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We establish a relation between the notion of an operator of an analytic semigroup and
matrix transformations mapping from a set of sequences into χ, where χ is either of the
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concerning applications of the sum of operators in the nondifferential case.
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1. Introduction

In this paper, we are interested in the study of operators represented by infinite matrices.
Note that in [1], Altay and Başar gave some results on the fine spectrum of the difference
operator Δ acting on the sequence spaces c0 and c. Then they dealt with the fine spectrum
of the operator B(r,s) defined by a matrix band over the sequence spaces c0 and c. In
de Malafosse [3, 5], there are results on the spectrum of the Cesàro matrix C1 and on
the matrix Δ considered as operators from sr to itself. Spectral properties of unbounded
operators are used in the theory of the sum of operators. The notion of generators of
analytic semigroup was developed in this way. Recall that this theory was studied by many
authors such as Da Prato and Grisvard [2, 12], Fuhrman [11], Labbas and Terreni [16,
17]. Some applications can also be found in Labbas and de Malafosse [15] of the sum of
operators in the theory of summability in the noncommutative case. Some results were
obtained in de Malafosse [4] on the equation

Ax+Bx− λx = y for λ≥ 0 (1.1)

in a reflexive Banach set of sequences E, where y ∈ E, A and B are two closed linear operators
represented by infinite matrices with domains D(A) and D(B) included in E.

Here we are interested in some extensions of results given in [15] using similar matri-
ces A and B. Recall that the choice of these matrices was motivated by the solvability of
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a class of infinite-tridiagonal systems. Then we study some spectral properties of A and
B considered as matrix transformations in the sets (s1/a, l∞) and (s1/β, l∞), or (s0

1/a,c0) and

(s0
1/β,c0), or (s(c)

1/a,c) and (s(c)
1/β,c). Then we show that (−A) and (−B) are generators of ana-

lytic semigroups, where D(A) and D(B) are of the form χ(A) and χ(B) with χ = l∞, c0, or c.
Here the relative boundedness with respect to A or B is not satisfied, so we are not within
the framework of the classical perturbation theory given by Kato [14] or Pazy [18].

In this paper, we establish a relation between results in summability and basic notions
used in the theory of the sum of operators. For this, we need to recall the following.

2. Preliminary results

2.1. Recall of some results in summability. Let M = (anm)n,m≥1 be an infinite matrix
and consider the sequence x = (xn)n≥1. We will define the product Mx = (Mn(x))n≥1 with
Mn(x)=∑∞

m=1 anmxm whenever the series are convergent for all n≥ 1. Let s denote the set
of all complex sequences. We write ϕ, c0, c and l∞ for the sets of finite, null, convergent,
and bounded sequences, respectively. For any given subsets X , Y of s, we will say that
the operator represented by the infinite matrix M = (anm)n,m≥1 maps X into Y , that is,
M ∈ (X ,Y), if the series defined by Mn(x)=∑∞

m=1 anmxm are convergent for all n≥ 1 and
for all x ∈ X and Mx ∈ Y for all x ∈ X . For any subset X of s, we will write

MX = {y ∈ s : y =Mx for some x ∈ X}. (2.1)

If Y is a subset of s, we will denote the so-called matrix domain by

Y(M)= {x ∈ s : y =Mx ∈ Y}. (2.2)

Let X ⊂ s be a Banach space, with norm ‖ · ‖X . By �(X), we will denote the set of all
bounded linear operators, mapping X into itself. We will say that L ∈�(X) if and only if
L : X �→ X is a linear operator and

‖L‖∗�(X) = sup
x 
=0

(‖Lx‖X/‖x‖X
)
<∞. (2.3)

It is well known that �(X) is a Banach algebra with the norm ‖L‖∗�(X). A Banach space
X ⊂ s is a BK space if the projection Pn : x �→ xn from X into C is continuous for all n.
A BK space X ⊃ ϕ is said to have AK if for every x ∈ X , x = limp→∞

∑p
k=1 xkek, where

ek = (0, . . . ,1, . . .), 1 being in the kth position. It is well known that if X has AK, then
�(X)= (X ,X), see [9, 13, 19].

