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Recently, there have been many authors, who established a number of inequalities in-
volving Khatri-Rao and Hadamard products of two positive matrices. In this paper, the
results are established in the following three ways. First, we find generalization of the
inequalities involving Khatri-Rao product using results given by Liu (1999), Mond and
Pečarić (1997), Cao et al. (2002), Chollet (1997), and Visick (2000). Second, we recover
and develop some results of Visick. Third, the results are extended to the case of Khatri-
Rao product of any finite number of matrices. These results lead to inequalities involving
Hadamard product, as a special case.
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cited.

1. Introduction

Consider matrices A and B of order m× n and p× q, respectively. Let A= [Aij] be par-
titioned with Aij of order mi × nj as the (i, j)th block submatrix and let B = [Bkl] be
partitioned with Bkl of order pk × ql as the (k, l)th block submatrix (m =∑t

i=1mi, n =
∑d

j=1nj , p =∑u
k=1 pk, q =∑v

l=1 ql). For simplicity, we say that A and B are compatible
partitioned if A = [Aij]ti, j=1 and B = [Bij]ti, j=1 are square matrices of order m×m and

partitioned, respectively, with Aij and Bij of order mi×mj (m=∑t
i=1mi =

∑t
j=1mj).

Let A⊗ B, A ◦ B, AΘB, and A∗ B be the Kronecker, Hadamard, Tracy-Singh, and
Khatri-Rao products, respectively, of A and B. The definitions of the mentioned four
matrix products are given by Liu in [5, 6] as follows:

(i) Kronecker product

A⊗B = [ai jB
]
i j , (1.1)

where A = [ai j], B = [bkl] are scalar matrices of order m× n and p× q, respec-
tively, ai jB is of order p× q, and A⊗B of order mp×nq;
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(ii) Hadamard product

A◦B = [ai jbi j
]
i j = B ◦A, (1.2)

where A= [ai j], B = [bi j] are scalar matrices of order m×n, ai jbi j is a scalar, and
A◦B is of order m×n;

(iii) Tracy-Singh product

AΘB = [AijΘB
]
i j =

[[
Aij ⊗Bkl

]
kl

]
i j , (1.3)

where A = [Aij], B = [Bkl] are partitioned matrices of order m× n and p ×
q, respectively, Aij is of order mi × nj , Bkl of order pk × ql, Aij ⊗ Bkl of order

mipk ×njql, AijΘB of order mip×njq (m=∑t
i=1mi, n=

∑d
j=1nj , p =

∑u
k=1 pk,

q =∑v
l=1 ql), and AΘB of order mp×nq;

(iv) Khatri-Rao product

A∗B = [Aij ⊗Bij
]
i j , (1.4)

where A = [Aij], B = [Bij] are partitioned matrices of order m× n and p× q,
respectively, Aij is of order mi×nj , Bkl of order pi× qj , Aij ⊗Bij of order mipi×
njqj (m =∑t

i=1mi, n =
∑d

j=1nj , p =∑t
i=1 pi, q =

∑d
j=1 qj), and A∗B of order

M×N (M =∑t
i=1mipi,N =

∑d
j=1njqj).

In general, AΘB �= BΘA, A⊗B �= B⊗A, A∗B �= B∗A, but if A= [ai j] is a scalar matrix
and B = [Bij] is a partitioned matrix, then A∗ B = B∗A. Additionally, Liu [5] shows
that the Khatri-Rao product can be viewed as a generalized Hadamard product and the
Tracy-Singh product as a generalized Kronecker product, as follows:

(1) for a nonpartitioned matrix A, their AΘB is A⊗B, that is,

AΘB = [ai jΘB
]
i j =

[[
ai j ⊗Bkl

]
kl

]
i j =

[[
ai jBkl

]
kl

]
i j =

[
ai jB

]
i j = A⊗B; (1.5)

(2) for nonpartitioned matrices A and B of order m×n, their A∗B is A◦B, that is,

A∗B = [ai j ⊗ bi j
]
i j =

[
ai jbi j

]
i j = A◦B. (1.6)

The Khatri-Rao and Tracy-Singh products are related by the following relation [5, 6]:

A∗B = ZT
1 (AΘB)Z2, (1.7)

where A= [Aij] is partitioned with Aij of order mi×nj and B = [Bkl] is partitioned with

Bkl of order pk × ql (m=∑t
i=1mi, n=

∑d
j=1nj , p =

∑u
k=1 pk, q =∑v

l=1 ql), Z1 is an mp×
r (r =∑t

i=1mipi) matrix of zeros and ones, and Z2 is an nq× s (s =∑d
j=1njqj) matrix
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of zeros and ones such that ZT
1 Z1 = Ir , ZT

2 Z2 = Is (Ir and Is are r × r and s× s identity
matrices, resp.).

In particular, if m= n and p = q, then there exists an mp× r (r =∑t
i=1mipi) matrix Z

such that ZTZ = Ir (Ir is an r× r identity matrix) and

A∗B = ZT(AΘB)Z. (1.8)

Here

Z =

⎡

⎢
⎢
⎣

Z1

. . .
Zt

⎤

⎥
⎥
⎦ , (1.9)

where each Zi = [ 0i1 ··· 0i i−1 Imi pi 0i i+1 ··· 0it ]T is an real matrix of zeros and ones, and 0ik is
a mipi×mipk zero matrix for any k �= i. Note also that ZT

i Zi = I and

ZT
i

(
AijΘB

)
Zj = ZT

i

(
Aij ⊗Bkl

)
klZj = Aij ⊗Bij , i, j = 1,2, . . . , t. (1.10)

In [5–8], the authors proved a number of equalities and inequalities involving Khatri-
Rao and Hadamard products of two matrices. Here we extend these results in three ways.
First, we establish new attractive equalities and inequalities involving Khatri-Rao prod-
uct of matrices. Second, we recover and develop some results of Visick, for example, [8,
Theorem 11, page 54]. This does not follow simply from the work of Visick. Third, the
results are extended to the case of Khatri-Rao products of any finite number of matrices.
This result leads to inequalities involving Hadamard product, as a special case.

We use the following notations:
(i) Mm,n—the set of all m×n matrices over the complex number field C and when

m= n, we write Mm instead of Mm,n;
(ii) AT ,A∗,A+,A−1—the transpose, conjugate transpose, Moore-Penrose inverse,

and inverse of matrix A, respectively.
For Hermitian matrices A and B, the relation A > B means that A−B > 0 is a positive

definite and the relationA≥ B meansA−B ≥ 0 is a positive semidefinite. Given a positive
definite matrix A, its positive definite square root is denoted by A1/2. We use the known
fact “for positive definite matrices A and B, the relation A≥ B implies A1/2 ≥ B1/2” which
is called the Löwner-Heinz theorem.

