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We study an implicit predictor-corrector iteration process for finitely many asymptoti-
cally quasi-nonexpansive self-mappings on a nonempty closed convex subset of a Banach
space E. We derive a necessary and sufficient condition for the strong convergence of this
iteration process to a common fixed point of these mappings. In the case E is a uniformly
convex Banach space and the mappings are asymptotically nonexpansive, we verify the
weak (resp., strong) convergence of this iteration process to a common fixed point of
these mappings if Opial’s condition is satisfied (resp., one of these mappings is semicom-
pact). Our results improve and extend earlier and recent ones in the literature.
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1. Introduction and preliminaries

Let E be a real Banach space equipped with norm ‖ · ‖, let C be a nonempty subset of E,
and let T : C→ C. The set F(T)= {x ∈ C : Tx = x} consists of all fixed points of T .

Definition 1.1. T is said to be
(1) nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C; (1.1)

(2) asymptotically nonexpansive [3] if there exists a sequence {kn}∞n=1 ⊂ [1,∞) with
limn→∞ kn = 1 such that

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖, ∀x, y ∈ C, n≥ 1; (1.2)

(3) asymptotically quasi-nonexpansive if F(T) 
=∅, and there exists a sequence {kn}∞n=1⊂
[1,∞) with limn→∞ kn = 1 such that

∥
∥Tnx− p

∥
∥≤ kn‖x− p‖, ∀x ∈ C, p ∈ F(T), n≥ 1; (1.3)
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2 Implicit predictor-corrector iteration process

(4) semicompact [9] if for any bounded sequence {xn} ⊂ C with limn→∞‖xn−Txn‖ =
0, there exists a strongly convergent subsequence of {xn}.

The class of asymptotically nonexpansive mappings, as a natural extension of that of
nonexpansive mappings, was introduced by Goebel and Kirk [3]. They proved that if C is
a nonempty bounded closed convex subset of a uniformly convex Banach space E, then
every asymptotically nonexpansive self-mapping T on C has a fixed point. Furthermore,
the study of iterative construction for fixed points of asymptotically nonexpansive map-
pings began in 1978. Bose [1] first proved that if the uniformly convex Banach space E
satisfies Opial’s condition [5], then {Tnx} converges weakly to a fixed point of T , pro-
vided T is asymptotically regular at x, that is, limn→∞‖Tnx−Tn+1x‖ = 0. A Banach space
E is said to satisfy Opial’s condition [5] if whenever {xn} is a sequence in E which con-
verges weakly to x, one has

liminf
n→∞

∥
∥xn− x

∥
∥ < liminf

n→∞
∥
∥xn− y

∥
∥, ∀y ∈ E, y 
= x. (1.4)

It is well known that every Hilbert space satisfies Opial’s condition (see, e.g., [5]).
Xu and Ori [8] first introduced an implicit iteration process for N nonexpansive map-

pings in a Hilbert space and proved the following weak convergence theorem.

Theorem 1.2 (see [8]). Let H be a Hilbert space and let C be a nonempty closed convex
subset of H . Let {Ti}Ni=1 be N nonexpansive self-mappings on C such that F =⋂N

i=1F(Ti) 
=
∅. Let x0 ∈ C and let {αn}∞n=1 be a sequence in (0,1) such that limn→∞αn = 0. Then the
sequence {xn} defined implicity by

xn = αnxn−1 +
(

1−αn
)

Tn(modN)xn, n≥ 1, (1.5)

converges weakly to a common fixed point of mappings {Tj}Nj=1.