Put now U+ = {x = (xn)n≥1 ∈ s : xn > 0 for all n}. For ξ = (ξn)n≥1 ∈U+, we will define
the diagonal matrix Dξ = (ξnδnm)n,m≥1, (where δnm = 0 for all n 
=m and δnm = 1 other-
wise). For α∈U+, we will write sα =Dαl∞, (cf. [3–10, 15]. The set sα is a BK space with
the norm ‖x‖sα = supn≥1(|xn|/αn). The set of all infinite matrices M = (anm)n,m≥1 with

‖M‖Sα = sup
n≥1

(
1
αn

∞∑

m=1

∣
∣anm

∣
∣αm

)

<∞ (2.4)
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is a Banach algebra with identity normed by ‖ · ‖Sα . Recall that if M ∈ (sα,sα), then
‖Mx‖sα ≤ ‖M‖Sα‖x‖sα for all x ∈ sα. Thus we obtain the following result, (cf. [7]) where
we put B(sα)=�(sα)

⋂
(sα,sα).

Lemma 2.1. For any given α∈U+ , B(sα)= Sα = (sα,sα).

In the same way, we will define the sets s0
α =Dαc0 and s(c)

α =Dαc, (cf. [7]). The sets s0
α

and s(c)
α are BK spaces with the norm ‖ · ‖sα and s0

α has AK. It was shown in [9, 10] that for
any matrix M ∈ (sα,sα), we get

‖M‖∗�(sα) = ‖M‖∗�(s0
α) = ‖M‖∗�(s(c)

α )
= ‖M‖Sα . (2.5)

In all what follows, we will use the next lemma.

Lemma 2.2. Let α, β ∈U+ and let X , Y be subsets of s. Then

M ∈ (DαX ,DβY
)

iff D1/βMDα ∈ (X ,Y). (2.6)

2.2. Operator generators of analytic semigroups. We recall here some results given in
Da Prato and Grisvard [2] and Labbas and Terreni [16, 17]. Let E be a Banach space. We
consider two closed linear operators A and B, whose domains are D(A) and D(B) in-
cluded in E. For every x ∈D(A)

⋂
D(B), we then define their sum Sx =Ax+Bx.

The spectral properties of A and B are the following:
(H) there are CA,CB > 0, and εA,εB ∈ ]0,π[ such that

ρ(A)⊃
∑

A

= {z ∈ C :
∣
∣Arg(z)

∣
∣ < π− εA

}
,

∥
∥(A− zI)−1

∥
∥

£(E) ≤
CA

|z| ∀z ∈
∑

A

−{0},

ρ(B)⊃
∑

B

= {z ∈ C :
∣
∣Arg(z)

∣
∣ < π− εB

}
,

∥
∥(B− zI)−1

∥
∥

£(E) ≤
CB

|z| ∀z ∈
∑

B

−{0},

εA + εB < π.

(2.7)

It is said that A and B are generators of analytic semigroups not strongly continuous at
t = 0 and we have σ(A)

⋂
σ(−B)=∅ and ρ(A)

⋃
ρ(−B)= C.

The following is well known in the commutative case:

(A− ξI)−1(B−ηI)−1− (B−ηI)−1(A− ξI)−1 = 0 ∀ξ ∈ ρ(A), η ∈ ρ(B), (2.8)

if D(A) and D(B) are densely defined in E, it is well known (cf. [2]) that the bounded
operator defined by

Lλ =− 1
2iπ

∫

Γ
(B+ zI)−1(A− λI − zI)−1dz ∀λ > 0, (2.9)
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where Γ is an infinite-sectorial curve lying in ρ(A− λI)
⋂
ρ(−B) coincides with (A+B−

λI)−1.
In the following, we will consider matrix transformations A and B mapping in a set of

sequences and we will show that they satisfy hypothesis (H).

3. Definition of the operators A and B

We will consider two infinite matrices and deal with the case when A and B map into l∞
or c0 and with the case when A and B map into c. In each case, we will study their spectral
properties.

For given sequences a = (an)n≥1, b = (bn)n≥1, β = (βn)n≥1, and γ = (γn)n≥1, let A and
B be the following infinite matrices:

A=

⎡

⎢
⎢
⎢
⎢
⎣

a1 b1 O

· ·
O an bn

·

⎤

⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎣

β1 O

· ·
γn βn

O ·

⎤

⎥
⎥
⎥
⎥
⎦
. (3.1)

3.1. The case when A and B are operators mapping from D(A) and D(B) into E, where
E = l∞ or c0. The next conditions are consequences of results given in [15]. When E is
either of the sets l∞ or c0, we assume that A satisfies the following properties:

a∈U+, an is strictly increasing, lim
n→∞an =∞, (3.2a)

there is MA > 0 such that
∣
∣bn

∣
∣≤MA ∀n. (3.2b)