2. Some notations and preliminary results

Let A be a positive definite m×m matrix. The spectral decomposition of matrix A assures
that there exists a unitary matrix U such that

A=U∗DU =U∗diag
(
λi
)
U , U∗U = Im, (2.1)
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where D = diag(λi) = diag(λ1, . . . ,λm) is the diagonal matrix with diagonal entries λi (λi
are the positive eigenvalues of A). For any real number r, Ar is defined by

Ar =U∗DrU =U∗diag
(
λri
)
U. (2.2)

If A∈Mm,n is any matrix with rank (A) = s, the singular value decomposition of A assures
that there are unitary matrices U ∈Mm and V ∈Mn such that

A=U
∑

V∗. (2.3)

Here
∑= [W 0

0 0 ]∈Mm,n, where W = diag(σ1, . . . ,σs)∈Ms is the diagonal matrix with di-
agonal entries σi (i = 1,2, . . . ,s) and σ1 ≥ σ2 ≥ ··· ≥ σs > 0 are the singular values of A,
that is, σ1 ≥ σ2 ≥ ··· ≥ σs > 0 are positive square roots of positive eigenvalues of A∗A and
AA∗. The Moore-Penrose inverse of A is defined by

A+ =V

[
W−1 0

0 0

]

U∗ ∈Mn,m, (2.4)

where W−1 = diag(σ−1
1 ,σ−1

2 , . . . ,σ−1
s ) ∈Ms is the diagonal matrix with diagonal entries

σ−1
i (i= 1,2, . . . ,s). A+ is a unique matrix which satisfies the following conditions:

AA+A=A, A+AA+ =A+,
(
AA+)∗ = AA+,

(
A+A

)∗ =A+A. (2.5)

For any compatible partitioned matrices A, B, C, and D, we will make a frequent use
of the following properties of the Tracy-Singh product (see e.g., [1, 3, 5, 10]):

(a) (AΘB)(CΘD)= (AC)Θ(BD) if AC and BD are well defined;
(b) (AΘB)r = ArΘBr if A∈Mm, B ∈Mn are positive semidefinite matrices and r is

any real number;
(c) (AΘB)∗ = A∗ΘB∗;
(d) (AΘB)+ = A+ΘB+.

If A∈Mm and B ∈Mn are positive semidefinite matrices, then (see, [3, 10])
(e) AΘB ≥ 0;
(f) λ1(AΘB)= λ1(A)λ1(B), λmn(AΘB)= λm(A)λn(B),

where λ1(A), λm(A) are the largest and smallest eigenvalues, respectively, of a matrix A,
and λ1(B), λn(B) are the largest and smallest eigenvalues, respectively, of a matrix B.

The Khatri-Rao and Tracy-Singh products of k matrices Ai (1 ≤ i ≤ k, k ≥ 2) will be
denoted by

∏k
i=1∗Ai = A1 ∗A2 ∗ ··· ∗Ak and

∏k
i=1ΘAi = A1ΘA2Θ···ΘAk, respec-

tively.
For a finite number of matrices Ai (i = 1,2, . . . ,k), the properties (a)–(d) become as

in Lemma 2.1 and the connection between the Khatri-Rao and Tracy-Singh products in
(1.7) and (1.8) becomes as in Lemma 2.2.
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Lemma 2.1. Let Ai and Bi (1≤ i≤ k, k ≥ 2) be compatible partitioned matrices. Then
(i)

( k∏

i=1

ΘAi

)( k∏

i=1

ΘBi

)

=
( k∏

i=1

Θ
(
AiBi

)
)

(2.6)

if AiBi (1≤ i≤ k, k ≥ 2) are well defined;
(ii)

( k∏

i=1

ΘAi

)+

=
k∏

i=1

ΘA+
i , k = 2,3, . . . ; (2.7)

(iii)

( k∏

i=1

ΘAi

)∗
=

k∏

i=1

ΘA∗i ,

( k∏

i=1

∗Ai

)∗
=

k∏

i=1

∗A∗i , k = 2,3, . . . ; (2.8)

(iv)

( k∏

i=1

ΘAi

)r

=
k∏

i=1

ΘAr
i if Ai ∈Mm(i) (1≤ i≤ k, k ≥ 2) (2.9)

are positive semidefinite matrices and r is any real number;
(v)

( k∏

i=1

(
AiΘBi

)
)

=
( k∏

i=1

Ai

)

Θ

( k∏

i=1

Bi

)

, k = 2,3, . . . . (2.10)

Proof. The proof is immediately derived by induction on k. �

Lemma 2.2. Let Ai = [A(i)
gh] ∈Mm(i),n(i) (1 ≤ i ≤ k, k ≥ 2) be partitioned matrices with

A(i)
gh as the (g,h)th block submatrix (m =∏k

i=1m(i), n =∏k
i=1n(i), r =∑t

j=1

∏k
i=1mj(i),

s =∑t
j=1

∏k
i=1nj(i), m(i) =∑t

j=1mj(i), n(i) =∑t
j=1nj(i)). Then there exist two real ma-

trices Z1 of order m× r and Z2 of order n× s such that ZT
1 Z1 = Ir , ZT

2 Z2 = Is (Z1, Z2 are real
matrices of zeros and ones) and

k∏

i=1

∗Ai = ZT
1

( k∏

i=1

ΘAi

)

Z2, k = 2,3, . . . , (2.11)

where Ir and Is are identity matrices of order r × r and s× s, respectively. In particular, if
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m(i) = n(i) (1 ≤ i ≤ k,k ≥ 2), then there exists an m× r matrix Z of zeros and ones such
that ZTZ = Ir ,

k∏

i=1

∗Ai = ZT

( k∏

i=1

ΘAi

)

Z, k = 2,3, . . . , (2.12)

and ZZT is an m×m diagonal matrix of zeros and ones, so

0≤ ZZT ≤ Im, (2.13)

where m=∏k
i=1m(i).

Proof. The special case in (2.12) of Lemma 2.2 is proved in [3, Corollary 2.2] and (2.13)
follows immediately by the definition of matrix Z. We give proof of the general case in
(2.11) of Lemma 2.2 for the sake of convenience. We proceed by induction on k. If k = 2,
then (2.11) is true by (1.7). Now suppose (2.11) holds for the Khatri-Rao product of k
matrices, that is, there exist an m× r matrix Pkr of zeros and ones and an n× s matrix Rks

of zeros and ones such that PT
krPkr = Ir , RT

ksRks = Is, and

k∏

i=1

∗Ai = PT
kr

( k∏

i=1

ΘAi

)

Rks, k = 2,3, . . . . (2.14)

We will prove that it is true for the Khatri-Rao product of k + 1 matrices. Then by (1.7),
there exist an m(1)r × r matrix Q1 of zeros and ones and an n(1)s× s matrix Q2 of zeros
and ones such that QT

1 Q1 = Ir , QT
2 Q2 = Is, and

k+1∏

i=1

∗Ai =A1∗
( k+1∏

i=2

∗Ai

)

=QT
1

(

A1Θ
k+1∏

i=2

∗Ai

)

Q2 =QT
1

{

A1Θ

(

PT
kr

( k+1∏

i=2

ΘAi

)

Rks

)}

Q2

=QT
1

{(

Im(1)A1In(1)

)

Θ

(

PT
kr

( k+1∏

i=2

ΘAi

)

Rks

)}

Q2

=QT
1

(
Im(1)ΘP

T
kr

)
{

A1Θ

( k+1∏

i=2

ΘAi

)}
(
In(1)ΘRks

)
Q2

=QT
1

(
Im(1)ΘP

T
kr

)
( k+1∏

i=1

ΘAi

)
(
In(1)ΘRks

)
Q2.

