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We study extended Hardy inequalities using Littlewood-Paley theory and nonlinear esti-
mates’ method in Besov spaces. Our results improve and extend the well-known results
of Cazenave (2003).
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1. Introduction

A remarkable result of Hardy-type inequality comes from the following proposition, the
proof of which is given by Cazenave [2].

Proposition 1.1. Let 1 � p <∞. If q < n is such that 0 � q � p, then |u(·)|p/| · |q ∈
L1(Rn) for every u∈W1,p(Rn). Furthermore,

∫
Rn

∣∣u(·)∣∣p
| · |q dx�

(
p

n− q
)q
‖u‖p−qLp ‖∇u‖qLp , (1.1)

for every u∈W1,p(Rn).

It is easy to see that the proposition fails when s > 1, where s = q/p. In this paper we
are trying to find out what happens if s > 1. We show that it does not only become true
but obtains better estimates.

The described result is stated and proved in Section 3. The method invoked is different
from that by Cazenave in [2]; it relies on some Littlewood-Paley theory and Besov spaces’
theory that are cited in Section 2.

2. Preliminaries

In this section we introduce some equivalent definitions and norms for Besov space
needed in this paper. The reader is referred to the well-known books of Runst and Sickel
[5], Triebel [6], and Miao [4] for details.
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2 Extensions of Hardy inequality

We first introduce the following equivalent norms for the homogeneous Besov spaces
Ḃsp,m:

‖u‖Ḃsp,m
�

∑
|α|=[s]

(∫ +∞

0
t−mσ sup

|y|�t

∥∥�y∂
αu
∥∥m
p

dt

t

)1/m

, (2.1)

where

�yu� τyu−u, τyu(·)= u(·+ y),

∂α = ∂α1
1 ∂

α2
2 ···∂αnn , ∂i = ∂

∂xi
, i= 1,2, . . . ,n.

(2.2)

α = (α1,α2, . . . ,αn) and s = [s] + σ with 0 < σ < 1, namely, σ = s− [s], where [s] denotes
the largest integer not larger than s. In the case m =∞, the norm ‖u‖Ḃsp,∞ in the above
definition should be modified as follows:

‖u‖Ḃsp,∞ �
∑

|α|=[s]

sup
t>0

t−σ sup
|y|�t

∥∥�y∂
αu
∥∥
p, s∈R+. (2.3)

We now introduce the Paley-Littlewood definition of Besov spaces.
Let ϕ̂0 ∈ C∞c (Rn) with

ϕ̂0(ξ)=
⎧⎨
⎩

1, |ξ|� 1,

0, |ξ|� 2,
(2.4)

be the real-valued bump function. It is easy to see that

ϕ̂ j(ξ)= ϕ̂0
(
2− j ξ

)
, j ∈ Z,

ψ̂ j(ξ)= ϕ̂0
(
2− j ξ

)− ϕ̂0
(
2− j+1ξ

)
, j ∈ Z,

(2.5)

are also real-valued radial bump functions satisfying that

sup
ξ∈Rn

2 j|α|
∣∣∂αψ̂ j(ξ)

∣∣ <∞, j ∈ Z,

sup
ξ∈Rn

2 j|α|
∣∣∂αϕ̂ j(ξ)

∣∣ <∞, j ∈ Z.
(2.6)

We have the Littlewood-Paley decomposition:

ϕ̂0(ξ) +
∞∑
j=0

ψ̂ j(ξ)= 1, ξ ∈Rn,

∑
j∈Z

ψ̂ j(ξ)= 1, ξ ∈Rn\{0},

lim
j→+∞

ϕ̂ j(ξ)= 1, ξ ∈Rn.

(2.7)
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For convenience, we introduce the following notations:

� j f =�−1ψ̂ j� f = ψj ∗ f , j ∈ Z,

Sj f =�−1ϕ̂ j� f = ϕj ∗ f , j ∈ Z.
(2.8)

Then we have the following Littlewood-Paley definition of Besov spaces and Triebel
spaces:

Ḃsp,m =
⎧⎨
⎩ f ∈�′(Rn

) | ‖ f ‖Ḃsp,m
=
(∑

j∈Z
2 jsm

∥∥� j f
∥∥m
p

)1/m

=
(∑

j∈Z
2 jsm

∥∥ψj ∗ f
∥∥m
p

)1/m

<∞
⎫⎬
⎭ ,

Ḟsp,m =
⎧⎨
⎩ f ∈�′(Rn

) | ‖ f ‖Ḟsp,m
=
∥∥∥∥∥
(∑

j∈Z
2 jsm

∣∣� j f
∣∣m
)1/m∥∥∥∥∥

p

=
∥∥∥∥∥
(∑

j∈Z
2 jsm

∣∣ψj ∗ f
∣∣m
)1/m∥∥∥∥∥

p

<∞
⎫⎬
⎭ ,

Ḃsp,∞ =
{
f ∈�′(Rn

) | ‖ f ‖Ḃsp,∞ = sup
j∈Z

2 js
∥∥� j f

∥∥
p = sup

j∈Z
2 js
∥∥ψj ∗ f

∥∥
p <∞

}
,

Ḟsp,∞ =
{
f ∈�′(Rn

) | ‖ f ‖Ḟsp,∞ =
∥∥∥∥sup
j∈Z

2 js
∣∣� j f

∣∣
∥∥∥∥
p
=
∥∥∥∥sup
j∈Z

2 js
∣∣ψj ∗ f

∣∣
∥∥∥∥
p
<∞

}
.