Similarly, we assume that B satisfies the next conditions:

β ∈U+, lim
k→∞

β2k = L 
= 0, (3.3a)

lim
k→∞

β2k+1

a2k+1
=∞, (3.3b)

(α) there is MB > 0 such that
∣
∣γ2k

∣
∣≤MB ∀n, (β)γ2k+1 = o(1) (n−→∞). (3.3c)

3.2. The case whenA andB are operators mappingD(A) andD(B) into c. Here we need
to recall the characterization of (c,c).

Lemma 3.1. A∈ (c,c) if and only if
(i) A∈ S1,

(ii) limn→∞
∑∞

m=1 anm = l for some l ∈ C,
(iii) limn→∞ anm = lm for some lm ∈ C, m= 1,2, . . . .

We will see that D(A) = c(A) = s(c)
1/a and D(B) = c(B) = s(c)

1/β. Here we will show that

neither of the sets D(A)= s(c)
1/a and D(B)= s(c)

1/β is embedded in the other.
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Proposition 3.2. Let a, β ∈U+. Then

s(c)
1/a � s(c)

1/β, s(c)
1/β � s(c)

1/a (3.4)

if and only if β/a, a/β /∈ c.

Proof. The inclusion s(c)
1/a ⊂ s(c)

1/β means that I ∈ (s(c)
1/a,s(c)

1/β) and by Lemma 2.2, we have

Dβ/a ∈ (c,c). From Lemma 3.1, we conclude that s(c)
1/a ⊂ s(c)

1/β if and only if β/a ∈ c. So

s(c)
1/a � s(c)

1/β is equivalent to β/a /∈ c. Similarly, we have s(c)
1/β � s(c)

1/a if and only if a/β /∈ c.
This completes the proof. �

We assume that A and B satisfy the following hypotheses. The matrix A is defined in
(3.1) with

a∈U+, an is strictly increasing, lim
n→∞an =∞, (3.5a)

b ∈ c. (3.5b)

For B given in (3.1), we do the following hypotheses:

β ∈U+, lim
n→∞βn =∞, (3.6a)

lim
k→∞

β2k+1

a2k+1
=∞, lim

k→∞
β2k

a2k
= l 
= 0, (3.6b)

γ ∈ c. (3.6c)

This lead to the next remark.

Remark 3.3. The choice of β in (3.6b) is justified by Proposition 3.2 and so neither of the

sets D(A)= s(c)
1/a and D(B)= s(c)

1/β is embedded in the other one. We will see in Proposition
5.7 and Theorem 5.8 that we need to have (3.5a) and (3.6a). Then we will see that A and
B are closed operators when b, γ ∈ c. Finally, notice that D(B)⊂ c means 1/β ∈ c which
is trivially satisfied in (3.6a) and it is the same for A.

4. First properties of the operators A and B

4.1. The case when the operators A and B are considered as matrix maps from D(A)
and D(B) into E, where E is equal to l∞, or c0. In this section, we will assume A and B
satisfy (3.2) and (3.3). For the convenience of the reader, recall the following well-known
results.

Lemma 4.1. (i) A∈ (l∞, l∞) if and only if A∈ S1.
(ii) A∈ (c0,c0) if and only if A∈ S1 and limn→∞ anm = 0 for each m= 1,2, . . . .

Proposition 4.2. (i) A∈ (s1/a, l∞) and A∈ (s0
1/a,c0).

(ii) B ∈ (s1/β, l∞) and B ∈ (s0
1/β,c0).
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Proof. (i) We have [AD1/a]nn = 1 and [AD1/a]n,n+1 = bn/an+1 for all n, and [AD1/a]nm = 0
otherwise. Then

∥
∥AD1/a

∥
∥
S1
= sup

n

(

1 +

∣
∣bn

∣
∣

an+1

)

=O(1) (n−→∞). (4.1)

So by Lemma 4.1, we have AD1/a ∈ (l∞, l∞) and by Lemma 2.2, A∈ (s1/a, l∞). The proof is
similar for A∈ (s0

1/a,c0) note that in this case, [AD1/a]nm→ 0 (n→∞) for each m≥ 1.
(ii) Now [BD1/β]nn = 1 and [BD1/β]n,n−1 = γn/βn−1 for all n, and [BD1/β]nm = 0 other-

wise. By (3.3a), (3.3c)(β), we have

γ2n+1

β2n
= o(1) (n−→∞) (4.2)

and by (3.2a), (3.3b) and (3.3c)(α), we get

γ2n

β2n−1
= γ2n

a2n−1

a2n−1

β2n−1
= o(1) (n−→∞). (4.3)

Then

∥
∥BD1/β

∥
∥
S1
= sup

n

(

1 +

∣
∣γn

∣
∣

βn−1

)

=O(1) (n−→∞). (4.4)

So BD1/β ∈ (l∞, l∞) and B ∈ (s1/β, l∞). Finally, we obtain B ∈ (s0
1/β,c0) reasoning as above.

