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Let (X,d) be a Polish space, CB(X) the family of all nonempty closed and bounded
subsets of X, and (Q,%) a measurable space. A pair of a hybrid measurable mappings
f:QOXX - Xand T:Q xX — CB(X), satisfying the inequality (1.2), are introduced
and investigated. It is proved that if X is complete, T(w, ), f(w,-) are continuous for all
weQ, T(-,x), f(-,x) are measurable for all x € X, and f(w X X) = X for each w € Q,
then there is a measurable mapping & : Q — X such that f(w,{(w)) € T(w,&(w)) for
all w € Q. This result generalizes and extends the fixed point theorem of Papageorgiou
(1984) and many classical fixed point theorems.

Copyright © 2006 Ljubomir B. Ciri¢ et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

Random fixed point theorems are stochastic generalizations of classical fixed point the-
orems. Random fixed point theorems for contraction mappings on separable complete
metric spaces have been proved by several authors (Zhang and Huang [25], Hans [6, 7],
Itoh [8], Lin [12], Papageorgiou [13, 14], Shahzad and Hussian [19, 20], épaéek [22],
and Tan and Yuan [23]). The stochastic version of the well known Schauder’s fixed point
theorem was proved by Sehgal and Singh [18].

Let (X, d) be a metric space and T : X — X a mapping. The class of mappings T satis-
fying the following contractive condition:

d(Tx, Ty) < ocmax{d(x, ),d(x, Tx),d(y, Ty), 2o 1) +d(. Tx) }

2
+Bmax{d(x,Tx),d(y, Ty)} +y[d(x,Ty)+d(y, Tx)]

(1.1)

for all x, y € X, where a, 3, y are nonnegative real numbers such that # >0,y >0, and a +
B+2y =1, was introduced and investigated by Ciri¢ [1]. Ciri¢ proved that in a complete
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2 Onrandom coincidence and fixed points

metric space such mappings have a unique fixed point. This class of mappings was further
studied by many authors (Ciri¢ [2, 3], Singh and Mishra [21], and Rhoades et al. [16]).
Singh and Mishra [21] have generalized Ciri¢’s [2] fixed point theorem to a common fixed
point theorem of a pair of mappings and presented some application of such theorems to
dynamic programming.

Let (Q,%) be a measurable space with X a sigma algebra of subsets of Q) and let (X,d)
be a metric space. We denote by 2X the family of all subsets of X, by CB(X) the family
of all nonempty closed and bounded subsets of X, and by H the Hausdorff metric on
CB(X), induced by the metric d. For any x € X and A < X, by d(x,A) we denote the
distance between x and A, that is, d(x,A) = inf{d(x,a) :a € A}.

A mapping T : Q — 2% is called Z-measurable if for any open subset U of X, T~1(U) =
{w:T(w)nU + @} € Z. In what follows, when we speak of measurability we will mean
>-measurability. A mapping f : Q X X — X is called a random operator if for any x € X,
f(-,x) is measurable. A mapping T : QO X X — CB(X) is called a multivalued random oper-
ator if for every x € X, T'(-,x) is measurable. A mapping s: Q — X is called a measurable
selector of a measurable multifunction T : Q — 2% if s is measurable and s(w) € T(w)
for all w € Q. A measurable mapping & : Q — X is called a random fixed point of a ran-
dom multifunction T: Q x X — CB(X) if {(w) € T(w,&(w)) for every w € Q. A mea-
surable mapping & : Q — X is called a random coincidence of T: QA x X — CB(X) and
f:OxX - Xif f(w,E&(w)) € T(w,&(w)) for every w € Q.

The aim of this paper is to prove a stochastic analog of the Ciri¢ [1] fixed point theo-
rem for single-valued mappings, extended to a coincidence theorem for a pair of a ran-
dom operator f:Q x X — X and a multivalued random operator T : Q X X — CB(X),
satisfying the following nonexpansive-type condition: for each w € Q,

H(T(w,x),T(w,y))
< oc(w)max{d(f(w,x),f(w’)’)):d(f(wax)’T(w’x))’d(f(w’y)’T(w’y))’

(310 @20, T, ) +d(f @), Tw,0)]| (1.2)
+ By max [ w0, T(@,x)),d( (@), T(@, )}
Y@L (@), T, ) +d(f 0,7, Tw,9)]

for every x,y € X, where a, 3,y : Q — [0,1) are measurable mappings such that for all
w e,

B(w) >0, y(w) >0, (1.3)

a(w) +B(w) +2y(w) = 1. (1.4)

2. Main results

Now we are proving our main result.
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THEOREM 2.1. Let (X,d) be a complete separable metric space, let (Q),%) be a measurable
space, and let T : QA x X — CB(X) and [ : Q x X — X be mappings such that
(i) T(w,*), f(w,-) are continuous for all w € Q,
(ii) T(-,x), f(+,x) are measurable for all x € X,
(iii) they satisfy (1.2), where a(w), f(w),y(w) : Q — X satisfy (1.3) and (1.4).
If f(w X X) = X for each w € Q, then there is a measurable mapping & : QO — X such that
f(w,&(w)) € Tw,&(w)) forallw € Q (i.e., T and f have a random coincidence point).