Later, Sun [7] introduced and studied another implicit iteration process

xn = αnxn−1 +
(

1−αn
)

Tln+1
n(modN)xn, n≥ 1, (1.6)

forN asymptotically quasi-nonexpansive self-mappings {Tj}Nj=1 on a nonempty bounded
closed convex subset C of a Banach space E, where {αn} is a sequence in (0,1), x0 is an
initial point in C, and n= lnN +n (modN). Moreover, he proved that the sequence {xn}
defined by his iteration process converges strongly to a common fixed point of {Tj}Nj=1

under suitable conditions.
At the same time, in [10], Zhou and Chang introduced and studied the following im-

plicit iteration process:

xn = αnxn−1 +βnT
n
n(modN)xn + γnun, n≥ 1, (1.7)

for N asymptotically nonexpansive self-mappings {Tj}Nj=1 on a nonempty closed convex
subset C of a Banach space E, where {αn}, {βn}, {γn} are three sequences in [0,1], x0 is
an initial point in C, and {un} is a bounded sequence in C. Moreover, they proved that
the sequence {xn} defined by their iteration process converges weakly to a common fixed
point of {Tj}Nj=1 under suitable conditions.
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As indicated in [10], if T1,T2, . . . ,TN : C→ C are N asymptotically nonexpansive map-
pings, then there exists a sequence, called common Lipschitz constants, {kn} ⊂ [1,∞) with
limn→∞ kn = 1 such that for each i= 1,2, . . . ,N ,

∥
∥Tn

i x−Tn
i y
∥
∥≤ kn‖x− y‖, ∀x, y ∈ C, n≥ 1. (1.8)

A similar situation occurs when T1,T2, . . . ,TN are asymptotically quasi-nonexpansive. By
convention, we write Tn := Tn(modN), for integer n ≥ 1, with the mod function taking
values in the set {1,2, . . . ,N}. In other words, if n = lnN + q for some unique integers
ln ≥ 0 and 1≤ q ≤N , then we set Tn = Tq.

In this paper, we introduce the following implicit predictor-corrector iteration process
with an auxiliary finite family of asymptotically quasi-nonexpansive self-mappings on C.

Definition 1.3 (basic setup). Let C be a nonempty closed convex subset of a Banach space
E, and let {T1,T2, . . . ,TN} and {T̂1, T̂2, . . . , T̂N̂} be two families of asymptotically quasi-

nonexpansive mappings from C into C with common Lipschitz constants {kn} and {k̂n}
such that

∑∞
n=1(kn− 1) < +∞ and

∑∞
n=1(k̂n− 1) < +∞, respectively. Let {xn} be an itera-

tive sequence in C generated from an arbitrary x0 ∈ C by the following three steps.

Auxiliary step. With xn−1(n≥ 1) established, yn is computed implicitly by

yn = α̂nxn−1 + β̂nT̂
l̂n
n yn + γ̂nûn. (1.9a)

Predictor step. With yn obtained in the auxiliary step, zn is computed implicitly by

zn = αnyn +βnT
ln
n zn + γnun. (1.9b)

Corrector step. With zn obtained in the predictor step, xn is computed explicitly by

xn = αnyn +βnT
ln
n zn + γnun. (1.9c)

Here, Tn := Tn(modN) and T̂n := T̂n(modN̂) for n = 1,2, . . . . On the other hand, {un}∞n=1,
{ûn}∞n=1, {un}∞n=1 are three bounded sequences in C; and {αn}∞n=1, {α̂n}∞n=1, {αn}∞n=1,
{βn}∞n=1, {β̂n}∞n=1, {βn}∞n=1, {γn}∞n=1, {γ̂n}∞n=1, {γn}∞n=1 are nine real sequences in [0,1] such
that

αn +βn + γn = 1 (∀n≥ 1),
∞
∑

n=1

γn < +∞,

α̂n + β̂n + γ̂n = 1 (∀n≥ 1),
∞
∑

n=1

γ̂n < +∞,

αn +βn + γn = 1 (∀n≥ 1),
∞
∑

n=1

γn < +∞,

0 < β̂n,βn ≤ c < K−1 (∀n≥ 1), K =max
{

sup
n≥1

kn, sup
n≥1

k̂n

}

≥ 1.

(1.10)
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Remark 1.4. Since 0<β̂n,βn≤c<K−1, it is clear that the mappings y �→ α̂nxn−1 + β̂nT̂
l̂n
n y +

γ̂nûn and z �→ αnyn + βnT
ln
n z+ γnun are two contractions from the nonempty closed con-

vex set C into itself. Thus, by the Banach contraction principle, there exist the unique
points yn,zn ∈ C such that (1.9a) and (1.9b) hold, respectively. Therefore, the sequence
{xn} is well defined.