�

We deduce that if E = l∞ = s1, the matrix A is defined on D(A)= s1/a and B is defined
on D(B)= s1/β. It can be shown that l∞(A)= s1/a and l∞(B)= s1/β. When E = c0, we will
see in Theorem 5.6(i), (ii) that D(A) = c0(A) = s0

1/a and D(B) = c0(B) = s0
1/β. We deduce

from (3.3a), (3.3b) that in each case, neither of the sets D(A) and D(B) is embedded in
the other.

4.2. The case when the operators A and B are considered as matrix maps from D(A)
and D(B) into c. We assume that A and B satisfy (3.5) and (3.6). From the preceding, we
immediately get the following.

Proposition 4.3. A∈ (s(c)
1/a,c) and B ∈ (s(c)

1/β,c).

Proof. It is enough to notice that by (3.5) we have (1 + bn/an+1)n≥1 ∈ c. Then from Lemma

3.1, we conclude that A∈ (s(c)
1/a,c). We also have by (3.6),

γn
βn−1

−→ 0 (n−→∞) (4.5)

so BD1/β ∈ (c,c) and B ∈ (s(c)
1/β,c). �

We will see in Theorem 5.8(i), (ii) that D(A)= c(A)= s(c)
1/a and D(B)= c(B)= s(c)

1/β.
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5. The matrices A and B as operator generators of an analytic semigroup

In this section, we will show that A and B are generators of analytic semigroup in each
case E = l∞, E = c0, or E = c.

5.1. The case when A and B are considered as matrix maps from D(A) and D(B) into E,
where E = l∞ or c0. In this section, A and B satisfy (3.2) and (3.3). The next result was
shown in [15] in the case when A∈ (s1/a, l∞) and B ∈ (s1/β, l∞) with an = an, a > 1, and β
was defined by β2n = 1 and β2n+1 = (2n+ 1)! for all n, so we omit the proof.

Proposition 5.1. In the space l∞, the two linear operators A and B are closed and satisfy
the following:

(i) D(A)= s1/a,
(ii) D(B)= s1/β,

(iii) D(A) 
= l∞, D(B) 
= l∞,
(iv) there are εA, εB > 0 (with εA+ εB < π) such that

∥
∥(A− λI)−1

∥
∥∗

�(l∞) ≤
M

|λ| ∀λ 
= 0,
∣
∣Arg(λ)

∣
∣≥ εA,

∥
∥(B+μI)−1

∥
∥∗

�(l∞) ≤
M

|μ| ∀μ 
= 0,
∣
∣Arg(μ)

∣
∣≤ π− εB.

(5.1)

This result shows that −A and −B satisfy hypothesis (H) and σ(−A)
⋂
σ(B) =∅. So

−A and −B are generators of the analytic semigroups e(−At) and e(−Bt) not strongly con-
tinuous at t = 0. We have similar results whenA and B are matrix maps into c0. We require
some elementary lemmas whose proofs are left to the reader.

Lemma 5.2. Let ε ∈ ]0,π/2[ and let x0 > 0 be a real. Then

∣
∣x0− λ

∣
∣≥ x0 sinε ∀λ∈ C with

∣
∣Arg(λ)

∣
∣≥ ε. (5.2)

Lemma 5.3. Let x0 > 0 be a real. Then

∣
∣x0− λ

∣
∣≥ |λ|sinθ ∀λ= |λ|eiθ /∈R−,

∣
∣x0− λ

∣
∣≥ |λ| ∀λ∈R−.

(5.3)

We can state the following result where we will use the fact that for any α∈U+, since
s0
α is a BK space with AK, we have �(s0

α)= (s0
α,s0

α). As we have seen in (2.5), for any matrix
C ∈ (s0

α,s0
α), we have ‖C‖∗�(s0

α) = ‖C‖∗(s0
α,s0

α) = ‖C‖Sα .