Proof. Let ¥ = {£: Q — X} be a family of measurable mappings. Define a function g :
Q x X — R* as follows:

g(w,x) =d(x,T(w,x)). (2.1)

Since x — T'(w,x) is continuous for all w € Q, we conclude that g(w, -) is continuous for
all w € Q. Also, since w — T(w,x) is measurable for all x € X, we conclude that g(-,x) is
measurable (see Wagner [24, page 868]) for all w € Q. Thus g(w,x) is the Caratheodory
function. Therefore, if £ : QO — X is a measurable mapping, then w — g(w,&(w)) is also
measurable (see [17]).

Now we will construct a sequence of measurable mappings {£,} in ¥ and a sequence
{f(w,&,(w))} in X as follows. Let & € ¥ be arbitrary. Then the multifunction G: Q —
CB(X) defined by G(w) = T(w,&y(w)) is measurable.

From the Kuratowski and Ryll-Nardzewski [11] selector theorem, there is a measurable
selector y; : QO — X such that y; (w) € T(w,&(w)) forall w € Q. Since p; (w) € T(w,&(w))
c X = f(wxX), let & € ¥ be such that f(w,&(w)) = p1(w). Thus f(w,&(w)) € T(w,
& (w)) forallw € Q.

Letk: Q — (1,0) be defined by

k(w) =1+

oy )

for all w € Q. Then k(w) is measurable. Since k(w) > 1 and f(w,&;(w)) is a selector of
T(w,&(w)), from Papageorgiou [13, Lemma 2.1] there is a measurable selector u;(w) =
fw,&(w)); & € Y, such that forall w € Q,

f(erZ(w)) € T(wrfl(w))y
d(f(w,&1(w)), f(@0,8(w))) = k(w)H (T (w,é(w)), T (w,&(w))).

Similarly, as f(w,&(w)) is a selector of T(w, &, (w)), there is a measurable selector y3(w) =
f(w,&5(w)) of T(w,&(w)) < f(wx X) such that

d(f(w)£2(w)):f(w)£3(w))) = k(w)H(T(w)fl (w)):T(w)£2(w)))' (24)

Continuing this process we can construct a sequence of measurable mappings y,, : Q — X,
defined by p,(w) = f(w,&(w)); &, € ¥, such that

f(w’fnﬂ(w)) € T'(w,&(w)), (2.5)
d(f(w>£n(w))’f(w>£n+l(w))) = k(w)H(T(w)fnfl(w)))T(w>£n(w)))- (26)

(2.3)
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Observe that condition (1.2) is clumsy. So, for simplicity, in the rest of the paper we will
use this condition in the following form:

H(T(w)x)aT(w)y)) = “(w)max{d(f(w)x),f(w,)’))) BRI (%) [ + ]}
+Blw) max{d(f(w,x), T(@,%)),d(f(@,9), T(w,y)} (27

+y(@)[d(f(w,x), T(w,y)) +d(f(w,y), T(w,x))].
From (2.7),

H(T(waEO(w))rT(w,fl(w)))

1

< oc(w)max{d(f(w,fo(w))af(%fl(w)))>'a', (5) [-+ ']}

+ B(w) max {d(f (w,&(0)), T(w,&(w))),d(f (0,&(0)), T(w, & (w))) }
+y()[d(f (w,&(w)), T(w,&(w))) +d(f (w,&1(w)), T(w,&(w)))].

(2.8)

Since f(w,& (w)) € T(w,&(w)), then

d(f(w)fl(w)))T(w)EO(w))) =0,
d(f(‘”)fo(w))aT(w)fO(w))) =< d(f(wafo(w)):f(wafl(w))), (2.9)
d(f(w>£l(a))))T(w>£l(w))) = H(T(w,fo(w)),T(w,fl(w))).

