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We consider continuously differentiable means, say C1-means. As for quasi-arithmetic
means Qf (x1, . . . ,xn), we need an assumption that f has no stationary points so that Qf

might be continuously differentiable. Introducing quasi-weights forC1-means would give
a satisfactory explanation for the necessity of this assumption. As a typical example of a
class of C1-means, we observe that a skew power mean Mt is a composition of power
means if t is an integer.
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1. Introduction

Let M(x1, . . . ,xn) be a continuously differentiable n-variable positive function on (0,∞)n.
Then, throughout this paper, M is called a continuously differentiable mean, or shortly
C1-mean if M satisfies

(i) M is monotone increasing in each term;
(ii) M(a, . . . ,a)= a for all positive numbers a.

A mean M is called homogeneous if M satisfies

M
(
ax1, . . . ,axn

)= aM
(
x1, . . . ,xn

)
(1.1)

for all a,xk > 0. Almost all classical means are homogeneous C1-ones. The Kubo-Ando
(operator) means in [6] and chaotic ones in [2] are C1-means. Here note that (numerical)
Kubo-Ando means Kf (a,b) are defined by

Kf (a,b)= a f
(
b

a

)
(1.2)
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2 Continuously differentiable means

for positive operator monotone functions f , which form a special class of numerical
means.

Let f be a continuously differentiable monotone function on (0,∞) with no stationary
points, that is, f ′(x) �= 0 for all x > 0. In this case, f −1 is also continuously differentiable.
Let w = {wk} be a weight, that is, a set of nonnegative numbers wk with

∑
k wk = 1. For

such f and a weight w, it follows that a quasi-arithmetic mean Qf ,w defined by

Qf ,w
(
x1, . . . ,xn

)= f −1

( n∑

k=1

wk f
(
xk
)
)

(1.3)

is a typical C1-mean. As we will see later in the next section, the assumption that f has no
stationary points is necessary for continuous differentiability. Our main interest in this
paper is when integral functions

� f ,P
(
x1, . . . ,xn

)= f −1
(∫∞

0
f (x)dPx1,...,xn(x)

)
(1.4)

are C1-means, where Px1,...,xn is a probability measure on (0,∞) for each xk. Note that
these functions differ from the continuous quasi-arithmetic means, cf. [4, 5], but they
include the above discrete quasi-arithmetic ones Qf ,w. In fact, for a convex combination
for Dirac measures Px1,...,xn =

∑n
k=1wkδxk , we have Mf ,P =Qf ,w.

In this paper, we discuss continuous differentiability of such integral functions as
means, and observe when � f ,P is a C1-mean, particularly as 2-variable functions. Many
mathematicians have been interested in means of positive numbers. But, even in a quasi-
arithmetic mean, odd properties appear as we will see in some examples later. We noticed
that the key in this problem is continuous differentiability for means. So we discuss con-
tinuously differentiable means and give some classes of such means. Finally, we discuss
skew power means including logarithmic one as a path of C1-means.

2. Quasi-weight for means

Power means defined by (see [3])

Pr,w
(
x1, . . . ,xn

)=
( n∑

k=1

wkx
r
k

)1/r

(2.1)

are quasi-arithmetic C1-means. Note that only homogeneous quasi-arithmetic means are
the power means, which is shown in [4]. Then, we have

∂Pr,w

∂xk
(a, . . . ,a)= 1

r

( n∑

k=1

wka
r

)1/r−1

· rwka
r−1 =wk

(
ar
)1/r−1

ar−1 =wk. (2.2)

Moreover, we have the following property.

Lemma 2.1. All C1-means M satisty (∂M/∂xk)(a, . . . ,a) � 0 and
∑n

k=1(∂M/∂xk)(a, . . . ,a)=
1 for all a > 0.
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Proof. It follows from (ii) that

1= a+ ε− a

ε
= lim

ε→0

M(a+ ε, . . . ,a+ ε)−M(a, . . . ,a)
ε

=
n∑

k=1

∂M

∂xk
(a, . . . ,a). (2.3)

The assumption (i) implies (∂M/∂xk)(a, . . . ,a) � 0. �

Thereby, we define a kth quasi-weight w(M)k(a) for a C1-mean M at a by (cf. [1])

w(M)k(a)= ∂M

∂xk
(a, . . . ,a). (2.4)

Note that it is a constant for all a if M is homogeneous-like power means. In fact,

w(M)1(a)= lim
ε→0

M(a+ ε,a, . . . ,a)−M(a, . . . ,a)
ε

= lim
ε→0

M(1 + ε/a,1, . . . ,1)−M(1, . . . ,1)
ε/a

=w(M)1(1).

