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The goal of the paper is twofold: (1) to show that the exact value D2 in the Meńshov-
Rademacher inequality equals 4/3, and (2) to give a new proof of the Meńshov-
Rademacher inequality by use of a recurrence relation. The latter gives the asymptotic
estimate limsupnDn/ log2

2n≤ 1/4.
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1. Introduction

The Meńshov-Rademacher inequality deals with the estimation of

Dn = supE max
1≤k≤n

( k∑
l=1

αlϕl

)2

, (1.1)

where sup is taken over all probability spaces (Ω,�,P), all real orthonormal systems
(ϕ1, . . . ,ϕn) on them, and all real coefficient collections (α1, . . . ,αn) with

∑n
1 α

2
i = 1.

Rademacher [9] and Meńshov [7] independently proved that there exists an absolute
constant C > 0 such that for each n≥ 2,

Dn ≤ C log2
2n. (1.2)

A traditional proof using a bisection method (see, e.g., Doob [2] and Loève [6]) leads to
the inequality

Dn ≤
(

log2n+ 2
)2

, n≥ 2. (1.3)

Kounias [4] used a trisection method to get a finer inequality:

Dn ≤
(

log2n

log2 3
+ 2
)2

, n≥ 2. (1.4)
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2 On the constant in Meńshov-Rademacher inequality

The aim of this paper is twofold: to show that the exact starting value D2 = 4/3 and to
establish a recurrence relation which leads to a refinement of (1.4) and an asymptotic
constant ≤ 1/4. Note that there are several other proofs of the Meńshov-Rademacher in-
equality and its generalizations, see, for example, Somogyi [10] and Móricz and Tandori
[8].

Section 2 deals with the proof of D2 = 4/3, while Section 3 is devoted to the proof
of the Meńshov-Rademacher inequality with the asymptotic constant ≤ 1/4. Section 4
contains alternative proofs to those results using the concept of main triangle projec-
tion, a subject which was studied in depth in Gohberg and Kreı̆n [3] and Kwapień and
“Pełczyński” [5].

2. The value of D2

Theorem 2.1. D2 = 4/3.

The proof of the theorem is based on the following lemma which may be of indepen-
dent interest.

Lemma 2.2. Let c > 0 , pc ≡ c2/(1 + c2), and define

f (p,c)= sup
X∈�(p,c)

E
(
X1X>−c), pc ≤ p < 1, (2.1)

where

�(p,c)= {X ∈ L0(Ω,�,P) : E(X)= 0, E(X2)= 1, P(X >−c)= p}. (2.2)

Then

f (p,c)=
√
p(1− p). (2.3)

Proof of Lemma 2.2. To show that the left-hand side is greater than or equal to right-hand

side, we observe that E(Xp1Xp>−c)=
√
p(1− p), where the distribution of Xp ∈�(p,c) is

given by

p = P

(
Xp =

√
(1− p)

p

)
= 1−P

(
Xp =−

√
p

(1− p)

)
. (2.4)

To see that the left-hand side is less than or equal to right-hand side, we define

hp(x)= x · 1x>−c− p · x−
√

p(1− p)
4

· x2. (2.5)

The maximum of hp(x) is achieved at x =
√

(1− p)/p and at −
√
p/(1− p) for the regions

x >−c and x ≤−c, respectively. We conclude that for any X ∈�(p,c),

0≤ E
(
hp
(
Xp
))−E

(
hp(X)

)= E
(
Xp · 1Xp>−c

)−E
(
X · 1X>−c

)
. (2.6)

This completes the proof of the lemma. �
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Let us note also that �(p,c) is empty for p < pc. Indeed, by the Chebyshev inequality,
E(X)= 0 and E(X2)= 1 imply P(X ≤−c)≤ 1/(1 + c2)= 1− pc.

Proof of Theorem 2.1. The result follows by standard calculations from the representation

D2 = sup
a2+b2=1,b2/(1+3a2)<p<1

{
a2 + b2p+ 2ab ·

√
p(1− p)

}
. (2.7)

To prove (2.7) convert an orthonormal pair (ϕ1,ϕ2) defined on (Ω,�,P) into (X ≡ ϕ1/
ϕ2,1). The new pair is orthonormal with respect to the measure dP′ = ϕ2

2dP. Also

EP max
{(
aϕ1

)2
,
(
aϕ1 + bϕ2

)2}= EP′ max
{

(aX)2,(aX + b)2}
= a2 + b2P′(X >−b/2a) + 2ab ·EP′

(
X · 1X>−b/2a

)

≤ a2 + b2p+ 2ab · f
(
p,

b

2a

)
,

(2.8)

where p = P′(X >−b/2a). Now (2.7) follows from Lemma 2.2 with c = b/2a. �

3. An induction proof of the Meńshov-Rademacher inequality

Theorem 3.1. (i)