Thus from (2.8),
H(T(w1€0(w))> T(w)fl (w)))

< oc(w)max{d(f(a),fo(w)),f(w,fl(w))),-,-, (%) [+ -]}

+ﬁ(w)max{d(f(wago(w))7f(wafl(w)))1H(T(w>£0(w))’T(“’)fl(w)))}
+}’(¢0) [d(f(a),fg(w)),f(w,fl(w))) +H(T(w’f()(w)))T(wafl(a))))]'

(2.10)

If we assume that H(T(w,&(w)), T(w,&1(w))) > d(f(w,&(w)), f (w,&1(w))), then we have,
as y(w) >0,
)/(w) [d(f((U)gO(w))af(w)fl(w))) +H(T(w>£0(w))aT(w)fl(w)))]

(2.11)
<2p(w)H (T (w,&(w)), T(w,& (w))).
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Thus, from (1.4) and (2.10), we have

H(T(w)fo(w))aT(w)fl(w)))

<a(w)H(T (w0, (w)), T (w,61(w))) + B(w)H (T (0, ép(w)), T (w,&1(w)))

+2y(w)H (T (w,&(w)), T (w, &1 (w)))
= (a(w) +B(w) +2y(w)) H(T (w,& (@), T (@, &1 (w)))
= H(T(0,& (), T (0,6 (w))),

a contradiction. Therefore,
H(T(w)£0(w)))T(w)€l(w))) = d(f(w:EO(w)))f(w)El (w)))
Since d(f(w,&1(w)), T(w,&1(w))) < H(T(w,&(w)), T(w, &1 (w))), we have

d(f(‘”)&l(w))’T(w’gl(w))) = d(f(w,fo(w)),f(w,fl(w))).

By induction, we can show that

H(T(0,80(0)), T(@0,n11(0))) < d(f (@,80(@)), f (@, En11(@))),

d(f (w,8n(0)), T (w,8n(w))) = d(f(w,8n-1(w)), f(w,8n(w)))
for each n > 1 and all w € Q. From (2.6) and (2.15),
d(f(@,8:(w)), f (@,6u11(@))) < k(@)d(f (@,8u-1(w)), f (@, 8u(w))).
By (2.17), we get

d(f(“’»fo(w))»f(wafz(w))) = d(f(wa‘so(w))’f(w$£1(w)))
+d(f (0,61(0)), f (w,&(w)))

< (1+k(w)d(f(w,&(w)), f(w, &1 (w))).

From (2.7),
H(T(w,fo(w)),T(w,Ez(w)))
< atw)max{d(f (@ (@), f(@E(@) (5 )1 +:1

+[5(w)max{d(f(w,fo(w)),T(w,fo(w))),d(f(w,gz(w)),T(w,fz(a))))}
+)/(¢U) [d(f(w>£0(w)))T(w’£2(w))) +d(f(w:£2(w))’T(“)’EO(“))))]'

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Using (2.15), (2.16), (2.17), and (2.18) and the triangle inequality, we get

d(f (0,6 (w)), T(w,§(w))) = H(T (w,§1(w))), T (w,é(w)))
<d(f(w,&(w), f(w&(w)),
d(f(@,6(0)), T(w,&(w))) = d(f (w,&(w)), f(w,&(w))) +d(f (0,81(w)), f (w0, 6:(w)))
+d(f(w0,6(0)), T(w,&(w)))
< (I+k(w)d(f(w,(w)), f (w0, §1(w)))
+d(f(w,&1(w), f (0,6 (w)))
< (1+2k(w))d(f (w8 (), f (w,&1(w))).

(2.20)

(2.21)
Now from (1.4), (2.17), (2.18), and (2.19), we have
H(T(w,%(w)), T(w,6(w)))
< a(w)(1+k(w))d(f(w,&(w)), f(w,&1(w)))
+Bwk(w)d(f (w,& (@), f(w,&(w)))
(2.22)

+2y(w) (1+k(w))d(f (w,&0(w)), f (0,61 (w)))
= [(1+k(w)) (a(w) + B(w) +2y(w)) = f(@)]d(f (@, & (@), f (@, &1 ()))
= (1+k(w) = B(w)d(f (w0, &(w)), f (w,&1(w))).
Hence we get, as 1 + k(w) < 2k(w),
H(T(0,6(0)), T(w,&(w))) < (2k(w) = f(w))d(f (w,(w)), f (w,&1(w))).  (2.23)
From (1.4) and (2.7) we have, as f(w,&(w)) € T(w,& (w)),

H(T(w,fl(w)),T(w,Ez(w)))

< a(@max {d(f (@), f(@&@)) s (5)1+1]
+ By max {d(f (0,6 (@), T(@,E (@), d(f (@,E(0)), T(w, b))}
(@ (0,6 (@), T(@,E(0))).
Since f(w,&(w)) € T(w,&(w)), by (2.23) we have
d(f (@6 (@), T(@,6())) = H(T(@,6(@), T(@.6()) .
< (2K(@) — B@)d(f (@, (), f (@, ())).

