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The chaotic order A� B among positive invertible operators A,B > 0 on a Hilbert space

is introduced by logA≥ logB. Using Uchiyama’s method and Furuta’s Kantorovich-type

inequality, we will point out that A� B if and only if ‖BpA−p/2B−p/2‖Ap ≥ Bp holds

for any 0 < p < p0, where p0 is any fixed positive number. On the other hand, for any

fixed p0 > 0, we also show that there exist positive invertible operators A, B such that

‖BpA−p/2B−p/2‖Ap ≥ Bp holds for any p ≥ p0, but A� B is not valid.

Copyright © 2006 C. Yang and F. Gao. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In what follows, a capital letter means a bounded linear operator on a complex Hilbert

space H . An operator T is said to be positive, in symbol T ≥ 0 if (Tx,x)≥ 0 for all x ∈H .

In particular, we denote by A > 0 if A ≥ 0 is invertible. By the operator monotonicity of

the logarithmic function, we know that A ≥ B > 0 implies the chaotic order A� B. For

the chaotic order, several characterizations were shown by many authors, for example,

[1–3, 6]. The following well-known results about chaotic order were obtained.

Theorem 1.1 [1, 2]. Let A and B be positive invertible operators. Then the following prop-

erties are mutually equivalent:

(i) logA≥ logB;

(ii) (Bp/2ApBp/2)1/2 ≥ Bp for all p ≥ 0;

(iii) (Br/2ApBr/2)r/(p+r) ≥ Br for all p ≥ 0 and r ≥ 0.

Theorem 1.2 Kantorovich type inequalities [3]. Let A > 0 and for positive numbers M, m,

M ≥ B ≥m > 0. Then the following parallel statements hold. Moreover, (ii) can be derived

from (i).
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2 A characterization of chaotic order

(i) A≥ B implies ((Mp−1 +mp−1)2/(4mp−1Mp−1))Ap ≥ Bp for all p ≥ 2.

(ii) logA≥ logB implies ((Mp +mp)2/(4mpMp))Ap ≥ Bp for all p ≥ 0.

Theorem 1.3 [6]. Let A and B be positive invertible operators. Then A≥ B > 0 if and only

if ‖Bp−1A−(p−2)/2B−p/2‖Ap−1 ≥ Bp−1 for all p ≥ 2.

As a parallel statement of Theorem 1.3, we point out the following result on the chaotic

order of two positive invertible operators.

Theorem 1.4. Let A and B be positive invertible operators. Then for a fixed p0 > 0, the

following assertions are mutually equivalent:

(i) A� B;

(ii) ‖BpA−p/2B−p/2‖Ap ≥ Bp holds for all p > 0;

(iii) ‖BpA−p/2B−p/2‖Ap ≥ Bp holds for any p ∈ (0, p0).

On the other hand, we will prove that the condition p ∈ (0, p0) in Theorem 1.4 is

essential as follows.

Theorem 1.5. For a fixed p0 > 0, there exist positive invertible operators A, B such that

‖BpA−p/2B−p/2‖Ap ≥ Bp holds for any p ≥ p0, but A� B is not valid.

2. The proofs of the main results

To give a proof of Theorem 1.4, we also need the following well-known theorem used in

[3] which is essentially the same as [5].

Theorem 2.1 [3, 5]. Let X > 0, then limn→∞(I + logX/n)n = X .

Proof of Theorem 1.4. (i)⇒(ii) Suppose that logA≥ logB. Let p > 0, then for sufficiently

large n, we have I + logA/n ≥ I + logB/n > 0 and np ≥ 2. Put A1 = I + logA/n and B1 =
I + logB/n. Then we have A1 ≥ B1 > 0 and applying Theorem 1.3, the following inequality

holds:

∥
∥
∥B

n(p−1/n)
1 A

n(−(p−2/n)/2)
1 B

n(−p/2)
1

∥
∥
∥A

n(p−1/n)
1 ≥ B

n(p−1/n)
1 (2.1)

for all np ≥ 2. By Theorem 2.1, we have An
1 → A and Bn

1 → B as n→∞. Hence let n→∞
in (2.1), then we obtain ‖BpA−p/2B−p/2‖Ap ≥ Bp holds for all p > 0;

(ii)⇒(iii) Obvious.