(2.5)

Moreover, even for a nonhomogeneous case, it can be constant and coincides with the
weight.

Theorem 2.2. If f has no stationary point, then the kth quasi-weight w(Qf ,w)k(a) of a
quasi-arithmetic mean Qf ,w is the kth weight wk.

Proof. Note that (∂ f ◦Qf ,w/∂xk)(a, . . . ,a)=wk f ′(a). On the other hand, we have

∂ f ◦Qf ,w

∂xk
(a, . . . ,a)= f ′

(
Qf ,w(a, . . . ,a)

)∂Qf ,w

∂xk
(a, . . . ,a)= f ′(a)w

(
Qf ,w

)
k(a), (2.6)

and hence w(Qf ,w)k(a)=wk by f ′(a) �= 0. �

When f has a stationary point, the following example shows that Qf ,w is not always a
C1-mean.

Example 2.3. Let Qf = Qf ,{1/2,1/2}. For a fixed a > 0, put f (x) = (x− a)3 + a3. Then we
have f −1(x)= (x− a3)1/3 + a,

Qf (x, y)=
(

(x− a)3 + (y− a)3

2

)1/3

+ a,

∂Qf

∂x
(x, y)= (x− a)2

21/3
(
(x− a)3 + (y− a)3

)2/3 .

(2.7)

Thus it is not continuously differentiable at (a,a). In fact, we cannot define the quasi-
weights

lim
ε→0

∂Qf

∂x
(a+ ε,a)= lim

ε→0
2−1/3 = 2−1/3, (2.8)
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while

lim
ε→0

∂Qf

∂x
(a+ ε,a+ ε)= 1

21/3× 22/3
= 1

2
. (2.9)

Therefore, Qf is not a C1-mean.

If a C1-mean M satisfies

M
(
xπ1 , . . . ,xπn

)=M
(
x1, . . . ,xn

)
(2.10)

for all permutation π, then it is called symmetric. It is clear that all quasi-weights for all
symmetric C1-means are the same value 1/n. But the converse is false by the following
example.

Example 2.4. The first quasi-weight of the following arithmetic (resp., geometric) mean

A(a,b)=w1a+w2b
(
resp., G(a,b)= aw2bw1

)
(2.11)

coincides with the first weight w1 (resp., w2). Putting M(a,b)= (A(a,b) +G(a,b))/2, we
have

w(M)1(a)=w(M)2(a)= w1 +w2

2
= 1

2
, (2.12)

while M(a,b) is not symmetric if w1 �=w2.

3. Continuous differentiability

Since functions � f ,P include Qf ,w as a case of singular measures, we should also assume
that f has no stationary points to discuss � f ,P . So we consider a case of absolutely con-
tinuous measures with the Radon-Nikodym derivative φx1,...,xn :

� f ,φ
(
x1, . . . ,xn

)= f −1
(∫∞

0
f (x)φx1,...,xn(x)dx

)
. (3.1)

The following example shows that we need the condition φ(x) > 0 for all x > 0 in order
that � f ,φ be a C1-mean.