(2.24)
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Thus from (2.17) and (2.24), we get
H(T(w,&1(0)), T(w,6:(w)))
< a(wk(w)d(f (w,8(w)), f (w,&1(w))) + Blw)k(w)d(f (w,§0(w)), f (w,1(w)))
+y(w) (2k(w) = B(w))d(f (w,40(w)), f (w,§1(w)))

= [k(w)(a(w) + B(w) +2y(w)) = B(w)y(w)]d(f (w,&(w)), f (w, &1 (w))).
(2.26)

Hence, as a(w) + f(w) +2p(w) = 1,

H(T(w,&(w)), T(w,&(w))) < (k(w) = Blw)y(w)d(f (w,&(w)), f(w,&(w))).
(2.27)

From (2.6) and (2.27),
d(f(0,&(w)), f(w0,8(w))) < k(w)H (T (w,& (0)), T (w,&(w)))
< k(w) (k(w) = B(w)y(w))d(f (w,&(w)), f (@,&1(w))).

(2.28)
Since k(w) = 1+ B(w)y(w)/2, we have
_ Blw)y(w) Blw)y(w)
K(@)(k(@) - f@)y(e)) = (1+ FO) (14 BV g0y w))
_ Blw)y(w)\ [,  Plw)y(w)
_(1+ ) )(1 . ) (2.29)
_,_ Py
4

Thus from (2.28),

@)y ()

d(f(c‘):EZ(w)))f(w:ES(w))) < (1 1

)a(f (@.8(@). f (@6 @). (230
Analogously,
d(f (0,6 (w)), f(w,4(w))) < (1 =B (w)y*(w)/4)d(f (@, (@), f (w,&(w))). (2.31)

By induction,
d(f(wagn(w))’f(w:fnﬂ(w)))
< (1 - W) " (2.32)

xmax {d(f (w,§(w)), f(0,61(w))), d(f (@, (@), f (w,&2(w)))},
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where [n/2] stands for the greatest integer not exceeding n/2. Since (w)y(w) > 0 for all
w € Q, from (2.32), we conclude that { f (w,&,(w))} is a Cauchy sequence in f(w X X).
Since f(w x X) = X is complete, there is a measurable mapping f(w,é(w)) € f(w X X)
such that

lim f(w,&(w)) = f(w,&(w)). (2.33)

n—oo

Now by the triangle inequality and (1.2), we have

d(f (@,¢(0)), T(w,§(w)))
(f(w E (U)) f(w)£n+l w )) +d(f(w)frﬁl(w))’T(w)f(w)))
(f( ) f((l) £n+l )) ( (w fn(w)) (CO,E((U)))
(f( w)) f(w £n+1 )) (2‘34)
a(@max d(f (@&(@), f(@,8@), e (5) 1411}

+p(w)max {d(f (0,§(0)), T(w,&:(w))),d(f (w,§(w)), T (w,§(w)))}
+y(0)[d(f(0,8:(0)), T(w,{(w))) +d(f (@,§(@)), T (w,§u(w)))].
Thus
d(f(@,§(w)), T (w,§(w)))
<d(f(w,{(w), f (@, &ns1(w)))

+ (@) max {d(f(w,sn(w)),f(w,f(w))), - (%) [+ -]} (2.35)

+B(w) max {d(f (w0, &x(w)), f (@, &n1(@))),d(f (0,€(w)), T (w,{(w))) }
+y(@)[d(f (0,8(0)), T(w,§(w))) +d(f (@,€(@)), f (@,&ns1(w)))].
Taking the limit as 11 — o0, we get
d(f(0,¢(@)), T(0,¢(w))) < a(w)d(f (w,{(0)), T(w,§(w)))
+B(w)d(f (w,¢(w)), T(w,&(w)))
+y()d(f(w,§(w)), T(w,§(w)))
= (1-y()d(f(0,¢{(w)), T(w,{(w))).

Hence d(f(w,&(w)), T(w,&(w))) =0, as 1 — y(w) < 1 for all w € Q. Hence, as T(w,&(w))
is closed,

(2.36)

f(wé¢(w) eT(w,¢(w)) Vwe (2.37)
U
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Remark 2.2. 1f in Theorem 2.1, f(w,x) = x for all (w,x) € Q X X, then we get the follow-
ing random fixed point theorem.