(iii)⇒(i) Let 0 < p < p0 and λp = ‖BpA−p/2B−p/2‖. Then Bp ≤ λpAp by (iii). By L-H the-

orem, we also have Bp/2 ≤ λ1/2
p Ap/2, thus B3p/2 ≤ λ1/2

p Bp/2Ap/2Bp/2. Now suppose that 0 <

m≤ B ≤M. So 0 <m3p/2 ≤ B3p/2 ≤M3p/2. Applying (i) of Theorem 1.2, we obtain

B3p ≤
(

M3p/2 +m3p/2
)2

4M3p/2m3p/2 λp
(

Bp/2Ap/2Bp/2)2
. (2.2)
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Hence

B2p ≤
(

M3p/2 +m3p/2
)2

4M3p/2m3p/2 λpA
p/2BpAp/2. (2.3)

By (2.3) and λp = ‖B−p/2A−p/2B2pA−p/2B−p/2‖1/2, we have

λ2
p ≤

(

M3p/2 +m3p/2
)2

4M3p/2m3p/2 λp. (2.4)

So

λp ≤
(

M3p/2 +m3p/2
)2

4M3p/2m3p/2 . (2.5)

Therefore

Bp ≤
(

M3p/2 +m3p/2
)2

4M3p/2m3p/2 Ap. (2.6)

By (2.6), we also have

logB ≤ 1
p

log

(

M3p/2 +m3p/2
)2

4M3p/2m3p/2 + logA. (2.7)

Let p→ 0, we obtain (i). �

To prove Theorem 1.5, we first cite the following simple inequalities.

Lemma 2.2. Let a, b, d be three positive numbers, then

(i) b ≤ ‖( a b
b d

)‖,

(ii)
(
a b
b d

)≤ (a+ b+d)I .

Proof of Theorem 1.5. Suppose p0 > 0. LetA= ( 9/5 −2/5
−2/5 6/5

)

, and B = (2 0
0 ε

)

, where ε ∈ (0,(1/

2)[(2− 21−p0/2)2/(7 + 3 · 2−p0 )4]1/p0 ).

Note that A = U∗(2 0
0 1

)

U , where U= (1/
√

5)
(−2 1

1 2

)

is a unitary operator, by a simple

computation, we have

B−p/2A−p/2B2pA−p/2B−p/2

= 1
25

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(

1+ 22−p/2)2
2p+ 2−pε2p

(

2− 21−p/2)2 (

2− 21−p/2)
[

23p/2
(

1 + 22−p/2)

εp/2

+
ε3p/2

(

4 + 2−p/2
)

2p/2

]

(

2− 21−p/2)
[

23p/2
(

1 + 22−p/2)

εp/2
22pε−p

(

2− 21−p/2)2
+ εp

(

4+ 2−p/2
)2

+
ε3p/2

(

4 + 2−p/2
)

2p/2

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.8)
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Applying (i) of Lemma 2.2, we obtain

∥
∥B−p/2A−p/2B2pA−p/2B−p/2

∥
∥

1/2

≥ 1
5

{

(

2− 21−p/2)
[

23p/2
(

1 + 22−p/2)

εp/2
+
ε3p/2

(

4 + 2−p/2
)

2p/2

]}1/2

≥ ε−p/423p/4
(

2− 21−p/2)1/2

5
≥ ε−p/423p/4

(

2− 21−p0/2
)1/2

5
.

