ρu′(t),u′(t)

)− k
[∥∥√ρu′(t)∥∥2

+
∥∥∇u(t)

∥∥2
]

≤−E(t) +
3
2
‖ρ‖∞

∥∥u′(t)∥∥2− (∇u′(t),∇u(t)
)−

(
1
2

+ k
)∥∥∇u(t)

∥∥2−
∫
Ω
G
(
u(t)

)
dx

− 1
2

(∫ t

0
K(τ)dτ

)
‖u‖2

Γ1
+

1
2

(K�u)(t)− (
f
(
u′(t)

)
,u(t)

)

+
(
g
(
u(t)

)
,u(t)

)
+
∫ t

0
K(t− τ)

(
h
(
τ,u(τ)

)
,u(t)

)
Γ1
dτ.

(4.10)

Exploiting assumptions (A3), (A4), the Hölder inequality, the Young inequality, and (2.3),
we have

∣∣∣∣∣
∫ t

0
K(t− τ)

(
h
(
τ,u(τ)

)
,u(t)

)
Γ1
dτ

∣∣∣∣∣

≤ μ2
2‖K‖L1(0,∞)

∥∥∇u(t)
∥∥2

+
1
4

∫ t

0
K(t− τ)

∥∥h(τ,u(τ)
)∥∥2

Γ1
dτ

≤ μ2
2‖K‖L1(0,∞)

∥∥∇u(t)
∥∥2

+
1
2

(K�u)(t) +
1
2

(∫ t

0
K(τ)dτ

)∥∥u(t)
∥∥2
Γ1

,

(4.11)

∣∣− (∇u′(t),∇u(t)
)∣∣≤ 1

4

∥∥∇u(t)
∥∥2

+
∥∥∇u′(t)∥∥2

. (4.12)

By the assumption (A2) and noting (4.6), we get

∣∣(g(u(t)
)
,u(t)

)∣∣≤ k3
∥∥u(t)

∥∥p+1
p+1 ≤

(p+ 1)L
2

∥∥∇u(t)
∥∥2
. (4.13)

Applying the assumption (A1) with q = 2, the Hölder inequality, the trace embedding
theorem, and the Young inequality, we have

∣∣− (
f
(
u′(t)

)
,u(t)

)
Γ1

∣∣≤ k2
∥∥u′(t)∥∥Γ1

∥∥u(t)
∥∥
Γ1
≤ k2

2μ
4
2

∥∥∇u′(t)∥∥2
+

1
4

∥∥∇u(t)
∥∥2
. (4.14)

Combining (4.5), (4.10)–(4.14), and the assumptions (A2) and (A4), we get

m′(t)≤−E(t)
(

3
2
‖ρ‖∞μ2

1 + k2
2μ

4
2 + 1

)∥∥∇u′(t)∥∥2
+ (K�u)(t). (4.15)
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Moreover, by the assumptions (A1), (A3), and (A4), we get from (3.7) and (3.8) that

E′(t)≤−∥∥∇u′(t)∥∥2
+

1
2

(
K ′�u

)
(t)

≤−∥∥∇u′(t)∥∥2− k4

2
(K�u)(t).

(4.16)

Combining (4.15) and (4.16), we get

(
Eσ
)′

(t)= E′(t) + σm′(t)≤−σE(t)−
(
k4

2
− σ

)
(K�u)(t)

−
[

1− σ
(

3
2
‖ρ‖∞μ2

1 + k2
2μ

4
2 + 1

)]∥∥∇u′(t)∥∥2
.

(4.17)

Now we choose σ sufficiently small such that

k4

2
− σ > 0, 1− σ

(
3
2
‖ρ‖∞μ2

1 + k2
2μ

4
2 + 1

)
> 0. (4.18)

Then take K2 = σ in (4.17) to complete the proof. �

Completion of the proof of Case 1. Let σ0=min{1/(2K1),σ1}. Then for σ∈(0,σ0], we know
from Lemma 4.1 that

1
2
E(t)≤ Eσ(t)≤ 3

2
E(t). (4.19)

Set K3 = σK2 = σ2, by Lemma 4.2 and (4.19), it yields

(
Eσ
)′

(t)≤−K3E(t)≤−2
3
K3E

σ(t). (4.20)

Hence

d

dt

[
Eσ(t)exp

(
2
3
K3t

)]
≤ 0 ∀t ≥ 0. (4.21)

Integrating (4.21) and using (4.19), we have

E(t)≤ 3E(0)exp
(
− 2

3
K3t

)
∀t ≥ 0. (4.22)

The proof of Case 1 is completed. �

Case 2. Suppose that there exists a t0 ≥ 0 such that

∫ t0

0

(∥∥√ρu′(τ)
∥∥2

+
∥∥∇u(τ)

∥∥2
)
dτ > E

(
t0
)
. (4.23)

Without loss of generality, we suppose that t0 > 0 and is the first one such that the above
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inequality holds. This fells out that

∫ t0

0

(∥∥√ρu′(τ)
∥∥2

+
∥∥∇u(τ)

∥∥2
)
dτ ≤ E(t) ∀t ∈ [

0, t0
)
. (4.24)

Then along the line of proofs for Case 1, we deduce that (4.22) holds for each t ∈ [0, t0).
On the other hand, by (4.5)-(4.6) and the nonincreasing property of E(t), we easily get

that for all t ≥ t0,

∥∥√ρu′(t)∥∥2
+
∥∥∇u(t)

∥∥2 ≤ CE(t)≤ CE
(
t0
)

≤ C
∫ t0

0

[∥∥√ρu′(τ)
∥∥2

+
∥∥∇u(τ)

∥∥2
]
dτ

≤ C
∫ t

0

[∥∥√ρu′(τ)
∥∥2

+
∥∥∇u(τ)

∥∥2
]
dτ,

(4.25)

where C is a positive constant. Then by the Gronwall inequality and noting that ρ �≡ 0,
we infer from (4.25) that u= 0 as t ≥ t0. Therefore, the decay property of u is trivial for
t ≥ t0. Case 2 is proved.

Combining Case 1 and Case 2, we complete the proof Theorem 2.5.
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