(2.15)

Letting Z1 = (Im(1)ΘPkr)Q1 and Z2 = (In(1)ΘRks)Q2, the inductive step is complete. Here
Q1 = P2r = Pr , Q1 = R2s = Rs, and it is a simple matter to verify that

Z1 =
(
Im(1)ΘPkr

)
Pr = P(k+1)r , ZT

1 = PT
r

(
Im(1)ΘP

T
kr

)= PT
(k+1)r ,

Z2 =
(
In(1)ΘRks

)
Rs = R(k+1)s, ZT

2 = RT
s

(
In(1)ΘR

T
ks

)= RT
(k+1)s.

(2.16)
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Note that

ZT
1 Z1 = PT

r

(
Im(1)ΘP

T
kr

)(
Im(1)ΘPkr

)
Pr =QT

1

(
Im(1)ΘP

T
kr

)(
Im(1)ΘPkr

)
Q1

=QT
1

(
Im(1)Im(1)ΘP

T
krPkr

)
Q1

=QT
1

(
Im(1)ΘIr

)
Q1

(
Im(1)ΘIr = Im(1)r

)

=QT
1

(
Im(1)r

)
Q1 =QT

1 Q1 = Ir .

(2.17)

Similarly, it is easy to verify that ZT
2 Z2 = Is. �

Lemma 2.3. Let α be a nonempty subset of the set {1,2, . . . ,m} and let A∈Mm be a positive
semidefinite matrix. Then (see Chollet [4])

(i) if either −1≤ r ≤ 0 or 1≤ r ≤ 2, then

Ar(α)≥A(α)r , ∀α; (2.18)

(ii) if 0≤ r ≤ 1, then

Ar(α)≤A(α)r , ∀α, (2.19)

where A(α) is the principal submatrix of A whose entries are in the intersection of the rows
and columns of A specified by α.

Lemma 2.4. Let Xj > 0 ( j = 1,2, . . . ,k) be n× n matrices with eigenvalues in the interval

[w,W] and Uj ( j = 1,2, . . . ,k) are r ×m matrices such that
∑k

j=1UjU
∗
j = I . Then (see

Mond and Pečarić [7])
(i) for every real p > 1 and p < 0,

k∑

j=1

UjX
p
j U

∗
j ≤ μ

{ k∑

j=1

UjXjU
∗
j

}p

, (2.20)

where

μ= δp− δ

(p− 1)(δ− 1)

(
p− 1
p

δp− 1
δp− δ

)p

, δ = W

w
. (2.21)

While for 0 < p < 1, the reverse inequality holds in (2.20);
(ii) for every real p > 1 and p < 0,

{ k∑

j=1

UjX
p
j U

∗
j

}

−
{ k∑

j=1

UjXjU
∗
j

}p

≤ γ{I}, (2.22)

where

γ = Wwp−wWp

W −w
+ (p− 1)

(
1
p

Wp−wP

W −w

)p/(p−1)

. (2.23)

While for 0 < p < 1 , the reverse inequality holds in (2.22).
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3. New applications and results

Based on the basic results in Section 2 and the general connection between the Khatri-Rao
and Tracy-Singh products in Lemma 2.2, we generalize and derive some equalities and
inequalities in works of Visick [8, Corollary 3, Theorem 4], Chollet [4], and Mond and
Pečarić [7] with respect to the Khatri-Rao product and extend these results to any finite
number of matrices. These results lead to inequalities involving Hadamard products, as a
special case.

Theorem 3.1. Let Ai = [A(i)
gh] ∈Mm(i),n(i) (1 ≤ i ≤ k, k ≥ 2) be partitioned matrices with

A(i)
gh as the (g,h)th block submatrix (m=∏k

i=1m(i), n=∏k
i=1n(i)) and let Z1 and Z2 be the

real matrices of zeros and ones that satisfy (2.11). Then
(i) there exists an m× (m− r) matrix Q(m) of zeros and ones such that the block matrix

Ω= [Z1 Q(m) ] is an m×m permutation matrix. Q(m) is not unique but for any such
choice of Q(m),

ZT
1 Q(m) = 0, QT

(m)Q(m) = Im−r , Q(m)Q
T
(m) +Z1Z

T
1 = Im (3.1)

(ii) for any m×n matrix L,

ZT
1 LL

∗Z1 ≥
(
ZT

1 LZ2
)(
ZT

1 LZ2
)∗ ≥ 0. (3.2)

Proof. Though the proof is quite similar to the proof of [8, Corollary 3(iii) and (vii)] for
Hadamard product, we give proof for the sake of convenience.

(i) It is evident from the structure of Z1 that it may be considered as part of an m×m
permutation matrix Ω= [Z1 Q(m) ], where Q(m) is an m× (m− r) matrix of zeros and ones.
For example, when k = 2, then Q(2) is not unique (see, [8, page 49]). Using the properties
of a permutation matrix together with the definition of Ω= [Z1 Q(m) ], we have

Im =ΩΩT =
[
Z1 Q(m)

]
[
ZT

1

QT
(m)

]

=Q(m)Q
T
(m) +Z1Z

T
1 ,

Im =
[
Ir 0
0 Im−r

]

=ΩTΩ=
[
ZT

1

QT
m

]
[
Z1 Q(m)

]
=
[
ZT

1 Z1 ZT
1 Q(m)

QT
(m)Z1 QT

(m)Q(m)

]

.

(3.3)

From these come the required results in (i), that is,

ZT
1 Q(m) = 0, QT

(m)Q(m) = Im−r , Q(m)Q
T
(m) +Z1Z

T
1 = Im. (3.4)

(ii) By (2.13) of Lemma 2.2, we have In ≥ Z2Z
T
2 ≥ 0 and so

ZT
1 LL

∗Z1 ≥ ZT
1 LZ2Z

T
2 L

∗Z1 =
(
ZT

1 LZ2
)(
ZT

1 LZ2
)∗ ≥ 0. (3.5)

We now generalize [8, Theorem 4] to the case of Khatri-Rao product involving a finite
number of matrices. �
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Theorem 3.2. Let Ai = [A(i)
gh]∈Mm,n (1≤ i≤ k, k ≥ 2) be partitioned matrices with A(i)

gh

as the (g,h)th block submatrix. Let Z1 be an mk × r matrix of zeros and ones that satisfies
(2.12) and let Q(n) be an nk × (nk − s) matrix of zeros and ones that satisfies (3.1). Then

k∏

i=1

∗(AiA
∗
i )=

( k∏

i=1

∗(Ai)

)( k∏

i=1

∗Ai

)∗
+ZT

1

( k∏

i=1

ΘAi

)

Q(n)Q
T
(n)

( k∏

i=1

ΘAi

)∗
Z1

=
( k∏

i=1

∗(Ai)