Our aim is to consider and study the strong and weak convergences of the above im-
plicit predictor-corrector iteration process. To this end, we need the following lemmas.

Lemma 1.5. Let {bn}, {bn}, {b̂n} be three nonnegative real sequences with finite sums. Then
∑∞

n=1 λn < +∞, where λn = (1 + bn)(1 + bn)(1 + b̂n)− 1 for each ≥ 1.

Lemma 1.6 (see [10]). Let {an}, {λn}, {μn} be three nonnegative real sequences such that
∑∞

n=1 λn < +∞,
∑∞

n=1μn < +∞, and

an+1 ≤
(

1 + λn
)

an +μn, ∀n≥ 1. (1.11)

Then limn→∞ an exists.

Lemma 1.7 (see [6]). Let E be a uniformly convex Banach space, {tn} ⊂ [b,c] ⊂ (0,1),
and {xn},{yn} ⊂ E. If limn→∞‖tnxn + (1− tn)yn‖ = d < +∞, limsupn→∞‖xn‖ ≤ d, and
limsupn→∞‖yn‖ ≤ d, then limn→∞‖xn− yn‖ = 0.

Lemma 1.8 (demiclosed principle [2]). Let E be a uniformly convex Banach space, let C be
a nonempty closed convex subset of E, and let T : C→ C be an asymptotically nonexpansive
mapping with F(T) 
= ∅. Then I −T is demiclosed at zero, that is, for any sequence {xn} ⊂
C,

xn −→ q ∈ C weakly

(I −T)xn −→ 0 strongly
=⇒ (I −T)q = 0. (1.12)

2. Main results

Lemma 2.1. Let C be a nonempty closed convex subset of a Banach space E, and let {Ti}Ni=1

and {T̂ j}N̂j=1 be two finite families of asymptotically quasi-nonexpansive self-mappings on C

such that
⋂N

i=1F(Ti)∩
⋂N̂

j=1F(T̂ j) 
= ∅. If {xn}, {yn}, and {zn} are the iterative sequences

defined by (1.9a), (1.9b), and (1.9c), then for each p ∈⋂N
i=1F(Ti)∩

⋂N̂
j=1F(T̂ j), there hold

lim
n→∞

∥
∥xn− p

∥
∥= d, limsup

n→∞

∥
∥yn− p

∥
∥≤ d, limsup

n→∞

∥
∥zn− p

∥
∥≤ d. (2.1)

Proof. Since {un}∞n=1, {ûn}∞n=1, {un}∞n=1 are three bounded sequences in C, for any given

p ∈⋂N
i=1F(Ti)∩

⋂N̂
j=1F(T̂ j), we have

M :=max

{

sup
n≥1

∥
∥un− p

∥
∥, sup

n≥1

∥
∥ûn− p

∥
∥, sup

n≥1

∥
∥un− p

∥
∥

}

< +∞. (2.2)
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Note that 1−βnkln ≥ 1− cK > 0 and 1− β̂nk̂l̂n ≥ 1− cK > 0. Put

L= 1
1− cK

, bn = βn
(

kln − 1
)

, bn =
1−βn

1−βnkln
− 1, b̂n = 1− β̂n

1− β̂nk̂l̂n
− 1.

(2.3)

Then we have

0≤ bn = βn
(

kln − 1
)≤ kln − 1, 1 + bn ≤ K ,

0≤ bn =
βn
(

kln − 1
)

1−βnkln
≤ L

(

kln − 1
)

, 1 + bn ≤ L,

0≤ b̂n =
β̂n
(

k̂l̂n − 1
)

1− β̂nk̂l̂n
≤ L

(

k̂l̂n − 1
)

, 1 + b̂n ≤ L.