Proposition 5.4. (i) Let εA ∈ ]0,π/2[. For every λ ∈ C with |Arg(λ)| ≥ εA, the infinite
matrix A− λI considered as an operator in s0

1/a is invertible and

(A− λI)−1 ∈ (c0,s0
1/a

)
. (5.4)
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(ii) Let εB ∈ ]0,π/2[. For every μ∈ C with |Arg(μ)| ≤ π − εB, the infinite matrix B+μI
considered as an operator in s0

1/β is invertible and

(B+μI)−1 ∈ (c0,s0
1/β

)
. (5.5)

Proof. (i) Fix εA ∈ ]0,π/2[ and consider the infinite-sectorial set
∏

εA

= {λ∈ C :
∣
∣Arg(λ)

∣
∣ < εA

}
. (5.6)

For any λ /∈∏εA , put

χn = bn
an− λ

(5.7)

and D′λ = D(1/(an−λ))n . Then [D′λ(A − λI)]nn = 1, [D′λ(A − λI)]n,n+1 = χn for all n and
[D′λ(A− λI)]nm = 0 otherwise. By Lemma 5.2, we have

∣
∣χn

∣
∣≤ MA

an sinεA
∀n and all λ /∈

∏

εA

. (5.8)

Since an tends to infinity as n tends to infinity, there is n0 such that

∣
∣χn

∣
∣≤ 1

2
∀n≥ n0 and all λ /∈

∏

εA

. (5.9)

Consider now the infinite matrix

T̃λ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

·
T−1
λ · 0

· · ·
1

0 1

·
·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.10)

where Tλ is the matrix of order n0 defined by [Tλ]nn = 1 for 1≤ n≤ n0; [Tλ]n,n+1 = χn for
1≤ n≤ n0− 1, and [Tλ]nm = 0 otherwise. Elementary calculations give

T−1
λ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −χ1 χ1χ2 −χ1χ2χ3 · · ·
1 −χ2 χ2χ3 · · ·

1 −χn χnχn+1 ·
·

0

1 χn0−1

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.11)



B. de Malafosse and A. Medeghri 9

Putting �λ = D′λ(A− λI)T̃λ we easily get [�λ]nn = 1 for all n, [�λ]n,n+1 = χn for n ≥ n0,
and [�λ]nm = 0 otherwise. Then by Lemma 2.2 and since the sequence a is increasing, we
get

∥
∥I −�λ

∥
∥∗

(s0
1/a,s0

1/a) =
∥
∥I −�λ

∥
∥
S1/a
= sup

n≥n0

(
∣
∣χn

∣
∣ an
an+1

)

≤ 1
2

∀λ /∈
∏

εA

. (5.12)

Since �λ =�λ − I + I ∈ (s0
1/a,s0

1/a) and (5.12) holds, �λ is invertible in the Banach al-
gebra of all bounded operators �(s0

1/a) = (s0
1/a,s0

1/a) mapping s0
1/a to itself and �−1

λ ∈
(s0

1/a,s0
1/a). Then for any given y ∈ c0, we successively get y′ = D′λ y = (yn/(an − λ))n≥1 ∈

s0
1/a, �−1

λ y′ ∈ s0
1/a, T̃λ(�−1

λ y′) ∈ s0
1/a, and (A− λI)−1 = T̃λ�−1

λ D′λ ∈ (c0,s0
1/a). So we have

shown (i).
(ii) For εB ∈ ]0,π/2[, let ΣB = {μ∈ C : |Arg(μ)| ≤ π− εB} and put

χ′n =
γn

βn +μ
. (5.13)

To deal with the inverse of B+μI , we need to study the sequences |γ2k+1|/β2k and |χ′2k|β2k/
β2k−1. By (3.3a), (3.3b), we have

γ2k+1

β2k
−→ 0 (k −→∞). (5.14)

On the other hand, for every μ∈ ΣB, we get

∣
∣χ′2k

∣
∣ β2k

β2k−1
≤ MB

β2k sinεB

β2k

β2k−1
= MB

sinεB

1
β2k−1

, (5.15)

1
β2k−1

= a2k−1

β2k−1

1
a2k−1

= o(1) (k −→∞). (5.16)

From (5.14) and (5.16), we deduce that there is n1 such that

∣
∣γ2k+1

∣
∣ 1
β2k

≤ 1
2

sinεB for 2k+ 1≥ n1,

∣
∣χ′2k

∣
∣ β2k

β2k−1
≤ 1

2
for 2k ≥ n1 ∀μ∈ ΣB.