)( k∏

i=1

∗Ai

)∗
+

(

ZT
1

( k∏

i=1

ΘAi

)

Q(n)

)(

ZT
1

( k∏

i=1

ΘAi

)

Q(n)

)∗
,

(3.6)

and hence

k∏

i=1

∗(AiA
∗
i

)≥
( k∏

i=1

∗(Ai)

)( k∏

i=1

∗Ai

)∗
, k = 2,3, . . . . (3.7)

Proof. From Lemma 2.1(i) and (iii), we have

k∏

i=1

Θ
(
AiA

∗
i

)=
( k∏

i=1

ΘAi

)( k∏

i=1

ΘAi

)∗
. (3.8)

But by Theorem 3.1(i), there exist an nk × s matrix Z2 of zeros and ones that satisfies
(2.12) and an nk × (nk − s) matrix Q(n) of zeros and ones that satisfies (3.1) such that
Z2Z

T
2 +Q(n)Q

T
(n) = Ink and

k∏

i=1

Θ
(
AiA

∗
i

)=
( k∏

i=1

ΘAi

)
(
Z2Z

T
2 +Q(n)Q

T
(n)

)
( k∏

i=1

ΘAi

)∗

=
( k∏

i=1

ΘAi

)
(
Z2Z

T
2

)
( k∏

i=1

ΘAi

)∗
+

( k∏

i=1

ΘAi

)
(
Q(n)Q

T
(n)

)
( k∏

i=1

ΘAi

)∗
.

(3.9)

Since Ai (1≤ i≤ k, k ≥ 2) are rectangular partitioned matrices of order m×n, then due
to (2.11) of Lemma 2.2 there exist two real matrices Z1 and Z2 of zeros and ones of order
mk × r and nk × s, respectively, such that

k∏

i=1

∗Ai = ZT
1

( k∏

i=1

ΘAi

)

Z2, k = 2,3, . . . . (3.10)

But because AiA
∗
i (1 ≤ i ≤ k, k ≥ 2) are square matrices of order m×m, then due to

(2.12) of Lemma 2.2 there exists a real matrix Z1 of zeros and ones of order mk × r such
that

k∏

i=1

∗(AiA
∗
i

)= ZT
1

( k∏

i=1

Θ
(
AiA

∗
i

)
)

Z1, k = 2,3, . . . . (3.11)
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Due to (3.9), (3.10), and (3.11), we have

k∏

i=1

∗(AiA
∗
i

)= ZT
1

( k∏

i=1

Θ
(
AiA

∗
i

)
)

Z1 = ZT
1

( k∏

i=1

ΘAi

)

Z2Z
T
2

( k∏

i=1

ΘAi

)∗
Z1

+ZT
1

( k∏

i=1

ΘAi

)
(
Q(n)Q

T
(n)

)
( k∏

i=1

ΘAi

)∗
Z1

=
(

ZT
1

( k∏

i=1

ΘAi

)

Z2

)(

ZT
1

( k∏

i=1

ΘAi

)

Z2

)∗

+ZT
1

( k∏

i=1

ΘAi

)
(
Q(n)Q

T
(n)

)
( k∏

i=1

ΘAi

)∗
Z1

=
( k∏

i=1

∗(Ai
)
)( k∏

i=1

∗Ai

)∗
+ZT

1

( k∏

i=1

ΘAi

)

Q(n)Q
T
(n)

( k∏

i=1

ΘAi

)∗
Z1

=
( k∏

i=1

∗(Ai
)
)( k∏

i=1

∗Ai

)∗
+

(

ZT
1

( k∏

i=1

ΘAi

)

Q(n)

)(

ZT
1

( k∏

i=1

ΘAi

)

Q(n)

)∗
.

(3.12)

�

If we put k = 2 in Theorem 3.2, we obtain the following corollary.

Corollary 3.3. Let Ai = [A(i)
gh]∈Mm,n (1≤ i≤ 2) be partitioned matrices with A(i)

gh as the
(g,h)th block submatrix. Let Z1 be an m2 × r matrix of zeros and ones that satisfies (1.8)
and let Q(n) be an n2× (n2− s) matrix of zeros and ones that satisfies (3.1). Then

A1A
∗
1 ∗A2A

∗
2 =

(
A1∗A2

)(
A1∗A2

)∗
+ZT

1

(
A1ΘA2

)
Q(n)Q

T
(n)

(
A1ΘA2

)∗
Z1, (3.13)

and hence

A1A
∗
1 ∗A2A

∗
2 ≥

(
A1∗A2

)(
A1∗A2

)∗
. (3.14)

Corollary 3.4. Let Ai = [A(i)
gh]∈Mm,n (1≤ i≤ k, k ≥ 2) be partitioned matrices with A(i)

gh

as the (g,h)th block submatrix. Let Z1 be an mk × r matrix of zeros and ones that satisfies
(2.12) and let Q(n) be an nk × (nk − s) matrix of zeros and ones that satisfies (3.1). Then the
following statements are equivalent:

(i)

k∏

i=1

∗(AiA
∗
i

)=
( k∏

i=1

∗(Ai
)
)( k∏

i=1

∗Ai

)∗
, k = 2,3, . . . ; (3.15)

(ii)

ZT
1

( k∏

i=1

ΘAi

)

Q(n) = 0, k = 2,3, . . . ; (3.16)
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(iii)

k∏

i=1

∗(AiXi
)=

( k∏

i=1

∗(Ai
)
)( k∏

i=1

∗(Xi
)
)

, for Xi ∈Mn,m (1≤ i≤ k, k ≥ 2). (3.17)

Proof. To arrive from (i) to (ii), notice that (i) holds if and only if the last term of (3.6)
is zero, which is equivalent to ZT

1 (
∏k

i=1ΘAi)Q(n) = 0. To arrive from (ii) to (iii), notice
that (ii) may be rewritten as ZT

1 (
∏k

i=1ΘAi)Q(n)Q
T
(n) = 0. By Theorem 3.1(i), there exist an

nk × s matrix Z2 of zeros and ones that satisfies (2.12) and an nk × (nk − s) matrix Q(n) of
zeros and ones that satisfies (3.1) such that Q(n)Q

T
(n) = Ink −Z2Z

T
2 , this becomes

ZT
1

( k∏

i=1

ΘAi

)

= ZT
1

( k∏

i=1

ΘAi

)

Z2Z
T
2 . (3.18)

By postmultiplying by (
∏k

i=1ΘXi)Z1 for any of the n×m matrices Xi (1≤ i≤ k), we have

ZT
1

( k∏

i=1

Θ
(
AiXi

)
)

Z1 = ZT
1

( k∏

i=1

ΘAi

)

Z2Z
T
2

( k∏

i=1

ΘXi

)

Z1, (3.19)

which is (iii) by (2.11) and (2.12) of Lemma 2.2. To arrive from (iii) to (i), assume (iii)
holds for all n×m matrices Xi (1≤ i≤ k). It must therefore be true for Xi = A∗i (1≤ i≤
k), which is condition (i). Hence (iii) implies (3.6) which is (i). �

If we put k = 2 in Corollary 3.4, we obtain the following corollary.

