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Received 9 June 2005; Accepted 24 August 2005

We give exact closed-form expressions for the Kolmogorov and the total variation dis-
tances between Poisson, binomial, and negative binomial distributions with different
parameters. In the Poisson case, such expressions are related with the Lambert W func-
tion.
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1. Introduction

Estimates of the closeness between probability distributions measured in terms of certain
distances, particularly, the Kolmogorov and the total variation distances are very com-
mon in theoretical and applied probability. Usually, the results refer to upper estimates
of those distances, even sharp upper bounds in some sense. As far as we know, only a few
exceptions deal with exact formulae (see, e.g., Kennedy and Quine [5], where the exact
total variation distance between binomial and Poisson distributions is given for small val-
ues of the success parameter of the binomial). Although numerical computations seem
to be unavoidable, exact expressions are only useful if they are easy to handle.

The aim of this note is to provide exact closed-form expressions for the Kolmogorov
and the total variation distances between Poisson, binomial, and negative binomial distri-
butions with different parameters. In many occasions, these distances appear as ingredi-
ents to estimate other distances in more complex situations (see, e.g., Ruzankin [8]). On
the other hand, it is interesting to observe that, in the Poisson case, such exact formulae
involve the Lambert W function. This function, for which efficient numerical procedures
of evaluation are known, has many applications in pure and applied mathematics (for
more details, see Corless et al. [3], Barry et al. [2], and the references therein).

Denote by N the set of nonnegative integers and by N∗ := N \ {0}. Given two N-
valued random variables X and Y , the Kolmogorov and the total variation distances be-
tween them are respectively defined by dK (X ,Y) := supk∈N |P(X ≥ k)− P(Y ≥ k)| and
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2 Exact Kolmogorov and total variation distances

dTV(X ,Y) := supA⊆N |P(X ∈ A)−P(Y ∈ A)|. We denote by

f (k) := P(X = k)
P(Y = k)

, k ∈N,
(
a

0
:=∞, a≥ 0

)
. (1.1)

All of the examples in the following section rely upon the following easy result.

Theorem 1.1. If the function f (·) is nondecreasing, then

dK (X ,Y)= dTV(X ,Y)= P(X ≥ �)−P(Y ≥ �), (1.2)

where � := inf{k ∈N : f (k)≥ 1}.
Proof. Since f (·) is nondecreasing, we have that {k ∈ N : P(X = k) ≥ P(Y = k)} = {�,
� + 1, . . .}. This readily implies the statements in Theorem 1.1. �

2. Examples

Poisson, binomial, and negative binomial distributions are among the most widely used
discrete distributions in modelling different phenomena. In this section, we give exact
distances for these distributions and recall some related upper estimates available in the
literature.

2.1. Poisson distributions. For any t > 0, let N(t) be a random variable having the Pois-
son distribution with mean t, that is,

P
(
N(t)= k

)
:= e−t

tk

k!
, k ∈N. (2.1)

Some upper bounds for the total variation distance between two Poisson distributions
with different means are the following:

dTV
(
N(t+ x),N(t)

)≤min
{

1− e−x,
∫ t+x

t
P
(
N(u)= �u	)du

}

≤
∫ t+x

t
P
(
N(u)= �u	)du≤min

⎧⎨
⎩x,

√
2
e

(√
t+ x−√t)

⎫⎬
⎭ , t,x ≥ 0,

(2.2)

where �x	 stands for the integer part of x. The first upper bound in (2.2) is given in Adell
and Lekuona [1, Corollary 3.1], the second in Ruzankin [8, Lemma 1], while the third
can be found in Roos [7, formula (5)]. On the other hand, the Poisson-gamma relation
states (cf. Johnson et al. [4, page 164]) that

P
(
N(t)≤ n

)=
∫∞
t
P
(
N(u)= n

)
du, n∈N, t ≥ 0. (2.3)

For any x ≥ 0, we denote by �x� the ceiling of x, that is, �x� := inf{k ∈N : k ≥ x}. Con-
cerning Poisson distributions, we enunciate the following.
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Figure 2.1. The two real branches of W(x). Dashed line: W−1(x); dotted line: W0(x).

Proposition 2.1. For any t > 0 and x > 0, we have

dK
(
N(t+ x),N(t)

)= dTV
(
N(t+ x),N(t)

)=
∫ t+x

t
P
(
N(u)= �− 1

)
du, (2.4)

where

�t� ≤ � := �(t,x)=
⌈

x

log(1 + x/t)

⌉
≤ �t+ x�. (2.5)

Proof. Fix t > 0 and x > 0. Observe that the function

f (k) := P
(
N(t+ x)= k

)
P
(
N(t)= k

) = e−x
(

1 +
x

t

)k
, k ∈N (2.6)

is increasing and that inf{k ∈N : f (k)≥ 1} = �, as defined in (2.5). Therefore, (2.4) fol-
lows from Theorem 1.1 and (2.3). The first inequality in (2.5) follows from the well-
known inequality log(1 + y) ≤ y, y ≥ 0, while the second follows from the fact that
(t+ y) log(1 + (y/t))≥ y, y ≥ 0. The proof is complete. �

In view of Proposition 2.1, it may be of interest to characterize the sets

A� := {(t,x) : t > 0, x > 0, �(t,x)= �
}

, � ∈N∗. (2.7)

To this end, we consider the Lambert W function (see Figure 2.1), defined as the solution
to the equation

W(x)eW(x) = x, x ≥−1
e
. (2.8)

For−1/e ≤ x < 0, there are two possible real branches of W(x). We will only be interested
in the branch taking on values in (−∞,−1], denoted in the literature by W−1(x). It is
known that W−1(−1/e)=−1, W−1(x) is decreasing and that W−1(x)→−∞ as x→ 0. A
review of the history, theory and applications of the Lambert W function may be found
in Corless et al. [3] and Barry et al. [2].
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Figure 2.2. Picture of A� as the shadowed region.

Let k ∈N and t > 0. We consider the function

gk,t(x) := e−x
(

1 +
x

t

)k
, x ≥ 0. (2.9)

The following properties are easy to check. The equation gk,t(x) = 1 has x = 0 as the
unique solution if k ≤ t, and has one positive solution, together with the null solution,
if k > t. Denote by rk(t) the largest solution to the equation gk,t(x) = 1. Since gk+1,t(x) >
gk,t(x), x > 0, k ∈N, we see that

r0(t)= ··· = r�t	(t)= 0 < r�t	+1(t) < r�t	+2(t) < ··· . (2.10)

On the other hand, by (2.8), (2.9), and the aforementioned properties of W−1(x), it can
be verified that for any k ∈N∗ we have

rk(t)=
⎧⎪⎨
⎪⎩
−kW−1

(
− t

k
e−t/k

)
− t, 0 < t < k

0, k ≤ t.
(2.11)

A graphical representation of these functions is given in Figure 2.2 (see also the remark
at the end of this note). We state the following.

Proposition 2.2. Let A� be as in (2.7), � ∈N∗. Then,

A� =
{

(t,x) : t > 0, r�−1(t) < x ≤ r�(t)
}
. (2.12)

Proof. Let t > 0 and x > 0. By (2.5) and (2.9), �(t,x)= � ∈N∗ if and only if g�−1,t(x) < 1≤
g�,t(x). By (2.9) and (2.10), this is equivalent to r�−1(t) < x ≤ r�(t). The proof is complete.

�
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2.2. Binomial distributions. Let n ∈ N∗, 0 < p < 1, and q := 1− p. Denote by Sn(p) a
random variable having the binomial distribution with parameters n and p, that is,

P
(
Sn(p)= k

)
:=
(
n

k

)
pkqn−k, k = 0,1, . . . ,n. (2.13)

The well-known binomial-beta relation (cf. Johnson et al. [4, page 117 ]) reads as

P
(
Sn(p)≥ k

)= n
∫ p

0
P
(
Sn−1(u)= k− 1

)
du, n∈N∗, k = 1, . . . ,n. (2.14)

Let 0 < p < 1 and 0 < x < 1− p. Roos [6, formula (15)] has given the upper bound

dTV
(
Sn(p+ x),Sn(p)

)≤
√
e

2
τ(x)(

1− τ(x)
)2 , (2.15)

where

τ(x) := x

√
n+ 2

2p(1− p)
, (2.16)

provided that τ(x) < 1. Estimate (2.15) is a particular case of much more general results
referring to binomial approximation of Poisson binomial distributions obtained by Roos
[6]. With respect to binomial distributions, we give the following.

Proposition 2.3. Let n∈N∗, 0 < p < 1, and 0 < x < q := 1− p. Then,

dK
(
Sn(p+ x),Sn(p)

)= dTV
(
Sn(p+ x),Sn(p)

)= n
∫ p+x

p
P
(
Sn−1(u)= �− 1

)
du, (2.17)

where

�np� ≤ � := �p(n,x)=
⌈ −n log(1− x/q)

log(1 + x/p)− log(1− x/q)

⌉
≤ ⌈n(p+ x)

⌉
. (2.18)

Proof. Since the logarithmic function is concave, we have

p log
(

1 +
x

p

)
+ q log

(
1− x

q

)
≤ log1= 0, 0≤ x < q. (2.19)

This clearly implies the first inequality in (2.18). On the other hand, the function

h(x) := (p+ x) log
(

1 +
x

p

)
+ (q− x) log

(
1− x

q

)
, 0≤ x < q (2.20)

is nonnegative, because h(0) = 0 and h′(x) ≥ 0, 0 ≤ x < q. The nonnegativity of h im-
plies the second inequality in (2.18). The remaining assertions follow as in proof of
Proposition 2.1, replacing the Poisson-gamma relation by (2.14). The proof is complete.

�
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Figure 2.3. The functions gk,n(x). Dashed line, if np < k < n; dotted line, if k ≤ np.