(2.4)

Observe that

∥
∥yn− p

∥
∥= ∥∥α̂n

(

xn−1− p
)

+ β̂n
(

T̂ l̂n
n yn− p

)

+ γ̂n
(

ûn− p
)∥
∥

≤ α̂n
∥
∥xn−1− p

∥
∥+ β̂nk̂l̂n

∥
∥yn− p

∥
∥+ γ̂n

∥
∥ûn− p

∥
∥.

(2.5)

It follows

∥
∥yn− p

∥
∥≤ α̂n

1− β̂nk̂l̂n

∥
∥xn−1− p

∥
∥+

γ̂n

1− β̂nk̂l̂n

∥
∥ûn− p

∥
∥

≤ 1− β̂n

1− β̂nk̂l̂n

∥
∥xn−1− p

∥
∥+LMγ̂n

= (1 + b̂n
)∥
∥xn−1− p

∥
∥+LMγ̂n.

(2.6)

Similarly,

∥
∥zn− p

∥
∥= ∥∥αn

(

yn− p
)

+βn
(

Tln
n zn− p

)

+ γn
(

un− p
)∥
∥

≤ αn
∥
∥yn− p

∥
∥+βnkln

∥
∥zn− p

∥
∥+ γn

∥
∥un− p

∥
∥

(2.7)

Consequently,

∥
∥zn− p

∥
∥≤ αn

1−βnkln

∥
∥yn− p

∥
∥+

γn
1−βnkln

∥
∥un− p

∥
∥

≤ 1−βn
1−βnkln

∥
∥yn− p

∥
∥+LMγn

= (1 + bn
)∥
∥yn− p

∥
∥+LMγn.

(2.8)



6 Implicit predictor-corrector iteration process

Therefore,

∥
∥xn− p

∥
∥= ∥∥αn

(

yn− p
)

+βn
(

Tln
n zn− p

)

+ γn
(

un− p
)∥
∥

≤ αn
∥
∥yn− p

∥
∥+βnkln

∥
∥zn− p

∥
∥+ γn

∥
∥un− p

∥
∥

≤ (1−βn
)∥
∥yn− p

∥
∥+βnkln

[(

1 + bn
)∥
∥yn− p

∥
∥+LMγn

]

+ γnM

≤ (1 +βn
(

kln − 1
))(

1 + bn
)∥
∥yn− p

∥
∥+M

[

KLγn + γn
]

≤ (1 + bn
)(

1 + bn
)∥
∥yn− p

∥
∥+KLM

[

γn + γn
]

≤ (1 + bn
)(

1 + bn
)[(

1 + b̂n
)∥
∥xn−1− p

∥
∥+LMγ̂n

]

+KLM
[

γn + γn
]

≤ (1 + bn
)(

1 + bn
)(

1 + b̂n
)∥
∥xn−1− p

∥
∥+KL2Mγ̂n +KLM

[

γn + γn
]

≤ (1 + bn
)(

1 + bn
)(

1 + b̂n
)∥
∥xn−1− p

∥
∥+KL2M

[

γn + γn + γ̂n
]

= (1 + λn
)∥
∥xn−1− p

∥
∥+μn,

(2.9)

where λn = (1 + bn)(1 + bn)(1 + b̂n)− 1, and μn = KL2M[γn + γn + γ̂n].

Since
∑∞

n=1(kln − 1) < +∞ and
∑∞

n=1(k̂l̂n − 1) < +∞, it follows from (2.4) that
∑∞

n=1 bn <

+∞,
∑∞

n=1 bn < +∞, and
∑∞

n=1 b̂n < +∞. Hence, we derive
∑∞

n=1 λn < +∞ by Lemma 1.5.
Note that

∑∞
n=1 γn < +∞,

∑∞
n=1 γn < +∞, and

∑∞
n=1 γ̂n < +∞. This provides

∑∞
n=1μn < +∞.

By Lemma 1.6, limn→∞‖xn− p‖ exists. Let limn→∞‖xn− p‖ = d.