Example 3.1. Consider the derivative

φa,b(x)= 3(x− 1)2χ[a,b](x)
(b− 1)3− (a− 1)3

(3.2)

(for convenience’s sake, χ[a,b] =−χ[b,a] if a > b and φa,a(x)= a). Then we have φa,b(1)= 0.
Since

�x,φ(a,b)= 3
(b− 1)3− (a− 1)3

∫ b

a
x(x− 1)2dx = (1 + 3b/4)(b− 1)3− (1 + 3a/4)(a− 1)3

(b− 1)3− (a− 1)3
,

(3.3)
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it follows that �x,φ(a,b) is symmetric. So quasi-weights are 1/2 if it is a C1-mean, while

lim
ε→0

�x,φ(1 + ε,1)−�x,φ(1,1)

ε
= lim

ε→0

1 + (3/4)ε− 1
ε

= 3
4
. (3.4)

Now let p be a polynomial with a degree m > 0 which is monotone and convex on
(0,∞). Then p′(x) > 0 for all x > 0. For a continuously differentiable monotone function
f with no stationary points, we define

Mf ,p(a,b)= f −1
(∫ b

a

f (x)p′(x)
p(b)− p(a)

dx
)

(3.5)

for a �= b and Mf ,p(a,a)= a. We will prove that Mf ,p defined above is a C1-mean. To do
this, we first show the continuity of Mf ,p.

Lemma 3.2. Mf ,p is continuous.

Proof. For the interval Ia,b between a and b, there exists ξa,b ∈ Ia,b with

∫ b

a
f (t)p′(t)dt = f

(
ξa,b

)
p′
(
ξa,b

)
(b− a) (3.6)

by the mean value theorem. Moreover, Cauchy’s mean-value theorem says that there ex-
ists ca,b with

1
p′
(
ca,b
) = b− a

p(b)− p(a)
(3.7)

for a �= b. Put Bε(c)= (c− ε,c+ ε) for a fixed c > 0. Then, for a �= b ∈ Bε(c),

Mf ,p(a,b)= f −1

(∫ b

a

f (x)p′(x)
p(b)− p(a)

dx

)

= f −1

(
f
(
ξa,b

)
p′
(
ξa,b

)

p′
(
ca,b
)

)

, (3.8)

so that, as ε→ 0, we have ξa,b,ca,b → c and Mf ,p(a,b) converges to

f −1
(
f (c)p′(c)
p′(c)

)
= c, (3.9)

which implies Mf ,p is continuous. �

To verify that Mf ,p is a C1-mean, we first show that it satisfies (i).

Lemma 3.3. Mf ,p(a,b) is invariant for every affine transform of f �→ t f + s (t �= 0) and
Mf ,p(a,b) is monotone increasing in each term.
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Proof. Since (t f + s)−1(x)= f −1((1/t)(x− s)), we have

Mt f +s,p(a,b)= (t f + s)−1
(∫ b

a

(t f (x) + s)p′(x)
p(b)− p(a)

dx
)

= (t f + s)−1
(
t
∫ b

a

f (x)p′(x)
p(b)− p(a)

dx+ s
∫ b

a

p′(x)
p(b)− p(a)

dx
)

= (t f + s)−1
(
t
∫ b

a

f (x)p′(x)
p(b)− p(a)

dx+ s
)

= f −1
(∫ b

a

f (x)p′(x)
p(b)− p(a)

dx
)
=Mf ,p(a,b).

(3.10)

Thus we may assume that f (and hence f −1) is monotone increasing. Since

∂

∂y

∫ y

a

f (x)p′(x)
p(y)− p(a)

dx =
(
f (y)

(
p(y)− p(a)

)− ∫ ya f (x)p′(x)dx
)
p′(y)

(
p(y)− p(a)

)2

�
(
f (y)

(
p(y)− p(a)

)− f (y)
∫ y
a p′(x)dx

)
p′(y)

(
p(y)− p(a)

)2 = 0,

(3.11)

we have
∫ y
a ( f (x)p′(x)/(p(y)− p(a)))dx is monotone increasing for y. Therefore, Mf ,p(a,

b) satisfies (i). �

Next, to show the differentiability, we cite the following fundamental lemma (for the
sake of completeness, here we give a proof).

Lemma 3.4. Let g be a C2-function on (0,∞) and

G(x, y)=

⎧
⎪⎪⎨

⎪⎪⎩

g(y)− g(x)
y− x

if x �= y,

g′(x) if x = y.

(3.12)

Then G is a C1-function on (0,∞)2.