Dm ≤ 1
4

(
3 + log2m

)2
, m≥ 2. (3.1)

In particular, (ii)

limsup
m

Dm

log2
2m

≤ 1
4
. (3.2)

Lemma 3.2. The following recurrence relation holds true for any n∈N:

D2n ≤Dn +D1/2
n . (3.3)

Proof of Lemma 3.2. We have for any n∈N,

max
k≤2n

∣∣∣∣∣
k∑
1

αiϕi

∣∣∣∣∣
2

≤max

(
max
k≤n

∣∣∣∣∣
k∑
1

αiϕi

∣∣∣∣∣
2

,

(∣∣∣∣
n∑
1

αiϕi

∣∣∣∣∣+ max
n<k≤2n

∣∣∣∣∣
k∑

n+1

αiϕi

∣∣∣∣∣
)2)

≤max
k≤n

∣∣∣∣∣
k∑
1

αiϕi

∣∣∣∣∣
2

+ 2

∣∣∣∣∣
n∑
1

αiϕi

∣∣∣∣∣ max
n<k≤2n

∣∣∣∣∣
k∑

n+1

αiϕi

∣∣∣∣∣+ max
n<k≤2n

∣∣∣∣∣
k∑

n+1

αiϕi

∣∣∣∣∣
2

.

(3.4)

Taking expectations in (3.4) and using the Cauchy-Schwartz inequality, we come to the
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desired recurrence relation:

D2n ≤ pDn + 2
√
p(1− p)Dn + (1− p)Dn =Dn +

√
Dn, (3.5)

where p =∑n
1 α

2
i .

The lemma is proved. �

Proof of Theorem 3.1. Lemma 3.2 implies that for any n∈N,

D1/2
2n ≤D1/2

n +
1
2
. (3.6)

Since D1 = 1, this implies that for each n∈N,

D1/2
2n ≤ 1 +

n

2
. (3.7)

Let us take now 2n ≤m< 2n+1. Then

Dm ≤D2n+1 ≤
(

1 +
n+ 1

2

)2

≤
(

1 +
log2m+ 1

2

)2

. (3.8)

This implies the validity of Theorem 3.1. �

Remark 3.3. (1) The proof of Theorem 3.1 is a refinement of that appeared in Chobanyan
[1].

(2) Kounias’s result mentioned in the introduction leads to limsup(Dn/ log2
2n) ≤

(log2/ log3)2 which is larger than 1/4 of Theorem 3.1.

4. An alternative approach: the main triangle projection

Consider the space L(Rn) of all linear operators (matrices) acting in Rn. The correspon-
dence between the operators and matrices is given by ai j = (Aej ,ei), i, j = 1, . . . ,n. The
main triangle projection Tn : L(Rn)→ L(Rn) is a linear operator introduced as follows. For
an A ∈ L(Rn), the matrix of the operator B = TnA has the form bi j = ai j if i+ j ≤ n+ 1
and bi j = 0 otherwise.

We assume thatRn is endowed with the Euclidean norm, and the norm in L(Rn) is the
usual operator norm.

Theorem 4.1. Dn = ‖Tn‖2, n∈N.

Proof. Let us prove first that ‖Tn‖2 ≡ sup‖A‖≤1‖TnA‖2 ≤ Dn. Since the orthogonal op-
erators (and only them) are the extreme points of the unit ball of L(Rn), it suffices to
show that for any orthogonal operator u∈ L(Rn), ‖Tnu‖2 ≤Dn. Let us relate with u the
orthonormal system ϕ1, . . . ,ϕn defined on (Ω,P), where Ω = {1, . . . ,n}, P( j) = 1/n, j =
1, . . . ,n, as follows:

ϕk( j)=√n(uek,ej
)
, k, j = 1, . . . ,n. (4.1)
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We have for any vector α= (α1, . . . ,αn)∈Rn with |α| = 1,

Dn ≥ Emax
k≤n

∣∣∣∣∣
k∑
i=1

αiϕi

∣∣∣∣∣
2

=
n∑
j=1

max
k≤n

∣∣∣∣∣
k∑
i=1

αi
(
uei,ej

)∣∣∣∣∣
2

≥
n∑
j=1

∣∣∣∣∣
n− j+1∑
i=1

αi
(
uei,ej

)∣∣∣∣∣
2

= ∥∥(Tnu
)
α
∥∥2
.

(4.2)

Taking supremum over all orthogonal u’s and α’s from the unit ball of Rn, we get Dn ≥
‖Tn‖2. To prove the inverse inequality, consider an orthonormal system (ϕ1, . . . ,ϕn) ⊂
L2(Ω,�,P) and any vector α= (α1, . . . ,αn)∈Rn with |α| = 1.