Since limn→∞ b̂n = limn→∞ γ̂n = 0, from (2.6), we obtain

limsup
n→∞

∥
∥yn− p

∥
∥≤ limsup

n→∞

(

1 + b̂n
)∥
∥xn−1− p

∥
∥+LM limsup

n→∞
γ̂n ≤ d. (2.10)

Further, since limn→∞ bn = limn→∞ γn = 0, from (2.8), we obtain

limsup
n→∞

∥
∥zn− p

∥
∥≤ limsup

n→∞

(

1 + bn
)∥
∥yn− p

∥
∥+LM limsup

n→∞
γn ≤ d. (2.11)

�

Theorem 2.2. Let C be a nonempty closed convex subset of a Banach space E. Let {Ti}Ni=1

and {T̂ j}N̂j=1 be two finite families of asymptotically quasi-nonexpansive self-mappings on C

such that F :=⋂N
i=1F(Ti)∩

⋂N̂
j=1F(T̂ j) 
= ∅. Let {xn} be the iterative sequence defined by

(1.9a), (1.9b), and (1.9c). Then {xn} converges strongly to an element of F if and only if

liminf
n→∞ d

(

xn,F
)= 0. (2.12)

Proof. The necessity is obvious. For the sufficiency, we assume liminfn→∞d(xn,F) = 0.
Let p be any given element in F. Then from (2.9), we obtain

∥
∥xn− p

∥
∥≤ (1 + λn

)∥
∥xn−1− p

∥
∥+μn, (2.13)
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where
∑∞

n=1 λn < +∞ and
∑∞

n=1μn < +∞. Taking the infimum over all p ∈ F, we get

d
(

xn,F
)≤ (1 + λn

)

d
(

xn−1,F
)

+μn. (2.14)

Hence, limn→∞d(xn,F) exists. Furthermore, we have limn→∞d(xn,F)= 0.
By Lemma 2.1, we know that limn→∞‖xn− p‖ exists. Hence {xn} is bounded. Put δn =

λn‖xn−1− p‖+μn. Then
∑∞

n=1 δn < +∞, and (2.13) can be rewritten as

∥
∥xn− p

∥
∥≤ ∥∥xn−1− p

∥
∥+ δn. (2.15)

For arbitrary ε > 0, choose N0 such that d(xN0 ,F) < ε/4 and
∑∞

j=N0
δj < ε/4. Conse-

quently, for all n,m≥N0, we have

∥
∥xn− xm

∥
∥≤ ∥∥xn− p

∥
∥+

∥
∥xm− p

∥
∥

≤ ∥∥xN0 − p
∥
∥+

n
∑

j=N0+1

δj +
∥
∥xN0 − p

∥
∥+

m
∑

j=N0+1

δj

≤ 2
∥
∥xN0 − p

∥
∥+ 2

∞
∑

j=N0

δj .

(2.16)

Taking the infimum over all p ∈ F, we obtain

∥
∥xn− xm

∥
∥≤ 2d

(

xN0 ,F
)

+ 2
∞
∑

j=N0

δj ≤ 2ε
4

+
2ε
4
= ε. (2.17)

This shows that {xn}∞n=1 is Cauchy. Let limn→∞ xn = u. It is easy to verify that F is closed.
Since limn→∞d(xn,F)= 0, we must have that u∈ F. �

As a consequence of Lemma 2.1, the iterated sequence {xn} is bounded. If the under-
lying space E is reflexive, then we can expect that its weak cluster points provide common
fixed points of T1,T2, . . . ,TN . This leads to the following theorem.

Theorem 2.3. Let E be a uniformly convex Banach space, let C be a nonempty closed convex

subset of E, and let {Ti}Ni=1 (resp., {T̂ j}N̂j=1) be a finite family of asymptotically nonexpan-

sive (resp., asymptotically quasi-nonexpansive) self-mappings on C such that
⋂N̂

j=1F(T̂ j)∩
⋂N

i=1F(Ti) 
= ∅. Suppose limn→∞ β̂n = 0 and {βn}∞n=1 ⊂ [b,c] ⊂ (0,K−1), where K is as in
(1.10). Then every weak cluster point of the bounded iterative sequence {xn} defined by
(1.9a), (1.9b), and (1.9c) belongs to

⋂N
i=1F(Ti).