Proof. Since G is symmetric, it suffices to show that Gx is continuous at the diagonal set
{(c,c) | c > 0}. By the l’Hospital theorem,

lim
h→0

G(c+h,c)−G(c,c)
h

= lim
h→0

g(c+h)− g(c)−hg′(c)
h2

= lim
h→0

g′(c+h)− g′(c)
2h

= g′′(c)
2

,

(3.13)
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that is, Gx(c,c)= g′′(c)/2. Since g′′ is continuous,

lim
h→0

Gx(c+h,c+h)= lim
h→0

g′′(c+h)
2

= g′′(c)
2

. (3.14)

On the other hand, for x �= y, we have

Gx(x, y)= ∂

∂x

(
g(y)− g(x)

y− x

)
= g(y)− g(x)− g′(x)(y− x)

(y− x)2
. (3.15)

Now what we must show is limh �=k→0Gx(c+h,c+ k)=Gx(c,c). Let h �= k ∈ Bε(0). By Tay-
lor’s expansion theorem, there exists ξh,k ∈ Ic+h,c+k ⊂ Bε(c) with

g(c+h)= g(c+ k) + g′(c+ k)(h− k) +
1
2
g′′
(
ξh,k

)
(h− k)2. (3.16)

The mean-value theorem says that there exists ch,k ∈ Ic+h,c+k ⊂ Bε(c) with

g′(c+ k)− g′(c+h)= g′′
(
ch,kv

)
(k−h). (3.17)

Thereby, as ε→ 0, we have ξh,k,ch,k → c and

Gx(c+h,c+ k)= g(c+ k)− g(c+h)− g′(c+h)(k−h)
(k−h)2

= g′(c+ k)(k−h)− g′′
(
ξh,k

)
(k−h)2/2− g′(c+h)(k−h)

(k−h)2

= g′(c+ k)− g′(c+h)
k−h

− g′′
(
ξh,k

)

2

= g′′
(
ch,k

)− g′′
(
ξh,k

)

2
−→ g′′(c)− g′′(c)

2
= g′′(c)

2
,

(3.18)

which implies G is continuously differentiable. �

Now we have the following theorem.

Theorem 3.5. The above function Mf ,p(a,b) defines a symmetric C1-mean.

Proof. Let Fk be primitive functions defined inductively

F′k+1 = Fk, F0 = f . (3.19)
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Since p(m)(x) is a constant function, we have

∫ b

a
f (x)p′(x)dx = [F1(x)p′(x)

]b
a−

∫ b

a
F1(x)p′′(x)dx

= F1(b)p′(b)−F1(a)p′(a)− [F2(x)p′′(x)
]b
a +

∫ b

a
F2(x)p(3)(x)dx

= ···

=
m−1∑

k=1

(−1)k+1(Fk(b)p(k)(b)−Fk(a)p(k)(a)
)

+(−1)m+1
∫ b

a
Fm−1(x)p(m)(x)dx

=
m∑

k=1

(−1)k+1(Fk(b)p(k)(b)−Fk(a)p(k)(a)
)
.

(3.20)

It follows that

Mf ,p(a,b)= f −1

(∑m
k=1(−1)k+1

(
Fk(b)p(k)(b)−Fk(a)p(k)(a)

)

p(b)− p(a)

)

. (3.21)

Here we put

Hk(a,b)≡ Fk(b)p(k)(b)−Fk(a)p(k)(a)
p(b)− p(a)

. (3.22)

Note that a polynomial P(a,b)= (p(b)− p(a))/(b− a) no longer have a divisor b− a by
p′(x) > 0, and hence P(a,b) �= 0 for all a,b > 0. By Lemma 3.3, P is continuously differen-
tiable (by putting P(a,a)≡ p′(a)). Setting such functions

P[k](a,b)= p(k)(b)− p(k)(a)
b− a

, G[k](a,b)= Fk(b)−Fk(a)
b− a

(3.23)

(where P[k](a,a)≡ p(k+1)(a), G[k](a,a)≡ Fk−1(a)), we have

Hk(a,b)= Fk(b)P[k](a,b) +G[k](a,b)p(k)(a)
P(a,b)

, (3.24)

and hence it is continuously differentiable by Lemma 3.3. Therefore, since f −1 is also
continuously differentiable, Mf ,p(a,b) is a symmetric C1-mean by Lemma 3.2. �

4. Skew power means

For positive numbers a and b, consider the following special case for � f ,φ (see [2]):

Mt(a,b)=
(

1
b− a

∫ b

a
xt dx

)1/t

=
(

bt+1− at+1

(t+ 1)(b− a)

)1/t

. (4.1)
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Table 4.1

t −∞ −2 −1 0 1 2 ∞
Minimum Geometric Logarithmic Identric Arithmetic — Maximum

min{a,b} √
ab

b− a

logb− loga
aa/(a−b)bb/(b−a)

e

a+ b

2

(
a2 + ab+ b2

3

)1/2

max{a,b}

By definition, we call them skew power means which include various classical means, for
example, the logarithmic and identric ones as shown in Table 4.1.

Here we use 2-variable power means

Pr,w(a,b)= ((1−w)ar +wbr
)1/r

, (4.2)

and, in particular,

P0,w(a,b)≡ lim
r→0

Pr,w(a,b)= a1−wbw (4.3)

is a weighted geometric mean. For the convenience’s sake, we omit w for w = 1/2 which
is a symmetric mean.

Let αn be the smallest number N such that Mn is a composition of N power means
(αn =∞ if not). Putting

Ln,m(a,b)= (Mn
(
am,bm

))1/m
, (4.4)

we define βn,m as the smallest number N such that Ln,m is a composition of N power
means (βn,m =∞ if not). Now we have the following theorem.

Theorem 4.1. The mean function Mn(a,b) is represented by a composition for finitely many
power means as follows.

(i) For all positive integers n, it is a composition of at most 2n− 1 power means.
(ii) For all integers n�−2, it is a composition of at most −2n− 3 power means.

Proof
Case 1. Let n be a fixed positive integer and k a fixed nonzero integer. By M1 = P1, we
have

α1 = 1, (4.5)

and also

α2 � 3 (4.6)
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by

M2(a,b)=
(
a2 + ab+ b2

3

)1/2

=
(

2
3
a2 + b2

2
+

1
3
ab
)1/2

= P2,1/3
(
P2(a,b),P0(a,b)

)
.

(4.7)

Since

M2n+1(a,b)=
(
a2n+1 + a2nb+ ···+ b2n+1

2n+ 2

)1/(2n+1)

=
(
an + ···+ bn

n+ 1
an+1 + bn+1

2

)1/(2n+1)

=Mn(a,b)n/(2n+1)Pn+1(a,b)(n+1)/(2n+1) = P0,(n+1)/(2n+1)
(
Mn(a,b),Pn+1(a,b)

)
,

(4.8)

we have

α2n+1 � αn + 2. (4.9)

Moreover,

α2n � βn,2 +βn−1,2 + 3, (4.10)

since

M2n(a,b)=
(
a2n + a2n−1b+ ···+ b2n

2n+ 1

)1/2n

=
(
a2n + a2(n−1)b2 + ···+ b2n + (a2n−2 + a2n−4b2 + ···+ b2n−2)ab

2n+ 1

)1/2n

=
(

(n+ 1)Mn
(
a2,b2

)n
+nMn−1

(
a2,b2

)n−1
ab

2n+ 1

)1/2n

= P2n,n/(2n+1)

(√
Mn
(
a2,b2

)
,P0,1/n

(√
Mn−1

(
a2,b2

)
,
√
ab
))

= P2n,n/(2n+1)

(
Ln,2(a,b),P0,1/n

(√
Mn−1

(
a2,b2

)
,
√
ab
))

= P2n,n/(2n+1)
(
Ln,2(a,b),P0,1/n

(
Ln−1,2(a,b),P0(a,b)

))
.

(4.11)

It follows from L1,2k(a,b)=M1(a2k,b2k)1/(2k) = P2k(a,b) that

β1,2k = 1. (4.12)

Moreover we have

β2,2k � 3 (4.13)
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by

L2,2k(a,b)=M2
(
a2k,b2k)1/2k =

(
a4k + (ab)2k + b4k

3

)1/4k

= P4k,1/3
(
P4k(a,b),P0(a,b)

)
.