Corollary 3.5. Let Ai = [A(i)
gh]∈Mm,n (1≤ i≤ 2) be partitioned matrices with A(i)

gh as the
(g,h)th block submatrix. Let Z1 be an m2× r matrix of zeros and ones that satisfies (1.8) and
let Q(n) be an n2× (n2− s) matrix of zeros and ones that satisfies (3.1). Then the following
statements are equivalent:

(i)

A1A
∗
1 ∗A2A

∗
2 =

(
A1∗A2

)(
A1∗A2

)∗
; (3.20)

(ii)

ZT
1

(
A1ΘA2

)
Q(n) = 0; (3.21)

(iii)

A1X1∗A2X2 =
(
A1∗A2

)(
X1∗X2

)
, for X1,X2 ∈Mn,m. (3.22)

Theorem 3.6. Let Ai ≥ 0 (1≤ i≤ k, k ≥ 2) be n×n compatible partitioned matrices. Then
(i) if either −1≤ r ≤ 0 or 1≤ r ≤ 2, then

k∏

i=1

∗Ar
i ≥

( k∏

i=1

∗Ai

)r

; (3.23)



12 Generalization inequalities for Khatri-Rao product

(ii) if 0≤ r ≤ 1, then

k∏

i=1

∗Ar
i ≤

( k∏

i=1

∗Ai

)r

. (3.24)

Proof. If we put s= 1, replace r by 1/r and Ai by Ar
i in [3, Theorem 3.1(i)], we obtain (i).

But, if we put s=−1, replace r by 1/− r and Ai by A−ri in [3, Theorem 3.1(i)], we obtain
(ii). �

Remark 3.7. It is easy to give another proof of Theorem 3.6 by replacing A by
∏k

i=1ΘAi

in Lemma 2.3 and applying (2.12) of Lemma 2.2.

Theorem 3.8. Let Ai > 0 be compatible partitioned matrices such that
∏k

i=1ΘAi > 0 (1 ≤
i≤ k, k ≥ 2). Let W and w be the largest and smallest eigenvalues of

∏k
i=1ΘAi, respectively.

Then
(i) for every real p > 1 and p < 0,

k∏

i=1

∗Ap
i ≤ μ

( k∏

i=1

∗Ai

)p

, k = 2,3, . . . , (3.25)

where

μ= δp− δ

(p− 1)(δ− 1)

(
p− 1
p

δp− 1
δp− δ

)p

, δ = W

w
. (3.26)

While for every 0 < p < 1, the reverse inequality holds in (3.25);
(ii) for every real p > 1 and p < 0,

k∏

i=1

∗Ap
i −

( k∏

i=1

∗Ai

)p

≤ γI , k = 2,3, . . . , (3.27)

where

γ = Wwp−wWp

W −w
+ (p− 1)

(
1
p

Wp−wP

W −w

)p/(p−1)

. (3.28)

While for every 0 < p < 1, the reverse inequality holds in (3.27).

Proof. This theorem follows from [3, Theorem 3.1(ii) and (iii)]. We give proof for the
sake of convenience. In (2.20) and (2.22) of Lemma 2.4, set k = 1 and replace U by ZT ,
U∗ by Z, and X by

∏k
i=1ΘAi, where Z, is the selection matrix of zeros and ones that

satisfies (2.12). By using Lemma 2.1(iv), we establish Theorem 3.8. �

From (3.25), we have the following special cases:
(i) for p = 2, we have

k∏

i=1

∗A2
i ≤

{
(W +w)2

4wW

}( k∏

i=1

∗Ai

)2

, k = 2,3, . . . ; (3.29)
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(ii) for p =−1, we have

k∏

i=1

∗A−1
i ≤

{
(W +w)2

4wW

}( k∏

i=1

∗Ai

)−1

, k = 2,3, . . . . (3.30)

From (3.27), we have the following special cases:
(i) for p = 2, we have

k∏

i=1

∗A2
i −

( k∏

i=1

∗Ai

)2

≤ 1
4

(W −w)2{I}, k = 2,3, . . . ; (3.31)

(ii) for p =−1, we have

k∏

i=1

∗A−1
i −

( k∏

i=1

∗Ai

)−1

≤
{√

W −√w
wW

}

I , k = 2,3, . . . . (3.32)

4. Further developments and applications

Due to Albert’s theorem in [2] and [9, Theorem 6.13], for a partitioned matrix [ A B
B∗ D ] with

a positive (semi) definite matrix A∈Mm,

[
A B
B∗ D

]

≥ 0 iff D ≥ B∗A+B, (4.1)

for any positive semidefinite matrix D ∈Mn. It is also known that if matrix A is square
and nonsingular, then A+ =A−1 and [ A B

B∗ D ]≥ 0 if and only if D ≥ B∗A−1B .
Let Z1 and Z2 be the real matrices of zeros and ones of order m× r and n× s, respec-

tively, that satisfy (2.11) in Lemma 2.2. Now another way to use Lemma 2.2 to generate
inequalities involving the Khatri-Rao product is by using the following obvious inequal-
ity:

TT∗ =
[
T1

T2

]
[
T∗1 T∗2

]
=
[
T1T

∗
1 T1T

∗
2

T2T
∗
1 T2T

∗
2

]

≥ 0, (4.2)

where T1 and T2 are n× l and m× l matrices, respectively. Note that T1T
∗
1 and T2T

∗
2 are

positive semidefinite (positive definite) matrices for every (nonsingular) complex matri-
ces T1 and T2. This leads to

[
ZT

2 0
0 ZT

1

][
T1T

∗
1 T1T

∗
2

T2T
∗
1 T2T

∗
2

][
Z2 0
0 Z1

]

=
[
ZT

2 T1T
∗
1 Z2 ZT

2 T1T
∗
2 Z1

ZT
1 T2T

∗
1 Z2 ZT

1 T2T
∗
2 Z1

]

≥ 0, (4.3)

if and only if

ZT
1 T2T

∗
2 Z1 ≥

(
ZT

1 T2T
∗
1 Z2

)(
ZT

2 T1T
∗
1 Z2

)+(
ZT

2 T1T
∗
2 Z1

)
. (4.4)
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Therefore (4.4) can be considered to be more general than (3.2). In order to prove this we
set T1 = I and T2 = L in (4.4), we have

ZT
1 LL

∗Z1 ≥
(
ZT

1 LI
∗Z2

)(
ZT

2 II
∗Z2

)+(
ZT

2 IL
∗Z1

)

= (ZT
1 LZ2

)(
ZT

2 Z2
)+(

ZT
2 L

∗Z1
)

(ZT
2 Z2 = I)

= (ZT
1 LZ2

)(
ZT

1 LZ2
)∗
.

(4.5)

Returning to (4.4) and (3.2), it can be easily seen that various other choices of the
matrices T1, T2, and L are possible which lead to quite different inequalities involving
Khatri-Rao products. However, there exist some inequalities that do not seem to follow
directly from (1.7) or (2.11), but follow easily from (4.4) and (3.2). Based on (4.4) and
(3.2) we generalize some inequalities in works of Visick [8, Corollary 13, Remark in page
56, Theorems 11, 17, and 20] and establish some new inequalities involving Khatri-Rao
products of several positive matrices.