(2.9)

On the other hand, we can compute that

A−p/2BpA−p/2

= 1
25

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2p
(

1 + 4 · 2−p/2
)2

+ 4εp
(

1− 2−p/2
)2 (

1− 2−p/2
)[

2p+1
(

1 + 4 · 2−p/2
)

+2εp
(

4 + 2−p/2
)]

(

1− 2−p/2
)[

2p+1
(

1 + 4 · 2−p/2
)

+2εp
(

4 + 2−p/2
)]

4 · 2p
(

1− 2−p/2
)2

+ εp
(

4 + 2−p/2
)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.10)

Hence by Lemma 2.2 (ii), we have

A−p/2BpA−p/2 ≤ 1
25

{

2p
(

1 + 4 · 2−p/2
)2

+ 4εp
(

1− 2−p/2
)2

+
(

1− 2−p/2
)[

2p+1(1 + 4 · 2−p/2
)

+ 2εp
(

4 + 2−p/2
)]

+ 4 · 2p
(

1− 2−p/2
)2

+ εp
(

4 + 2−p/2
)2
}

= 2p

25

[

7 + 6 · 2−p/2 + 12 · 2−p
]

+
εp

25

[

28− 6 · 2−p/2 + 3 · 2−p
]

≤ 2p

25

[

35 + 15 · 2−p
]≤ 2p

5

[

7 + 3 · 2−p0
]

.

(2.11)

Because 0 < (2ε)p0/4 < (2− 21−p0/2)1/2/(7 + 3 · 2−p0 ) < 1, so for p > p0,

(2ε)p/4 <

(

2− 21−p0/2
)1/2

7 + 3 · 2−p0
< 1. (2.12)

Therefore by (2.9), (2.11), and (2.12), we have

∥
∥B−p/2A−p/2B2pA−p/2B−p/2

∥
∥

1/2 ≥ ε−p/423p/4
(

2− 21−p0/2
)1/2

5

≥ 2p

5

[

7 + 3 · 2−p0
]≥A−p/2BpA−p/2.

(2.13)
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To complete the proof of Theorem 1.5, we only prove that (AB2A)1/2 �≤ A2 for very

small ε > 0 by Theorem 1.1. But by a simple computation, this is equivalent to prove

⎛

⎜
⎝

B1 B3

B3 B2

⎞

⎟
⎠≡

⎛

⎜
⎝

324 + 4ε2 −72− 12ε2

−72− 12ε2 16 + 36ε2

⎞

⎟
⎠

1/2

�≤
⎛

⎜
⎝

17 −6

−6 8

⎞

⎟
⎠ . (2.14)

Let A1 = 324 + 4ε2, A2 = 16 + 36ε2, and A3 =−72− 12ε2. By [4], if

V = 1
√

A1−A2 + 2ε1

⎛

⎜
⎝

√

A1−A2 + ε1 −√ε1

−√ε1 −√A1−A2 + ε1

⎞

⎟
⎠ , (2.15)

where

2ε1 =−A1 +A2 +
√
(

A1−A2
)2

+ 4A2
3. (2.16)

Then
⎛

⎜
⎝

B1 B3

B3 B2

⎞

⎟
⎠=V

⎛

⎜
⎝

√

A1 + ε1 0

0
√

A2− ε1

⎞

⎟
⎠V. (2.17)

Hence

B1 =
(

A1−A2 + ε1
)√

A1 + ε1 + ε1
√

A2− ε1

A1−A2 + 2ε1
. (2.18)

When ε is very small, we have

2ε1 =−308 + 32ε2 +
√

115600− 12800ε2 + o
(

ε2
)= 32 +

224
17

ε2 + o
(

ε2);

ε1 = 16 +
112
17

ε2 + o
(

ε2);
√

A1 + ε1 =
√

340 + o(ε);

A1−A2 + 2ε1 = 340 + o(ε); ε1

√

A2− ε1 = o(1).

(2.19)

Hence by (2.18), we have B1 = 324/
√

340 + o(1). Because 324/
√

340 > 17, so (2.14) is valid

for some small ε > 0.

Therefore the proof of Theorem 1.5 is complete. �

The following corollary can be derived from Theorem 1.4.

Corollary 2.3. Let T be an invertible operator. Then T is a log-hyponormal operator if

and only if

∥
∥
∥

∣
∣T∗

∣
∣

2p|T|−p∣∣T∗∣∣−p
∥
∥
∥|T|2p ≥ ∣∣T∗∣∣2p

(2.20)

holds for any small p > 0.
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