(2.9)

Remark 2.1. We have the identities (equivalent quasinorms) Lp = F0
p,2, Ḣs = Ḟs2,2 = Ḃs2,2.

3. Main result

Theorem 3.1. Let 1 � p <∞. If 0 � s < n/p, a constant C exits such that for any u ∈
Ḃsp,1(Rn),

∫
Rn

∣∣u(x)
∣∣p

|x|sp dx� C‖u‖pḂsp,1
. (3.1)

Remark 3.2. (i) If s= 0, the result will be more precise replacing Ḃ0
p,1 by Ḟ0

p,2.
(ii) Noting interpolation inequality in [1] by Bergh and Löfström between Ḣ0,p and

Ḣ1,p, the theorem implies the proposition when 0 < s < 1.
(iii) If s= 1, the result will be more precise replacing Ḃ1

p,1 by Ḟ1
p,2 = Ḣ1,p.

(iv) If p = 2, we have more precise proposition substituting Ḟs2,2 = Ḃs2,2 for Ḃs2,1.
(v) The Hardy-type inequality will be excellent substituting Ḟsp,2 for Ḃsp,1, but it fails

using this method, in fact we obtain this estimate:

∫
Rn

∣∣u(x)
∣∣p

|x|sp dx� C‖u‖p−1
Ḟsp,2
‖u‖Ḃsp,1

, (3.2)

where Ḟsp,2 is a Triebel space.



4 Extensions of Hardy inequality

In order to prove the theorem, we need the following two lemmas, the first of which
was easily proved using Littlewood-Paley theory in Lemarié-Rieusset [3] and the other
will be proved here.

Lemma 3.3. Let s be in ]0,n[. Then for any p in [1,∞], | · |−s ∈ Ḃn/p−sp,∞ .

Lemma 3.4. Let 1 � p <∞. If 0 � s < n/p, then up ∈ Ḃ0
q′,1 for every u ∈ Ḃsp,1, where q′ =

q/(q− 1) and q = n/sp.

Proof of Lemma 3.4. By equivalent definition and norms for Besov space, it is sufficient
to establish that

∥∥up∥∥Ḃ0
q′ ,1

� ‖u‖pḂsp,1
. (3.3)

Hence

‖F‖Ḃ0
q′ ,1
�
∫ +∞

0
sup
|y|≤t

∥∥�yF
∥∥
q′
dt

t
. (3.4)

Let F(u)= |u(x)|p. Using Newton-Leibniz formula and inequality (|a|+|b|)p � 2p(|a|p +
|b|p), we deduce that

∣∣τyF(u)−F(u)
∣∣=

∣∣∣∣
∫ 1

0
dF
(
θτy|u|+ (1− θ)|u|)

∣∣∣∣� C
(∣∣τyu∣∣p−1

+ |u|p−1)∣∣τyu−u∣∣,

(3.5)

where C is a constant.
By definition of�y and thanks to the Hölder inequality, we have that

∥∥�yF
∥∥
q′ � C‖u‖p−1

(p−1)χ1

∥∥τyu−u∥∥χ2
, (3.6)

where 1/χ1 = (p− 1)(1/p− s/n) and 1/χ2 = 1/p− s/n.
Note that

Ḃsp,1

(
Rn
)

L(p−1)χ1
(
Rn
)
,

Ḃsp,1

(
Rn
)

Ḃ0
χ2,1

(
Rn
)
.

(3.7)

Thus we infer that

∥∥up∥∥Ḃ0
q′ ,1

� ‖u‖p−1
(p−1)χ1

‖u‖Ḃ0
χ2,1

� C‖u‖pḂsp,1
(3.8)

implying the lemma. �

Proof of Theorem 3.1. Let us define

Is,p(u) �
∫
Rn

∣∣u(x)
∣∣p

|x|sp dx = 〈| · |−sp,|u|p〉. (3.9)
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Using Littlewood-Paley decomposition, we can write

Is,p(u)=
∑

| j− j′|�2

〈� j| · |−sp,� j′ |u|p
〉

� C sup
j

∥∥� j| · |−sp
∥∥
q

∑
j′∈Z

∥∥� j′ |u|p
∥∥
q′

� C
∥∥| · |−sp∥∥Ḃ0

q,∞

∥∥up∥∥Ḃ0
q′ ,1

,

(3.10)

where q = n/sp > 1. Lemma 3.3 claims that | · |−sp belongs to Ḃ0
q,∞ and Lemma 3.4 claims

in particular that ‖up‖Ḃ0
q′ ,1

� ‖u‖pḂsp,1
. Thus Is,p(u) � C‖u‖pḂsp,1

, which implies the theorem.

�
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