Theorem 4.1. Let A1 and A2 be compatible partitioned matrices. Then

A1A
∗
1 ∗A2A

∗
2 +A2A

∗
2 ∗A1A

∗
1 +A1A

∗
2 ∗A2A

∗
1 +A2A

∗
1 ∗A1A

∗
2

≥ (A1∗A2 +A2∗A1
)((

A1∗A2
)∗

+
(
A2∗A1

)∗)
.

(4.6)

Proof. Set T1 = IΘI and T2 = A1ΘA2 +A2ΘA1. Then calculations show that

T2T
∗
2 = A1A

∗
1 ΘA2A

∗
2 +A2A

∗
2 ΘA1A

∗
1 +A1A

∗
2 ΘA2A

∗
1 +A2A

∗
1 ΘA1A

∗
2 ,

T2T
∗
1 =A1ΘA2 +A2ΘA1, T1T

∗
2 =

(
A1ΘA2

)∗
+
(
A2ΘA1

)∗
, T1T

∗
1 = IΘI.

(4.7)

Substituting these into (4.4) and using (1.7), we get (4.6). �

Corollary 4.2. Let Ai (1≤ i≤ 2) be Hermitian compatible partitioned matrices. Then
(i)

A2
1∗A2

2 ≥
(
A1∗A2

)2
; (4.8)

(ii)

A2∗A−2 ≥ (A∗A−1)2
if A is nonsingular; (4.9)

(iii)

I ∗A2 ≥ (I ∗A
)2
. (4.10)

Proof. (i) Set A∗1 =A1 and A∗2 =A2 in (3.14) of Corollary 3.3, we get (4.8).
(ii) Set A1 =A and A2 = A−1 in (4.8), we get (4.9).
(iii) Set A1 = I and A2 = A in (4.8), we get (4.10). �

Corollary 4.3. Let Ai > 0 (1≤ i≤ 2) be compatible partitioned matrices. Then

(
A2

1∗A2
2

)1/2 ≥ A1∗A2. (4.11)
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Proof. It follows immediately by (4.8) and Löwner-Heinz theorem. �

Theorem 4.4. Let Ai ≥ 0 (1 ≤ i ≤ k, k ≥ 2) be compatible partitioned matrices and let
A0
i = A1/2

i A+1/2
i =A+1/2

i A1/2
i (1≤ i≤ k). Then

2

( k∏

i=1

∗A0
i

)

+

(

A1∗
k∏

i=2

∗A+
i

)

+

(

A+
1 ∗

k∏

i=2

∗Ai

)

≥
(

A1∗
k∏

i=2

∗A0
i +A0

1∗
k∏

i=2

∗Ai

)( k∏

i=1

∗Ai

)+(

A1∗
k∏

i=2

∗A0
i +A0

1∗
k∏

i=2

∗Ai

)

.

(4.12)

Proof. Since Ai ≥ 0 (1 ≤ i ≤ k, k ≥ 2), then A∗i = Ai. Set T1 =
∏k

i=1ΘA
1/2
i and T2 =

A1/2
1 Θ

∏k
i=2ΘA

+1/2
i + A+1/2

1 Θ
∏k

i=2A
1/2
i . Since A1/2

i A1/2
i = Ai, A

+1/2
i A+1/2

i = A+
i , and A0

i =
A1/2
i A+1/2

i = A+1/2
i A1/2

i (1≤ i≤ k), then calculations show that

T2T
∗
2 = 2

( k∏

i=1

ΘA0
i

)

+

(

A1Θ
k∏

i=2

ΘA+
i

)

+

(

A+
1Θ

k∏

i=2

ΘAi

)

, T1T
∗
1 =

k∏

i=1

ΘAi,

T2T
∗
1 =

(

A1Θ
k∏

i=2

ΘA0
i +A0

1Θ
k∏

i=2

ΘAi

)

, T1T
∗
2 =

(

A1Θ
k∏

i=2

ΘA0
i +A0

1Θ
k∏

i=2

ΘAi

)

.

(4.13)

Substituting these into (4.4) and using Lemma 2.2, we get (4.12). �

If we put k = 2 and replaceAi byAr
i (1≤ i≤ 2) in Theorem 4.4, we obtain the following

theorem.

Theorem 4.5. Let A1 ≥ 0, A2 ≥ 0 be compatible partitioned and let r be any nonzero real
number such that A0

1 = Ar/2
1 A+r/2

1 = A+r/2
1 Ar/2

1 and A0
2 = Ar/2

2 A+r/2
2 = A+r/2

2 Ar/2
2 . Then

2A0
1∗A0

2 +Ar
1∗A+r

2 +A+r
1 ∗Ar

2

≥ (Ar
1∗A0

2 +A0
1∗Ar

2

)(
Ar

1∗Ar
2

)+(
Ar

1∗A0
2 +A0

1∗Ar
2

)
.

(4.14)

If A1 > 0, A2 > 0 in Theorem 4.5, we obtain the following theorem.

Theorem 4.6. Let A1 > 0, A2 > 0 be compatible partitioned and let I be a compatible parti-
tioned identity matrix. Then for any nonzero real number r,

2I +Ar
1∗A−r2 +A−r1 ∗Ar

2 ≥
(
Ar

1∗ I + I ∗Ar
2

)(
Ar

1∗Ar
2

)−1(
Ar

1∗ I + I ∗Ar
2

)
. (4.15)

If we put r = 1 and A1 =A2 in Theorem 4.6, we obtain the following theorem.

Theorem 4.7. Let A > 0 be compatible partitioned and let I be a compatible partitioned
identity matrix. Then

2I +A∗A−1 +A−1∗A≥ (A∗ I + I ∗A)(A∗A)−1(A∗ I + I ∗A). (4.16)
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In particular, if I is a nonpartitioned identity matrix, then

2I +A∗A−1 +A−1∗A≥ 4(I ∗A)(A∗A)−1(I ∗A). (4.17)

Theorem 4.8. Let A1 > 0 and A2 > 0 be compatible partitioned matrices. Then for any
nonzero real number r

Ar
1∗A−r2 +A−r1 ∗Ar

2 + 2I ≥ (Ar/2
1 ∗A−r/22 +A−r/21 ∗Ar/2

2

)2
. (4.18)

In particular, if A1 = A2 = A, Then

Ar ∗A−r +A−r ∗Ar + 2I ≥ (Ar/2∗A−r/2 +A−r/2∗Ar/2)2
. (4.19)

Proof. Since A1 > 0 and A2 > 0, then A∗1 = A1 and A∗2 = A2. Set L = Ar/2
1 ΘA−r/22 +

A−r/21 ΘAr/2
2 . Compute

ZT
1 LL

∗Z1 = ZT
1 LLZ1 = ZT

1

(
Ar/2

1 ΘA−r/22 +A−r/21 ΘAr/2
2

)(
Ar/2

1 ΘA−r/22 +A−r/21 ΘAr/2
2

)
Z1

= ZT
1

(
Ar

1ΘA
−r
2

)
Z1 +ZT

1 (IΘI)Z1 +ZT
1 (IΘI)Z1 +ZT

1

(
A−r1 ΘAr

2

)
Z1

=Ar
1∗A−r2 + 2I +A−r1 ∗Ar

2.
(4.20)

Similarly,

(
ZT

1 LZ2
)(
ZT

1 LZ2
)∗ = (ZT

1 LZ2
)2 = {ZT

1

(
Ar/2

1 ΘA−r/22 +A−r/21 ΘAr/2
2

)
Z2
}2

= (Ar/2
1 ∗A−r/22 +A−r/21 ∗Ar/2

2

)2
.