I(α,ϕ)≡ Emax
k≤n

∣∣∣∣∣
k∑
i=1

αiϕi

∣∣∣∣∣
2

=
n∑

k=1

E1Sk

∣∣∣∣∣
k∑
i=1

αiϕi

∣∣∣∣∣
2

, (4.3)

where Sk = {ω ∈ Ω : the minimum of l′s at which |∑l
i=1αiϕi(ω)| attains its maximum

equals k}. Then we have

I(α,ϕ)= sup
g

n∑
k=1

[
Egk1Sk

∣∣∣∣∣
k∑
i=1

αiϕi

∣∣∣∣∣
]2

, (4.4)

where supremum is taken over all collections g = (g1, . . . ,gn) such that gk’s vanish outside
of Sk and ‖gk‖2 = 1, k = 1, . . . ,n. We have further

I(α,ϕ)= sup
g

n∑
k=1

k∑
i, j=1

αiαjEgkϕiϕj

= sup
g

n∑
i, j=1

n∑
k=max(i, j)

αiαjEgkϕiϕj = sup
g

∥∥TnAα
∥∥2

,

(4.5)

where (Aej ,ei)= Egn− j+1 ·ϕi, i, j = 1, . . . ,n. We have

‖A‖ = sup
|α|=1

n∑
i=1

( n∑
j=1

Eαjgn− j+1ϕi

)2

= sup
|α|=1

n∑
i=1

(
E f ϕi

)2 = sup
|α|=1

E f 2 = 1, (4.6)

where f = αjgj , if ω ∈ Sj , j = 1, . . . ,n. Therefore, (4.5) implies Dn ≤ ‖Tn‖2. The theorem
is proved. �

The following corollary is our Theorem 2.1.

Corollary 4.2. D2 = 4/3.

Proof. We have according to Theorem 4.1,

D2 =
∥∥T2

∥∥2 = sup
u

∥∥T2u
∥∥2 = sup

{∥∥∥∥∥
(
a b
b 0

)∥∥∥∥∥
2

: a2 + b2 = 1

}
= 4

3
. (4.7)

�
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Remark 4.3. It follows from the proof of Theorem 4.1 that Dn = supE[max j(
∑ j

l=1 alϕl)2],
where the supremum is over all real orthonormal systems ϕ1, . . . ,ϕn, where each ϕj , j =
1, . . . ,n takes at most n values, and all reals α1, . . . ,αn with |α| = 1.

The following lemma establishes a finer recurrence relation than Lemma 3.2. However,
the two lemmas are asymptotically equivalent.

Lemma 4.4.

D2n ≤ 4
3
Dn if Dn ≤ 3, D2n ≤Dn− 1

2
+

√
Dn− 3

4
if Dn ≥ 3. (4.8)

Proof. We have for any n∈N:

∥∥T2n
∥∥= sup

{∥∥∥∥∥
(

A TnB
TnC 0

)∥∥∥∥∥
}

, (4.9)

where the supremum runs over all matrices A, B, C, and D in L(Rn) such that ‖(A B
C D )‖ ≤

1. For such matrices A, B, C, and D we check that |uA|2 + |uTnB|2 ≤ ‖Tn‖2|u|2 and
|Ax|2 + |TnCx|2 ≤ ‖Tn‖2|x|2 for all u,x ∈Rn. Therefore, ‖T2n‖ ≤ sup{(u,Ax) + (u,Fy) +
(v,Gy) : u,v,x, y ∈Rn, |u|2 + |v|2 ≤ 1, |x|2 + |y|2 ≤ 1, A,F,G∈ L(Rn), ‖A‖ ≤ 1, |wA|2 +
|wF|2 ≤Dn|w|2, |Az|2 + |Gz|2 ≤Dn|z|2 for all w,z ∈Rn

}
. The last supremum can easily

be computed and its square equals supa∈[0,1](Dn − a/2 +
√
Dna− 3a2/4). Hence, D2n ≤

4/3Dn if Dn ≤ 3 and D2n ≤ Dn − 1/2 +
√
Dn− 3/4 if Dn ≥ 3. This completes the proof of

Lemma 4.4. �

Finally, it is known that for the Hilbert matrix (Hn(i, j)=1/(i− j), if i �= j and Hn(i, i)=
0, i, j = 1, . . . ,n, n≥ 2),

∥∥TnHn

∥∥∥∥Hn

∥∥ ≥ lnn
π

. (4.10)

This along with Theorem 3.1 implies the following bilateral estimate:

1

π2 log2
2 e
≤ liminf

Dn

log2
2n
≤ limsup

Dn

log2
2n
≤ 1

4
. (4.11)
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