(4.14)

Since

L2n+1,2k(a,b)=M2n+1
(
a2k,b2k)1/2k

= P0,(n+1)/(2n+1)
(
Mn
(
a2k,b2k),Pn+1

(
a2k,b2k))1/2k

by (4.8)

= P0,(n+1)/(2n+1)

(
Mn
(
a2k,b2k)1/2k

,Pn+1
(
a2k,b2k)1/2k

)

= P0,(n+1)/(2n+1)
(
Ln,2k(a,b),P2k(n+1)(a,b)

)
,

(4.15)

we have

β2n+1,2k � βn,2k + 2. (4.16)

Also we have

β2n,2k � βn,4k +βn−1,4k + 3 (4.17)

by the following relation:

L2n,2k(a,b)=M2n
(
a2k,b2k)1/2k

=P2n,n/(2n+1)

(√
Mn
(
a4k,b4k

)
,P0,1/n

(√
Mn−1

(
a4k,b4k

)
,
√
a2kb2k

))1/2k
(by (4.11))

=
(
n+ 1

2n+ 1

√
Mn
(
a4k,b4k

)2n
+

n

2n+ 1
P0,1/n

(√
Mn−1

(
a4k,b4k

)
,akbk

)2n
)1/4kn

=
(
n+ 1

2n+ 1
Mn
(
a4k,b4k)4kn/4k

+
n

2n+ 1
P0,1/n

(√
Mn−1

(
a4k,b4k

)
,akbk

)4kn/2k
)1/4kn

= P4kn,n/(2n+1)

(
Ln,4k(a,b),P0,1/n

(√
Mn−1

(
a4k,b4k

)
,akbk

)1/2k
)

= P4kn,n/(2n+1)

(
Ln,4k(a,b),P0,1/n

(
Mn−1

(
a4k,b4k)1/4k

,
√
ab
))

= P4kn,n/(2n+1)
(
Ln,4k(a,b),P0,1/n

(
Ln−1,4k(a,b),P0(a,b)

))
.

(4.18)

Now, we show that

A(n) : βn,2k � 2n− 1
(∀k ∈ Z \ {0}) (4.19)
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holds for all positive integers n. In fact, both A(1) and A(2) are true by (4.12) and (4.13).
Assume that A(n) holds for all 1 � n�N (N � 2). If N = 2�, then

βN+1,2k = β2�+1,2k � β�,2k + 2 � 2�− 1 + 2=N + 1 � 2(N + 1)− 1 (4.20)

holds by (4.16) and the assumption, so that A(N + 1) holds. Also if N = 2� + 1, then

βN+1,2k = β2(�+1),2k � β�+1,4k +β�,4k + 3 � 2(� + 1)− 1 + 2�− 1 + 3= 4� + 3= 2(N + 1)− 1
(4.21)

holds by (4.17) and the assumption, so that A(N + 1) holds. Therefore, A(n) holds for all
positive integers n by induction. We next show that the required inequality

B(n) : αn � 2n− 1 (4.22)

holds for all positive integers n. In fact, both B(1) and B(2) are true by (4.5) and (4.6).
Assume that B(n) holds for all 1 � n�N (N � 2). If N = 2�, then

αN+1 = α2�+1 � α� + 2 � 2�− 1 + 2=N + 1 � 2(N + 1)− 1 (4.23)

holds by (4.9) and the assumption, and hence B(N + 1) holds. Also if N = 2� + 1, then

αN+1 = α2(�+1) � β�+1,2 +β�,2 + 3 � 2(� + 1)− 1 + 2�− 1 + 3= 4� + 3= 2(N + 1)− 1
(4.24)

holds by (4.10), A(n), and the assumption, so that B(N + 1) holds. Therefore, B(n) holds
for all positive integers n by induction. Thus we have Case 1.
Case 2. Let n be a fixed positive integer. By M−2 = P0, we have

α−2 = 1. (4.25)

It follows from L1,−1 = P1 that

β1,−1 = 1. (4.26)

Since

L2,−1(a,b)=M2

(
1
a

,
1
b

)−1

=
(
a−2 + (ab)−1 + b−2

3

)
= P−2,1/3

(
P−2(a,b),P0(a,b)

)
,

(4.27)

we have

β2,−1 � 3. (4.28)

Moreover, we have

β2n+1,−1 � βn,−1 + 2 (4.29)
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by the following equation:

L2n+1,−1(a,b)=M2n+1

(
1
a

,
1
b

)−1

=
(

Mn

(
1
a

,
1
b

)−1
)n/(2n+1)

P−(n+1)(a,b)(n+1)/(2n+1) by (4.8)

= P0,(n+1)/(2n+1)
(
Ln,−1(a,b),P−(n+1)(a,b)

)
.