(5.17)

As in (i), define the matrices D′μ =D(1/(βn+μ)n) and

R̃μ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

·
R−1
μ · 0

· · ·
1

0 1
·
·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.18)
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where Rμ is the matrix of order n1− 1 defined by [Rμ]nn = 1 for all n, by [Rμ]n,n−1 = χ′n for
2≤ n≤ n1− 1, and by [Rμ]nm = 0 otherwise. Then elementary calculations show that the

matrix �μ = R̃μD′μ(B+μI) is defined by [�μ]nn = 1 for all n, by [�μ]n,n−1 = χ′n for n≥ n1,
and by [�μ]nm = 0 otherwise. Then for any μ∈ ΣB,

∥
∥I −�μ

∥
∥∗

(s0
1/β ,s0

1/β) = sup
n≥n1

(
∣
∣χ′n

∣
∣ βn
βn−1

)

=max
(
τ1,τ2

)
, (5.19)

where

τ1 = sup
k≥n1/2

∣
∣χ′2k

∣
∣ β2k

β2k−1
, τ2 = sup

k≥(n1−1)/2

∣
∣χ′2k+1

∣
∣β2k+1

β2k
. (5.20)

By Lemma 5.2, we get |β2k +μ| ≥ β2k sinεB for all μ∈ ΣB and τ1 ≤ 1/2. Then

τ2 ≤ 1
2

sinεB
1

β2k+1 sinεB
β2k+1 = 1

2
for 2k ≥ n1. (5.21)

This implies ‖I −�μ‖∗(s0
1/β ,s0

1/β) ≤ 1/2. Reasoning as in (i) with (B + μI)−1 =�−1
μ R̃μD′μ, we

conclude that B + μI considered as an operator from s0
1/β into c0 is invertible and (B +

μI)−1 ∈ (c0,s0
1/β) for all μ∈ ΣB. This concludes the proof. �

Remark 5.5. As a direct consequence of the preceding, it is trivial that

c0(A− λI)= s0
1/a ∀λ∈ C,

∣
∣Arg(λ)

∣
∣≥ εA,

c0(B+μI)= s0
1/β ∀μ∈ C,

∣
∣Arg(μ)

∣
∣≤ π− εB.

(5.22)

We immediately obtain the next result.

Theorem 5.6. In the space c0, the two linear operators A and B are closed and satisfy the
following:

(i) D(A)= c0(A)= s0
1/a,

(ii) D(B)= c0(B)= s0
1/β,

(iii) D(A) 
= c0, D(B) 
= c0,
(iv) there are εA, εB > 0 (with εA+ εB < π ) such that

∥
∥(A− λI)−1

∥
∥∗

�(c0) ≤
M

|λ| ∀λ 
= 0,
∣
∣Arg(λ)

∣
∣≥ εA,

∥
∥(B+μI)−1

∥
∥∗

�(c0) ≤
M

|μ| ∀μ 
= 0,
∣
∣Arg(μ)

∣
∣≤ π− εB.

(5.23)

Proof. Show that A is a closed operator. For this, consider a sequence x′p = (xnp)n≥1 tend-

ing to x = (xn)n≥1 in c0, as p tends to infinity, where x′p ∈ s0
1/a for all p. Then Ax′p → y (p→

∞) in c0, that is for any n, we have An(x′p)→ An(x)= yn (p→∞). It remains to show that

x ∈ s0
1/a. For this, note that since b ∈ l∞ and x ∈ c0, we conclude that anxn = yn− bnxn+1

tends to a zero as n tends to infinity. The proof for B is similar.
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(i)⇒(ii). First by Proposition 4.2, we have A ∈ (s0
1/a,c0). It remains to show that

c0(A)= s0
1/a. Let x ∈ s0

1/a. Since (bn/an+1)n≥1 ∈ c0, we deduce that

An(x)= anxn +
bn
an+1

an+1xn+1 = o(1) (n−→∞) (5.24)

and we have shown that s0
1/a ⊂ c0(A).