CoroLLARY 2.3. Let (X,d) be a separable complete metric space, let (Q,%) be a measurable
space, and let a mapping T : QO x X — CB(X) be such that T(w,-) is continuous for all
w € Q, T(-,x) is measurable for all x € X, and

H(T(w,x),T(w,y))

< a(@)max [ d(x, ),d (6 T(@,0), 405 T(@, ), (5 )[4 Tlw, ) + d (3, T(@x) 1]

+B(w) max {d(x, T(w,x)),d(y, T(w, ) } +y(w)[d(x, T(w,y)) +d(y, T(w,x))]
(2.38)

for every x,y € X, where a, 3,y : Q — (0,1) are measurable mappings satisfying (1.2). Then
there is a measurable mapping & : Q — X such that E(w) € T(w,&(w)) forall w € Q.

CoRrOLLARY 2.4. Let (X,d) be a complete separable metric space, let (Q,%) be a measurable
space, and let f: QXX — X and T : Q x X — CB(X) be two mappings satisfying the con-
ditions (i) and (ii) in Theorem 2.1. If f(w X X) = X for each w € Q and f and T satisfy the
following condition:

H(T(w,x), T(w,y))

< A(w)max{d(f(w,x),f(w,y))ad(f(w,x), T(w,x)),d(f(w, ), T(w,y)),

d(f(w,x), T(w,y))+d(f(w,y), T(w,x)) }
2 bl
(2.39)

where A : Q — (0, 1) is a measurable function, then there is a measurable mapping & : Q — X
such that f(w,&(w)) € T(w,&(w)) forall w € Q.

Proof. Ttis clear thatif f and T satisty (2.39), then f and T satisfy (1.2) with

1 -Mw) 1 -Mw)
S () -

a(w) =Aw), B(w) 5 2 (2.40)

O

Remark 2.5. 1f in Corollary 2.4, f(w,x) = x for all (w,x) € Q x X, then we obtain the
corresponding theorems of Hadzi¢ [5] and Papageorgiou [13].

Finally, we give a simple example which shows that Theorem 2.1 and Corollaries 2.3
and 2.4 are actually an improvement of the results of Kubiak [10] and Papageorgiou [13].

Example 2.6. Let (Q),%) be any measurable space and let K = {0,1,2,4,6} be the subset
of the real line. Let the mappings f : QX K — K and T: Q X K — K be defined such that
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foreachw € Q,

f(w>0):2) f(w>1):41 f(w,2)=6, f(w)4) =0, f((l),6): 1,

T(w,0) =1, T(w,1) =2, T(w,2) =4, T(w,4) =0, T(w,6) = 0.
(2.41)

Then f and T do not satisfy the contractive-type condition (2.39). Indeed, for x = 1 and
y =2, we have

A(T(w,1), T(0,2)) =2 >A(w)max{||4—6||, ||4—2||,||6—4II,W} —2A(w)
(2.42)
for any A(w) < 1. On the other hand,
A(T(w, 1), T(@,2) = 2.2+ .24 La+o). (2.43)

5 10 20

Thus, forx = 1 and y = 2, f and T satisfy (1.2) with a(w) = 4/5, f(w) = 1/10, and y(w) =
1/20. It is easy to show that f and T satisfy (1.2) for all x, y € K, with the same a(w), S(w),
and y(w). Also, the rest of assumptions of Theorem 2.1 is satisfied and for &(w) = 4 we
have

f(w,f(w)) =0= T(‘”)E(w))- (2-44)

Note that T does not satisfy (2.38) either, as for instance, for x = 0 and y = 2, we have

0—4||l+12-1
oc(w)max{no—zn,no—1||,||2—4||,w}

2
+B(w)max {0 — 1,12 =4[} + y(w) [110 — 4[| + 12— 1I]

= %(x(w) +2f(w) +5y(w) < 3[a(w) +B(w) +2y(w)] =3 =d(T(w,0), T(w,2)).
(2.45)

Remark 2.7. Corollary 2.4 is a stochastic generalization and improvement of the corre-
sponding fixed point theorems for contractive-type multivalued mappings of Ciri¢ [2],
Ciri¢ and Ume [4], Kubiaczyk [9], Kubiak [10], Papageorgiou [14], and several other au-
thors. Also Theorem 2.1 generalizes and extends the corresponding fixed point theorems
for nonexpansive-type single-valued mappings of Ciri¢ [1] and Rhoades [15].
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