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We introduce a class of projection-contraction methods for solving a class of general
random implicit quasi-variational inequalities with random multivalued mappings in
Hilbert spaces, construct some random iterative algorithms, and give some existence the-
orems of random solutions for this class of general random implicit quasi-variational
inequalities. We also discuss the convergence and stability of a new perturbed Ishikawa
iterative algorithm for solving a class of generalized random nonlinear implicit quasi-
variational inequalities involving random single-valued mappings. The results presented
in this paper improve and extend the earlier and recent results.
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1. Introduction

Throughout this paper, we suppose that R denotes the set of real numbers and (Q, A, i)
is a complete o-finite measure space. Let E be a separable real Hilbert space endowed with
the norm || - || and inner product (-, -), let D be a nonempty subset of E, and let CB(E)
denote the family of all nonempty bounded closed subsets of E. We denote by %B(E) the
class of Borel o-fields in E.

In this paper, we will consider the following new general random implicit quasi-
variational inequality with random multivalued mappings by using a new class of pro-
jection method: find x: Q — D and u,v,& : Q — E such that g(¢,x(t)) € J(¢,v(¢)), u(t) €
T(t,x(t)), v(t) € F(t,x(t)), £(t) € S(¢,x(¢)), and

a(t,u(t),g(t,y) —g(t,x(1))) + (N (¢, f (£, x(2)),&(1)),g(t,y) —g(£,x(8)) =0 (1.1)

forallt € Qand g(t,y) € J(t,v(t)), where g : QXD — E, f : QXE - E,and N: Q X E X
E — E are measurable single-valued mappings, T,S: QX D — CB(E) and F: QXD —
CB(D) are random multivalued mappings, J : QO X D — P(E) is a random multivalued

Hindawi Publishing Corporation

Journal of Inequalities and Applications
Volume 2006, Article ID 81261, Pages 1-17
DOI 10.1155/J1A/2006/81261


http://dx.doi.org/10.1155/S1025583406812610

2 Projection iterative approximations

mapping such that for each t € ) and x € D, P(E) denotes the power set of E, J(t,x) is
closed convex, and a: Q) X E X E — R is a random function.

Some special cases of the problem (1.1) are presented as follows.

If ¢ = I, the identity mapping, then the problem (1.1) is equivalent to the problem of
finding x: Q — D and u,v,&: Q — E such that x(t) € J(t,v(t)), v(t) € F(t,x(t)), u(t) €
T(t,x(t)), &(t) € S(t,x(t)), and

a(t,u(t),y —x(t)) + (N (t, f (t,x(1)),&(t)),y — x(t)) = 0 (1.2)

forallt € Qand y € J(t,v(t)). The problem (1.2) is called a generalized random strongly
nonlinear multivalued implicit quasi-variational inequality problem and appears to be a
new one.

If J(t,x(t)) = m(t,x(t)) + K, where m : Q X D — E and K is a nonempty closed con-
vex subset of E, then the problem (1.1) becomes to the following generalized nonlin-
ear random implicit quasi-variational inequality for random multivalued mappings: find
x:Q — Dand u,v,&: Q — E such that g(t,x(¢)) — m(t,v(t)) € K, u(t) € T(t,x(t)), v(t) €
F(t,x(t)), £(t) € S(t,x(t)), and

a(t,u(t),g(t,y) —g(t,x(1))) + (N (t, f (£,x(1)),&(1)),g(t,y) —g(t,x(t))) =0 (1.3)

forall t € Q and g(t, y) € m(t,v(t)) + K.

If N(t,z,w) =w+z for all t € Q, z,w € E, then the problem (1.1) reduces to find-
ingx:Q — D and u,v,§: Q — E such that g(t,x(¢)) € J(t,v(t)), u(t) € T(t,x(t)), v(t) €
F(t,x(t)), &(t) € S(t,x(t)), and

a(t,u(t),g(t,y) —g(t,x(1))) + (f (t,x(t)) +&(2),g(t, y) — g (t,x(£))) = 0 (1.4)

forall t € Qand g(t, y) € J(t,v(¢)).

The problem (1.4) is called a generalized random implicit quasi-variational inequality
for random multivalued mappings, which is studied by Cho et al. [8] when T =1 and
f =0, and includes various known random variational inequalities. For details, we refer
the reader to [8, 11, 12, 19] and the references therein.