(4.21)

Substituting (4.20) and (4.21) into (3.2), we get (4.18). �

From (4.18), we have the following special cases:
(i) for r = 1, we have

A∗1 A
−1
2 +A−1

1 ∗A2 + 2I ≥ (A1/2
1 ∗A−1/2

2 +A−1/2
1 ∗A1/2

2

)2
; (4.22)

(ii) for r = 2, we have

A2
1∗A−2

2 +A−2
1 ∗A2

2 + 2I ≥ (A1∗A−1
2 +A−1

1 ∗A2
)2
. (4.23)
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From (4.19), we have the following special cases:
(i) for r = 1, we have

A∗A−1 +A−1∗A+ 2I ≥ (A1/2∗A−1/2 +A−1/2∗A1/2)2
; (4.24)

(ii) for r = 2, we have

A2∗A−2 +A−2∗A2 + 2I ≥ (A∗A−1 +A−1∗A
)2
. (4.25)

Theorem 4.9. Let A1 ≥ 0, A2 ≥ 0 be compatible partitioned and let I be a compatible par-
titioned identity matrix. Then

A2
1∞A2

2 + 2(A1∗A2)≥ (A1∞A2
)2

, (4.26)

where A1∞A2 =A1∗ I + I ∗A2 is called the Khatri-Rao sum.

Proof. Set L= A1∇A2 = A1ΘI + IΘA2 (Tracy-Singh sum). Since A1 ≥ 0 and A2 ≥ 0, then
A∗1 = A1 and A∗2 = A2. Calculations show that

ZT
1 LL

∗Z1 = ZT
1 LLZ1 = ZT

1

(
A1ΘI + IΘA2

)(
A1ΘI + I2ΘA2

)
Z1

=A2
1∗ I + I ∗A2

2 + 2
(
A1∗A2

)= A2
1∞A2

2 + 2
(
A1∗A2

)
.

(4.27)

Similarly,

(
ZT

1 LZ2
)(
ZT

1 LZ2
)∗ = {ZT

1

(
A1ΘI + IΘA2

)
Z2
}{
ZT

1

(
A1ΘI + IΘA2

)
Z2
}∗

= (A1∗ I + I ∗A2
)2 = (A1∞A2

)2
.

(4.28)

Substituting (4.27) and (4.28) into (3.2), we get (4.26). �

Theorem 4.10. Let A1 > 0 and A2 > 0 be compatible partitioned matrices. Then for any
positive real number r,

r
(
A2

1∗A2
2

)
+
(
A1A2∗A2A1

)
+
(
A2A1∗A1A2

)
+

1
r

(
A2

2∗A2
1

)

≥ r
(
A1∗A2

)2
+
(
A1∗A2

)(
A2∗A1

)
+
(
A2∗A1

)(
A1∗A2

)
+

1
r

(
A2∗A1

)2
.

(4.29)

Proof. Set L = ε1A1ΘA2 + ε2A2ΘA1, where ε1 and ε2 are both positive. Since A1 > 0 and
A2 > 0, then A∗1 = A1 and A∗2 = A2. Compute

ZT
1 LL

∗Z1 = ZT
1 LLZ1 = ZT

1

(
ε1A1ΘA2 + ε2A2ΘA1

)(
ε1A1ΘA2 + ε2A2ΘA1

)
Z1

= ZT
1

{
ε2

1

(
A2

1ΘA
2
2

)
+ ε1ε2

(
A1A2ΘA2A1

)
+ ε1ε2

(
A2A1ΘA1A2

)
+ ε2

2

(
A2

2ΘA
2
1

)}
Z1

= {ε2
1

(
A2

1∗A2
2

)
+ ε1ε2

(
A1A2∗A2A1

)
+ ε1ε2

(
A2A1∗A1A2

)
+ ε2

2

(
A2

2∗A2
1

)}
.

(4.30)
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Similarly,

(
ZT

1 LZ2
)(
ZT

1 LZ2
)∗ = {ZT

1

(
ε1A1ΘA2 + ε2A2ΘA1

)
Z2
}{
ZT

1

(
ε1A1ΘA2 + ε2A2ΘA1

)
Z2
}∗

= {ZT
1

(
ε1A1ΘA2 + ε2A2ΘA1

)
Z2
}{
ZT

1

(
ε1A1ΘA2 + ε2A2ΘA1

)
Z2
}

= {(ε1A1∗A2 + ε2A2∗A1
)}2

= ε2
1

(
A1∗A2

)2
+ ε1ε2

(
A1∗A2

)(
A2∗A1

)

+ ε1ε2
(
A2∗A1

)(
A1∗A2

)
+ ε2

2

(
A2∗A1

)2
.

(4.31)

Substituting (4.30) and (4.31) into (3.2), we have
{
ε2

1

(
A2

1∗A2
2

)
+ ε1ε2

(
A1A2∗A2A1

)
+ ε1ε2

(
A2A1∗A1A2

)
+ ε2

2

(
A2

2∗A2
1

)}

≥ {ε2
1

(
A∗1 A2

)2
+ ε1ε2

(
A1∗A2

)(
A2∗A1

)
+ ε1ε2

(
A2∗A1

)(
A1∗A2

)
+ ε2

2

(
A∗2 A1

)2}
.

(4.32)

Set r = ε1/ε2, we get (4.29). �

Remark 4.11. Let Ai (1 ≤ i ≤ k, k ≥ 2) be compatible partitioned matrices. Then (3.7)
can be proved by setting T1 =

∏k
i=1ΘI and T2 =

∏k
i=1ΘAi. Calculations show that

T2T
∗
2 =

k∏

i=1

ΘAiA
∗
i , T2T

∗
1 =

k∏

i=1

ΘAi, T1T
∗
2 =

( k∏

i=1

ΘAi

)∗
, T1T

∗
1 =

k∏

i=1

ΘI.

(4.33)

Substituting these into (4.4) and using (2.11), we get (3.7).

Remark 4.12. Let Ai (1≤ i≤ 2) be compatible partitioned matrices. Then (3.14) can be
proved by putting k = 2 in Remark 4.11.

Remark 4.13. All results obtained in Sections 3 and 4 are quite general. These results
lead to inequalities involving Hadamard product, as a special case, for nonpartitioned
matrices Ai (i = 1,2, . . . ,k, k ≥ 2) with the Hadamard product and Kronecker product
replacing the Khatri-Rao product and Tracy-Singh product, respectively.