Proof. Let p ∈⋂N̂
j=1F(T̂ j)∩

⋂N
i=1F(Ti). By Lemma 2.1, we have

lim
n→∞

∥
∥xn− p

∥
∥= d, limsup

n→∞

∥
∥yn− p

∥
∥≤ d, limsup

n→∞

∥
∥zn− p

∥
∥≤ d. (2.18)

Obviously, {xn}, {yn}, and {zn} are bounded sequences in C.
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Observe that

∥
∥xn− p

∥
∥= ∥∥(1−βn

)[

yn− p+ γn
(

un− yn
)]

+βn
[

Tln
n zn− p+ γn

(

un− yn
)]∥
∥−→ d,

(2.19)

as n→∞. Since limn→∞ γn = 0 and {un} is bounded, we have

limsup
n→∞

∥
∥yn− p+ γn

(

un− yn
)∥
∥≤ limsup

n→∞

[∥
∥yn− p

∥
∥+ γn

∥
∥un− yn

∥
∥
]≤ d,

limsup
n→∞

∥
∥Tln

n zn− p+ γn
(

un− yn
)∥
∥≤ limsup

n→∞

[

kln
∥
∥zn− p

∥
∥+ γn

∥
∥un− yn

∥
∥
]≤ d.

(2.20)

It follows from Lemma 1.7 that

lim
n→∞

∥
∥Tln

n zn− yn
∥
∥= 0. (2.21)

Thus,

lim
n→∞

∥
∥zn− yn

∥
∥= lim

n→∞
∥
∥αnyn +βnT

ln
n zn + γnun− yn

∥
∥

= lim
n→∞

∥
∥βn

(

Tln
n zn− yn

)

+ γn
(

un− yn
)∥
∥= 0.

(2.22)

Similarly,

lim
n→∞

∥
∥xn− yn

∥
∥= lim

n→∞
∥
∥αnyn +βnT

ln
n zn + γnun− yn

∥
∥

= lim
n→∞

∥
∥βn

(

Tln
n zn− yn

)

+ γn
(

un− yn
)∥
∥= 0.

(2.23)

Moreover,

∥
∥yn− xn−1

∥
∥= ∥∥α̂nxn−1 + β̂nT̂

l̂n
n yn + γ̂nûn− xn−1

∥
∥

= ∥∥β̂n
(

T̂ l̂n
n yn− xn−1

)

+ γ̂n
(

ûn− xn−1
)∥
∥

≤ β̂n
∥
∥T̂ l̂n

n yn− xn−1
∥
∥+ γ̂n

∥
∥ûn− xn−1

∥
∥−→ 0, as n−→∞,

(2.24)

since limn→∞ β̂n = limn→∞ γ̂n = 0. As a result, we have

∥
∥xn− xn−1

∥
∥≤ ∥∥xn− yn

∥
∥+

∥
∥yn− xn−1

∥
∥−→ 0, as n−→∞. (2.25)

It forces

lim
n→∞

∥
∥xn− xn+i

∥
∥= 0, for each i= 1,2, . . . ,N. (2.26)

On the other hand, we have

∥
∥xn−Tln

n xn
∥
∥≤ ∥∥xn− yn

∥
∥+

∥
∥yn−Tln

n zn
∥
∥+

∥
∥Tln

n zn−Tln
n xn

∥
∥

≤ ∥∥xn− yn
∥
∥+

∥
∥yn−Tln

n zn
∥
∥+ kln

∥
∥zn− xn

∥
∥−→ 0, as n−→∞.