Now let x ∈ c0(A). Then y = Ax ∈ c0. In the proof of Proposition 5.4, we can take
λ= 0. Indeed, there is n0 such that χn = |bn|/an ≤ 1/2 for all n≥ n0. Then y ∈ c0 implies
D1/a y = (yn/an)n≥1 ∈ s0

1/a, �−1D1/a y ∈ s0
1/a, and x = A−1y = T̃0�−1

0 D1/a y ∈ s0
1/a. This

shows that c0(A)⊂ s0
1/a and since s0

1/a ⊂ c0(A), we conclude that c0(A)= s0
1/a. The proof is

similar for B.
(iii) Let x = (1/an)n≥1 ∈ c0 and assume x′p = (xnp)n≥1 tend to x in s0

1/a, that is,

∥
∥x′p− x

∥
∥
s1/a
= sup

n

(

an

∣
∣
∣
∣xnp−

1
an

∣
∣
∣
∣

)

−→ 0 (p −→∞). (5.25)

Since an tends to infinity, we should have xnp → 1/an and anxnp → 1 (p→∞) for all n.
This contradicts the fact that x′p ∈ s0

1/a for all p. The reasoning is the same for B. So (iii)
holds.

(iv) By Proposition 5.4(i), we have seen that for any λ /∈∏εA (A− λI)−1 ∈ (c0,s0
1/a),

T̃λ ∈ S1 and using the notation of the proof of Proposition 5.4, we get

∥
∥(A− λI)−1y

∥
∥
l∞ =

∥
∥T̃λ�−1

λ y′
∥
∥
l∞ ≤

∥
∥T̃λ

∥
∥
S1

∥
∥�−1

λ

∥
∥
S1

∥
∥D′λ

∥
∥
S1
‖y‖l∞ . (5.26)

Then by Lemma 5.3, we successively get

∥
∥D′λ

∥
∥
S1
= sup

n≥1

∣
∣
∣
∣

1
(
an− λ

)

∣
∣
∣
∣≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
|λ| sinθ for λ= |λ|eiθ /∈R−,

1
|λ| for λ∈R−.

(5.27)

Now as we have seen in (5.9), we have ‖I −�λ‖S1 = supn≥n0
(|χn|)≤ 1/2 and then in the

Banach algebra S1, we easily get

∥
∥�−1

λ

∥
∥
S1
≤

∞∑

m=0

∥
∥
(
I −�λ

)∥
∥m
S1
≤

∞∑

m=0

2−m = 2. (5.28)

Finally, by (5.9), (5.10), and (5.11), we have supλ /∈∏εA
‖T̃λ‖S1 <∞ and we conclude that

‖(A− λI)−1‖∗�(c0) ≤M/|λ| for all λ /∈∏εA . We get similar results for B + μI . This con-
cludes the proof of (iv). �

5.2. The case whenA andB are matrix maps fromD(A) andD(B) into c. In this section,
A and B satisfy conditions given in (3.5) and (3.6). We will state results similar to those
given in Section 5.1, when c0 is replaced by c.
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Proposition 5.7. (i) Let εA ∈]0,π/2[. For every λ with |Arg(λ)| ≥ ε, the infinite matrix

A− λI considered as an operator in s(c)
1/a is invertible and

(A− λI)−1 ∈
(
c,s(c)

1/a

)
. (5.29)

(ii) Let εB ∈ ]0,π/2[. For every μ with |Arg(μ)| ≤ π − εB, the infinite matrix B + μI

considered as an operator in s(c)
1/β is invertible and

(B+μI)−1 ∈
(
c,s(c)

1/β

)
. (5.30)

Proof. (i) First, it can easily be seen that since

1 +
bn

an− λ

an
an+1

−→ 1 (n−→∞)∀λ /∈
∏

εA

(5.31)

and �λ ∈ S1/a, we have �λ ∈ (s(c)
1/a,s(c)

1/a). Then using the notation of Proposition 5.4, there
is n′0 such that

∥
∥I −�λ

∥
∥∗

�(s(c)
1/a) =

∥
∥I −�λ

∥
∥∗
S1/a
= sup

n≥n′0

(
∣
∣χn

∣
∣ an
an+1

)

≤ 1
2

∀λ /∈
∏

εA

. (5.32)

Then �−1
λ ∈ �(s(c)

1/a)
⋂
S1/a, and since �−1

λ ∈ S1/a is an infinite matrix, we have �−1
λ ∈

(s(c)
1/a,s(c)

1/a). Then for any y ∈ c, we successively get D′λ y = (yn/(an − λ))n≥1 ∈ s(c)
1/a,

�−1
λ (D′λ y) ∈ s(c)