Now we utilize the commutativity of the Hadamard product to develop, for instance,
(3.7) of Theorem 3.2. This result leads to the following inequality involving Hadamard
product, as a special case:

k∏

i=1

◦(AiA
∗
i

)≥
( k∏

i=1

◦(Ai
)
)( k∏

i=1

◦Ai

)∗
. (4.34)

It is possible to develop (4.34) in a different direction from (3.6). For example, Visick [8,
Theorem 11, page 54] proved that if A1, A2 ∈Mm,n and s∈ [−1,1], then

A1A
∗
1 ◦A2A

∗
2 + s

(
A1A

∗
2 ◦A2A

∗
1

)≥ (1 + s)
(
A1 ◦A2

)(
A1 ◦A2

)∗
. (4.35)



Z. A. Al Zhour and A. Kilicman 19

We will extend this inequality to the case of products involving any finite number of
matrices.

If the Tracy-Singh and Khatri-Rao products are replaced by the Kronecker and Hada-
mard products in Lemma 2.2, respectively, we obtain the following corollary.

Corollary 4.14. Let Ai ∈Mm,n (1≤ i≤ k, k ≥ 2). Then

k∏

i=1

◦Ai = PT
km

( k∏

i=1

⊗Ai

)

Pkn, (4.36)

where Pkm = (E(m)
11 0(m)··· 0(m) E(m)

22 0(m)··· 0(m) ··· 0(m) ··· 0(m) E(m)
mm )T is of order mk ×m, 0(m) is an

m×m matrix with all entries equal to zero, and E(m)
i j is an m×m matrix of zeros except for

a one in the (i, j)th position.

Theorem 4.15. Let Ai ∈Mm,n (1 ≤ i ≤ k, k ≥ 2). Then for any real scalars α1,α2, . . . ,αk
which are not all zero,

(
α2

1 + ···+α2
k

)
( k∏

i=1

◦(AiA
∗
i

)
)

+

( k−1∑

r=1

μr

k∏

w=1

◦
(
AwA

∗
(w+r)′

)
)

≥ (α1 + ···+αk
)2
( k∏

i=1

◦Ai

)( k∏

i=1

◦Ai

)∗
,

(4.37)

where μr =
∑k

w=1αwα(w+r)′ and w+ r ≡ (w+ r)′ mod k with 1≤ (w+ r)′ ≤ k.

Proof. Let

L= α1
(
A1⊗A2⊗···⊗Ak

)
+α2

(
A2⊗···⊗Ak ⊗A1

)
+ ···+αk

(
Ak ⊗A1⊗···⊗Ak−1

)
,

(4.38)

where Ai ∈Mm,n (1≤ i≤ k, k ≥ 2) and α1,α2, . . . ,αk are real scalars which are not all zero.
Taking indices “modk,” Lemma 2.1(i), (iii) (by setting ⊗ instead of Θ) give

LL∗ =
k∑

i=1

αi
(
Ai⊗Ai+1⊗···⊗Ai−1

) k∑

i=1

αi
(
A∗i ⊗A∗i+1⊗···⊗A∗i−1

)

= α2
1

(
A1A

∗
1 ⊗···⊗AkA

∗
k

)
+ ···+α2

k

(
AkA

∗
k ⊗AA∗1 ⊗···⊗AkA

∗
k−1

)

+
∑

i �= j

αiαj
(
AiA

∗
j ⊗Aj+1A

∗
j+1⊗···⊗Aj−1A

∗
j−1

)
.

(4.39)

Now the application of (4.36) and the commutativity of the Hadamard product yield

PT
kmLL

∗Pkm =
(
α2

1 + ···+α2
k

)
( k∏

i=1

◦(AiA
∗
i

)
)

+

( k−1∑

r=1

μr

k∏

w=1

◦
(
AwA

∗
(w+r)′

)
)

, (4.40)

where μr =
∑k

w αwα(w+r)′ and w+ r ≡ (w+ r)′ mod k with 1≤ (w+ r)′ ≤ k.
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Also by (4.36) and the commutativity of the Hadamard product, we obtain

(
PT
kmLPkn

)= PT
km

{
α1
(
A1⊗A2⊗···⊗Ak

)
+α2

(
A2⊗···⊗Ak ⊗A1

)

+ ···+αk
(
Ak ⊗A1⊗···⊗Ak−1

)}
Pkn

= α1P
T
km

(
A1⊗A2⊗···⊗Ak

)
Pkn +α2P

T
km(A2⊗···⊗Ak ⊗A1

)
Pkn

+ ···+αkP
T
km

(
Ak ⊗A1⊗···⊗Ak−1

)
Pkn

= α1
(
A1 ◦A2 ◦ ··· ◦Ak

)
+α2

(
A2 ◦ ··· ◦Ak ◦A1

)

+ ···+αk
(
Ak ◦A1 ◦ ··· ◦Ak−1

)

= (α1 + ···+αk
)
( k∏

i=1

◦Ai

)

,

(
PT
kmLPkn

)∗ = (α1 + ···+αk
)
( k∏

i=1

◦Ai

)∗
.

(4.41)

Now

(
PT
kmLPkn

)(
PT
kmLPkn

)∗ = (α1 + ···+αk
)2
( k∏

i=1

◦Ai

)( k∏

i=1

◦Ai

)∗
. (4.42)

Since PT
kmLL

∗Pkm ≥ (PT
kmLPkn)(PT

kmLPkn)∗ by (3.2) and from (4.40) and (4.42), we get
(4.37). �

Now, we examine some special cases briefly.
In order to see that (4.37) really is an extension in (4.34), it is sufficient to set α1 = 1

and α2 = ··· = αk = 0. Thus we recover the result of Visick in (4.35) which we mentioned
before the statement of Corollary 4.14. Let k = 2, then μ1 =

∑2
w=1αwα(w+1)′ with w + 1≡

(w+ 1)′ mod 2, that is, μ1 = 2α1α2. Then Theorem 4.15 asserts that

(
α2

1 +α2
2

)(
A1A

∗
1 ◦A2A

∗
2

)
+ 2α1α2

(
A1A

∗
2 ◦A2A

∗
1

)≥ (α1 +α2
)2(

A1 ◦A2
)(
A1 ◦A2

)∗
.

(4.43)

Simplification gives

A1A
∗
1 ◦A2A

∗
2 + s

(
A1A

∗
2 ◦A2A

∗
1

)≥ (1 + s)
(
A1 ◦A2

)(
A1 ◦A2

)∗
(4.44)

for any s ∈ [−1,1], just as we wanted. Finally, we present an attractive inequality using
three matrices. Let k = 3, α1 = 1, α2 = α3 =−1/2. Theorem 4.15 asserts that

A1A
∗
1 ◦A2A

∗
2 ◦A3A

∗
3 ≥

1
2

{
A1A

∗
2 ◦A2A

∗
3 ◦A3A

∗
1 +A2A

∗
1 ◦A3A

∗
2 ◦A1A

∗
3

}
. (4.45)
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