Let p ∈ (0,1) be fixed. Recalling the notation in (2.18), we consider the sets

B� := {(n,x) : n≥ �, 0 < x < q, �p(n,x)= �
}

, � ∈N∗. (2.21)

For any k ∈N and n∈N∗ with k ≤ n, we define the function (see Figure 2.3)

gk,n(x) :=
(

1 +
x

p

)k(
1− x

q

)n−k
, 0≤ x < q. (2.22)

The equation gk,n(x)= 1 has x = 0 as the unique solution if k ≤ np or k = n, and has one
solution in (0,q), together with the null solution, if np < k < n. Denote by rk(n) the largest
solution to the equation gk,n(x)= 1 in [0,q). It is easily checked (see Figure 2.3) that

rn(n)= r0(n)= ··· = r�np	(n)= 0 < r�np	+1(n) < ··· < rn−1(n) < q. (2.23)

Proposition 2.4. Let p ∈ (0,1) be fixed and let B� be as in (2.21), � ∈N∗. Then,

B� = {�}×
(
r�−1(�),q

)⋃(
�,
�

p

)
× (r�−1(n),r�(n)

]
. (2.24)

Proof. Let n ∈ N∗. For any n ≥ � and 0 < x < q, we have from (2.18) that �p(n,x) = � if
and only if

g�−1,n(x) < 1≤ g�,n(x). (2.25)

From (2.22) and (2.23), we have the following. If n= �, (2.25) is equivalent to r�−1(�) <
x < q. If � < n < �/p, (2.25) is equivalent to r�−1(n) < x ≤ r�(n). Finally, if n≥ �/p, (2.25)
has no solution. The proof is complete. �
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2.3. Negative binomial distributions. Let m∈N∗, 0 < p < 1, and q := 1− p. Let Tm(p)
be a random variable such that

P
(
Tm(p)= k

)=
(
m+ k− 1

k

)
pmqk, k ∈N. (2.26)

The negative binomial-beta relation can be written (cf. Johnson et al. [4, page 210]) as

P
(
Tm(p)≤ k

)= (m+ k)
∫ p

0
P
(
Sm+k−1(u)=m− 1

)
du, k ∈N, (2.27)

where Sn(u) is defined in (2.13). We will simply state the results referring to negative
binomial distributions, because their proofs are very similar to those in the preceding
example. The main difference is that relation (2.27) must be used instead of (2.14).

Proposition 2.5. Let m∈N∗, p ∈ (0,1), and 0 < x < q := 1− p. Then,

dK
(
Tm(p),Tm(p+ x)

)= dTV
(
Tm(p),Tm(p+ x)

)

= (m+ �− 1)
∫ p+x

p
P
(
Sm+�−2(u)=m− 1

)
du,

(2.28)

where
⌈
m

q− x

p+ x

⌉
≤ � := �p(m,x)=

⌈
−m

log(1 + x/p)
log(1− x/q)

⌉
≤
⌈
m

q

p

⌉
. (2.29)

Let p ∈ (0,1) be fixed. We denote by

C� := {(m,x) : m∈N∗, 0 < x < q, �p(m,x)= �
}

, � ∈N∗. (2.30)

On the other hand, for any m∈N∗ and k ∈N, we consider the function

gm,k(x) :=
(

1 +
x

p

)m(
1− x

q

)k
, 0≤ x < q. (2.31)

It turns out that

gm,0(x) > gm,1(x) > ··· > gm,k(x) > ··· , 0 < x < q, k ∈N. (2.32)

The equation gm,k(x)= 1 has x = 0 as the unique solution if k = 0 or if k ≥mq/p, and
has one solution in (0,q), together with the null solution, if 0 < k < mq/p. Denote by
rk(m) the largest solution to the equation gm,k(x)= 1 in [0,q). By (2.32), we have that

··· = r�mq/p�+1(m)= r�mq/p�(m)= r0(m)= 0 < r�mq/p�−1(m) < ··· < r1(m) < q. (2.33)

With the preceding notations, we state the following.

Proposition 2.6. Let p ∈ (0,1) be fixed and let C� be as in (2.30), � ∈N∗. Then,

C� =
(⌊

p(�− 1)
q

⌋
,
⌊
p�

q

⌋]
× (0,r�−1(m)

)⋃(⌊
p�

q

⌋
,∞
)
× [r�(m),r�−1(m)

)
. (2.34)
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Final remark 2.7. From a computational point of view, there is a substantial difference in
determining the sets A� , on the one hand, and the sets B� and C� , on the other, � ∈N∗.
In the Poisson case, formula (2.11) gives us closed-form expressions for the functions
rk(t), defining the sets A� , in terms of the Lambert W function. Since this function is
implemented in various computer algebra systems—Maple, for instance—the functions
rk(t) can be evaluated in a straightforward manner. In the binomial case, in contrast, we
do not know any function, implemented in some computer algebra system, in terms of
which the functions rk(n), defining the sets B� , could be expressed. In such circumstances,
the values rk(n) must be numerically computed one by one, for each fixed value of the
parameters k, n, and p. Similar considerations are valid in the negative binomial case.
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