(4.30)

Since

L2n,−1(a,b)=M2n

(
1
a

,
1
b

)−1

= P2n,n/(2n+1)

(
Ln,2

(
1
a

,
1
b

)
,P0,1/n

(
Ln−1,2

(
1
a

,
1
b

)
,P0

(
1
a

,
1
b

)))−1

=
(

n+ 1
2n+ 1

Ln,2

(
1
a

,
1
b

)2n

+
n

2n+ 1
P0,1/n

(
Ln−1,2

(
1
a

,
1
b

)
,P0

(
1
a

,
1
b

))2n
)−1/2n

=
(
n+1

2n+1
Ln,−2(a,b)−2n+

n

2n+1

((
Mn−1

(
a−2,b−2))(n−1)/2n

(ab)−1/2n)2n
)−1/2n

=
(
n+1

2n+1
Ln,−2(a,b)−2n+

n

2n+1

((
Mn−1

(
a−2,b−2))−(n−1)/2n

P0(a,b)1/n)−2n
)−1/2n

=
(
n+ 1

2n+ 1
Ln,−2(a,b)−2n +

n

2n+ 1

((
Ln−1,−2(a,b)

)(n−1)/n
P0(a,b)1/n

)−2n
)−1/2n

= P−2n,n/(2n+1)
(
Ln,−2(a,b),P0,1/n

(
Ln−1,−2(a,b),P0(a,b)

))
,

(4.31)

it follows from A(n) that

β2n,−1 � βn,−2 +βn−1,−2 + 3 � 2n− 1 + 2(n− 1)− 1 + 3= 4n− 1. (4.32)

Then we have

α−(n+2) � βn,−1 + 2, (4.33)
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since

M−(n+2)(a,b)=
(
b−(n+1)− a−(n+1)

−(n+ 1)(b− a)

)−1/(n+2)

=
(

b−(n+1)− a−(n+1)

(n+ 1)(1/b− 1/a)ab

)−1/(n+2)

=
(

(1/a)n + (1/a)n−1(1/b) + ···+ (1/b)n

n+ 1

)−1/(n+2)

(ab)1/(n+2)

=
(

Mn

(
1
a

,
1
b

)−1
)n/(n+2)√

ab
2/(n+2) = P0,2/(n+2)

(
Ln,−1(a,b),P0(a,b)

)
.

(4.34)

Now, we show that

C(n) : βn,−1 � 2n− 1 (4.35)

holds for all positive integers n. In fact, both C(1) and C(2) are true by (4.26) and (4.28).
Assume that C(n) holds for all 1 � n�N (N � 2). If N = 2�, then

βN+1,−1 = β2�+1,−1 � β�,−1 + 2 � 2�− 1 + 2=N + 1 � 2(N + 1)− 1 (4.36)

holds by (4.29) and the assumption, so that C(N + 1) holds. Also if N = 2� + 1, then

βN+1,−1 = β2(�+1),−1 � 4(� + 1)− 1= 4� + 3= 2(N + 1)− 1 (4.37)

holds by (4.32) and the assumption, so that C(N + 1) holds. Therefore, C(n) holds for all
positive integers n by induction. Thereby, let m be an integer with m � −2. If m � −3,
then 1 �−m− 2, and hence

αm = α−(−m−2+2) � β−m−2,−1 + 2 � 2(−m− 2)− 1 + 2=−2m− 3 (4.38)

by C(n). Also if m=−2, then the above inequality holds by (4.25). Thus we have Case 2,
which completes the proof.

�

Finally we conjecture that the above relations hold for all rational numbers t �= 0,−1.
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