1/a, and T̃λ[�−1
λ (D′λ y)] ∈ s(c)

1/a. We conclude that (A− λI)−1 ∈ (c,s(c)
1/a) for

every λ with |Arg(λ)| ≥ ε.
(ii) Reasoning as in Proposition 5.4, there are M, M′ > 0 such that for every μ∈ ΣB,

∣
∣
∣
∣

γ2k

β2k +μ

∣
∣
∣
∣

β2k

β2k−1
≤ M

β2k sinεB

β2k

β2k−1
= o(1) (k −→∞),

∣
∣
∣
∣

γ2k+1

β2k+1 +μ

∣
∣
∣
∣
β2k+1

β2k
≤ M′

β2k+1 sinεB

β2k+1

β2k
= o(1) (k −→∞).

(5.33)

We deduce that there is n′1 with

τ1 = sup
k≥n′1/2

∣
∣
∣
∣

γ2k

β2k +μ

∣
∣
∣
∣

β2k

β2k−1
≤ 1

2
, τ2 = sup

k≥(n′1−1)/2

∣
∣
∣
∣

γ2k+1

β2k+1 +μ

∣
∣
∣
∣
β2k+1

β2k
≤ 1

2
. (5.34)
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Now by (5.33), we have
∣
∣
∣
∣

γn
βn +μ

∣
∣
∣
∣

βn
βn−1

−→ 0 (n−→∞) (5.35)

and �μ ∈ (s(c)
1/β,s(c)

1/β) for all μ∈ ΣB. Thus

∥
∥I −�μ

∥
∥∗

(s(c)
1/β ,s(c)

1/β) =
∥
∥I −�μ

∥
∥∗
S1/β
= sup

n≥n′1

(∣
∣
∣
∣

γn
βn +μ

∣
∣
∣
∣

βn
βn−1

)

=max
(
τ1,τ2

)≤ 1
2

(5.36)

and �−1
μ ∈ (s(c)

1/β,s(c)
1/β) for all μ ∈ ΣB. Reasoning as in (i) with (B + μI)−1 =�−1

μ R̃μD′μ, we

conclude that B + μI considered as operator from s(c)
1/β to c is invertible and (B + μI)−1 ∈

(c,s(c)
1/β) for all μ∈ ΣB. This completes the proof. �

We can state the following.

Theorem 5.8. In the space c, the two linear operators A and B are closed and satisfy the
following:

(i) D(A)= c(A)= s(c)
1/a,

(ii) D(B)= c(B)= s(c)
1/β,

(iii) D(A) 
= c, D(B) 
= c,
(iv) there are εA, εB > 0 (with εA+ εB < π ) such that

∥
∥(A− λI)−1

∥
∥∗

�(c) ≤
M

|λ| ∀λ 
= 0,
∣
∣Arg(λ)

∣
∣≥ εA,

∥
∥(B+μI)−1

∥
∥∗

�(c) ≤
M

|μ| ∀μ 
= 0,
∣
∣Arg(μ)

∣
∣≤ π− εB.

(5.37)

Proof. Show that A is a closed operator. For this, consider a sequence x′p = (xnp)n≥1 tend-

ing to x = (xn)n≥1 in c, as p tends to infinity, where x′p ∈ s(c)
1/a for all p. Then Ax′p→y(p→∞)

in c, that is, An(x′p)→ An(x)= yn (p→∞) for all n. It remains to show that x ∈ s(c)
1/a. For

this, note that since b ∈ c and x ∈ c, we conclude that anxn = yn− bnxn+1 tends to a limit
as n tends to infinity. The proof for B is similar. The proof of statements (i) and (ii) comes
from Proposition 4.3 and follows the same lines as that for Theorem 5.6(i), (ii).

(iii) Follows exactly the same lines as that in the proof given in the case when E = l∞
in [15, Proposition 3, page 196].

The proof of (iv) is a consequence of Proposition 5.7(i) and follows exactly the same
lines as that in the proof of Theorem 5.6. �
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[1] B. Altay and F. Başar, On the fine spectrum of the generalized difference operator B(r,s) over the
sequence spaces c0 and c, International Journal of Mathematics and Mathematical Sciences 2005
(2005), no. 18, 3005–3013.
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BP 227, Mostaganem 27000, Algeria
E-mail address: medeghri@univ-mosta.dz

mailto:bdemalaf@wanadoo.fr
mailto:medeghri@univ-mosta.dz