IT,S:QxD - Eand F: QXD — D are random single-valued mappings, and F = I,
then the problem (1.4) becomes to the following random generalized nonlinear implicit
quasi-variational inequality problem involving random single-valued mappings: find x :
Q — D such that g(¢,x(¢)) € J(¢,x(¢)) and

a(t, T(t,x(1)),g(t,y) — g(t,x(2))) + (f (t,x(1)) + S(t,x(1)),g(t,y) —g(t,x(t))) = 0
(1.5)

forallt € Qand g(t,y) € J(t,x(1)).

Remark 1.1. Obviously, the problem (1.1) includes a number of classes of variational in-
equalities, complementarity problems, and quasi-variational inequalities as special cases
(see, e.g., [1,4,5,8,10-13, 15, 17, 19, 20, 25] and the references therein).
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The study of such types of problems is inspired and motivated by an increasing interest
in the nonlinear random equations involving the random operators in view of their need
in dealing with probabilistic models, which arise in biological, physical, and system sci-
ences and other applied sciences, and can be solved with the use of variational inequalities
(see [21]). Some related works, we refer to [2, 4] and the references therein. Further, the
recent research works of these fascinating areas have been accelerating the random vari-
ational and random quasi-variational inequality problems to be introduced and studied
by Chang [4], Chang and Zhu [7], Cho et al. [8], Ganguly and Wadhwa [11], Huang [14],
Huang and Cho [15], Huang et al. [16], Noor and Elsanousi [19], and Yuan et al. [24].

On the other hand, in [22], Verma studied an extension of the projection-contraction
method, which generalizes the existing projection-contraction methods, and applied the
extended projection-contraction method to the solvability of a general monotone varia-
tional inequalities. Very recently, Lan et al. [17, 18] introduced and studied some new iter-
ative algorithms for solving a class of nonlinear variational inequalities with multivalued
mappings in Hilbert spaces, and gave some convergence analysis of iterative sequences
generated by the algorithms.

In this paper, we introduce a class of projection-contraction methods for solving a new
class of general random implicit quasi-variational inequalities with random multivalued
mappings in Hilbert spaces, construct some random iterative algorithms, and give some
existence theorems of random solutions for this class of general random implicit quasi-
variational inequalities. We also discuss the convergence and stability of a new perturbed
Ishikawa iterative algorithm for solving a class of generalized random nonlinear implicit
quasi-variational inequalities involving random single-valued mappings. Our results im-
prove and generalize many known corresponding results in the literature.

2. Preliminaries

In the sequel, we first give the following concepts and lemmas which are essential for this
paper.

Definition 2.1. A mapping x : QO — E is said to be measurable if for any B € RB(E), {t €
Q:x(t) e B} € A.

Definition 2.2. A mapping F : O X E — E is said to be
(i) a random operator if for any x € E, F(t,x) = y(t) is measurable;
(ii) Lipschitz continuous (resp., monotone, linear, bounded) if for any t € Q, the
mapping F(¢,-) : E — E is Lipschitz continuous (resp., monotone, linear, bound-

ed).

Definition 2.3. A multivalued mapping I' : QO — P(E) is said to be measurable if for any
BeRB(E), T (B)={teQ:Tt)NnB + 2} c d.

Definition 2.4. A mapping u: Q — E is called a measurable selection of a multivalued
measurable mapping I': QO — P(E) if u is measurable and for any t € Q, u(t) € I'(¢).

Definition 2.5. Let D be a nonempty subset of a separable real Hilbert space E, let g :
QOXD—E, f:QXE—E,and N:Q X E X E — E be three random mappings and let
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T:Q x D — CB(E) be a multivalued measurable mapping. Then
(i) f issaid to be c(#)-strongly monotone on Q X D with respect to the second argu-
ment of N and g, if for all t € Q and x, y € D, there exists a measurable function
c:Q — (0,+) such that

(g(t,x) —g(t,y),N(t, f(t,x),-) = N(t, f(t,y),-)) = c(t)||g(t, x) —g(t,y)||2; (2.1)

(ii) f is said to be ¥(¢)-Lipschitz continuous on Q X D with respect to the second
argument of N and g, if for any t € Q and x, y € D, there exists a measurable
function v: Q — (0,+00) such that

IN(8 f (%), -) =N (&, f(5,), ) [| < v(D)[g(t,x) =g (8, y)]] (2.2)

and if N(¢, f(t,x),y) = f(t,x) for all t € Q and x,y € D, then f is said to be
Lipschitz continuous on Q X D with respect to g with measurable function »(t);