(2.27)
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As n= lnN +n (modN) for n > N , we get

n−N = (ln− 1
)

N +n (modN), (2.28)

and hence ln−N = ln− 1. Thus, we have

Tln−1
n = Tln−N

n−N . (2.29)

Consequently, we derive

∥
∥xn−Tnxn

∥
∥≤ ∥∥xn−Tln

n xn
∥
∥+

∥
∥Tln

n xn−Tnxn
∥
∥

≤ ∥∥xn−Tln
n xn

∥
∥+K

∥
∥Tln−1

n xn− xn
∥
∥

= ∥∥xn−Tln
n xn

∥
∥+K

∥
∥Tln−N

n−Nxn− xn
∥
∥

≤ ∥∥xn−Tln
n xn

∥
∥+K

[∥
∥Tln−N

n−Nxn−Tln−N
n−Nxn−N

∥
∥

+
∥
∥Tln−N

n−Nxn−N − xn−N
∥
∥+

∥
∥xn−N − xn

∥
∥
]

≤ ∥∥xn−Tln
n xn

∥
∥+K

[

(1 +K)
∥
∥xn−N − xn

∥
∥

+
∥
∥Tln−N

n−Nxn−N − xn−N
∥
∥
]−→ 0, as n−→∞.

(2.30)

This implies that for each j = 1,2, . . . ,N ,

∥
∥xn−Tn+ jxn

∥
∥≤ ∥∥xn− xn+ j

∥
∥+

∥
∥xn+ j −Tn+ jxn+ j

∥
∥+

∥
∥Tn+ jxn+ j −Tn+ jxn

∥
∥

≤ (1 +K)
∥
∥xn− xn+ j

∥
∥+

∥
∥xn+ j −Tn+ jxn+ j

∥
∥−→ 0, as n−→∞.

(2.31)

Note that the closedness and convexity of C imply the weak closedness of C. Let x̃ ∈ C
be any weak cluster point of the bounded sequence {xn}. Let {xni} be a subsequence
of {xn} such that xni → x̃ weakly (see, e.g., [4, page 313]). Since the pool of mappings
{Ti : 1 ≤ i ≤ N} is finite, we may further assume (passing to a further subsequence if
necessary) that for some integer l ∈ {1,2, . . . ,N}, Tni = Tl for all i ≥ 1. Then it follows
from (2.31) that for each j = 1,2, . . . ,N ,

xni −Tl+ jxni −→ 0, as i−→∞, (2.32)

that is, for each j = 1,2, . . . ,N ,

xni −Tjxni −→ 0, as i−→∞. (2.33)

By Lemma 1.8, we can conclude that x̃ ∈⋂N
j=1F(Tj). �

Theorem 2.4. In addition to the conditions in Theorem 2.3, assume further that ∅ 
=
⋂N

i=1F(Ti)⊆
⋂N̂

j=1F(T̂ j).
(a) If E satisfies Opial’s condition, then {xn} converges weakly to an element of

⋂N
i=1F(Ti).

(b) If one of {Ti}Ni=1 is semicompact, then {xn} converges strongly to an element of
⋂N

i=1F(Ti).
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Proof. We continue the argument in the proof of Theorem 2.3.
For (a), we claim that {xn} is weakly convergent. Were this false, there existed another

subsequence {xnj} of {xn} such that xnj → x ∈ C weakly and x 
= x̃. Utilizing the same

argument as in Theorem 2.3, we can prove that x ∈⋂N
j=1F(Tj). Note that by Lemma 2.1,

both limn→∞‖xn− x̃‖ and limn→∞‖xn− x‖ exist. It follows from the Opial condition of E
that

lim
n→∞

∥
∥xn− x̃

∥
∥= liminf

i→∞
∥
∥xni − x̃

∥
∥

< liminf
i→∞

∥
∥xni − x

∥
∥= lim

n→∞
∥
∥xn− x

∥
∥= liminf

j→∞
∥
∥xnj − x

∥
∥

< liminf
j→∞

∥
∥xnj − x̃

∥
∥= lim

n→∞
∥
∥xn− x̃

∥
∥.

(2.34)

This contradiction indicates that x = x̃, and so {xn} converges weakly to x̃.
For (b), by (2.33), we can assume that a subsequence {xni} of {xn} exists such that

xni → x̂ ∈⋂N
i=1F(Ti) in norm. It then follows from Lemma 2.1 that

lim
n→∞

∥
∥xn− x̂

∥
∥= lim

i→∞
∥
∥xni − x̂

∥
∥= 0. (2.35)

This completes the proof. �
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