(iii) N is said to be o(#)-Lipschitz continuous on E with respect to the third argument
if there exists a measurable function o : Q) — (0,+00) such that

[IN(t,,x) =N, )| <o®llx—yll, Vx,y€E; (2.3)

(iv) T is said to be H-Lipschitz continuous on  x D with respect to g with measur-
able function y(t) if there exists a measurable function y : O — (0,+0o0) such that
foranyt€ Qandx,y € D,

H(T(t,x),T(t,y)) < y(0)||g(t,x) — g(t, »)|l, (2.4)

where H (-, -) is the Hausdorff metric on CB(E) defined as follows: for any given
A,B € CB(E),

H(A,B) = max { supinf d(x, y),sup inf d(x,y)}. (2.5)
XEA yeB yEB xeA

Definition 2.6. A random multivalued mapping S: Q X E — P(E) is said to be
(i) measurable if, for any x € E, S(-,x) is measurable;
(ii) H-continuous if, for any t € Q, S(¢, -) is continuous in the Hausdorff metric.

LEmMMA 2.7 [3]. Let M : Q X E — CB(E) be an H-continuous random multivalued map-
ping. Then for any measurable mapping x : QO — E, the multivalued mapping M(-,x) : Q —
CB(E) is measurable.

LemMa 2.8 [3]. Let M,V : Q X E — CB(E) be two measurable multivalued mappings, let
€ >0 be a constant, and let x : Q — E be a measurable selection of M. Then there exists a
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measurable selection y : QO — E of V such that
llx(6) = y(1)|| = (1 +€)H(M(1), V (1)), VteQ. (2.6)

Definition 2.9. An operator a: Q X E X E — E is called a random f(#)-bounded bilinear
function if the following conditions are satisfied:
(1) for any t € Q, a(t, -, -) is bilinear and there exists a measurable function f: Q —
(0,+00) such that

la(t,x,y)| <BOIxl - llyll, VieQ, x,y €E; (2.7)

(2) forany x, y € E, a(-,x, y) is a measurable function.

LemMa 2.10 [15]. If a is a random bilinear function, then there exists a unique random
bounded linear operator A : QO X E — E such that

(A(t,x),y) = al(t,x,y), [[A(t, )] = [a(t, -, )], (2.8)
forallt € Q and x, y € E, where

|A(t, || = sup {[|[A(t,x)|| : llx]l < 1}, 29)
[la(t,-,)|| =sup{|alt,x,y)| : lIxll < 1, Iyl < 1}. ’

LemMa 2.11 [4]. Let K be a closed convex subset of E. Then for an element z € K, x € K
satisfies the inequality (x —z,y —x) = 0 for all y € K if and only if

x = Px(z), (2.10)

where Py is the projection of E on K.
It is well known that the mapping Px defined by (2.10) is nonexpansive, that is,

[|Pk(x) = Pk(D|| < llx=yll, Vx,y€E. (2.11)

Definition 2.12. Let J : QX D — P(E) be a random multivalued mapping such that for
each t € Q and x € E, J(t,x) is a nonempty closed convex subset of E. The projection
Pj1x) is said to be a 7(#)-Lipschitz continuous random operator on Q) X D with respect to
gif
(1) for any given x,z € E, Pj(;x)(z) is measurable;
(2) there exists a measurable function 7 : QO — (0,+0) such that forall x, y,z € E and
teq,

1Py(1.0)(2) = Proy) (2)]] = T(0)|g(t,x) — g (£, )]]- (2.12)

If g(t,x) = x for all x € D, then Pj(.) is said to be a 7(¢)-Lipschitz continuous random
operator on 2 X D.
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LEmMMA 2.13 [5]. Let K be a closed convex subset of E and let m: Q X E — E be a random
operator. If ] (t,x) = m(t,x) + K forallt € Q) and x € E, then
(1) for any z € E, Pjx)(z) = m(t,x) + Px(z — m(t,x)) for allt € Q and x € E;
(i1) Pyix) is a 2x(t)-Lipschitz continuous operator when m is a x(t)-Lipschitz continu-
ous random operator.

3. Existence and convergence theorems

In this section, we suggest and analyze a new projection-contraction iterative method for
solving the random multivalued variational inequality (1.1). Firstly, from the proof of
Theorem 3.2 in Cho et al. [9], we have the following lemma.

LemMA 3.1. Let D be a nonempty subset of a separable real Hilbert space E and let ]
Q x D — P(E) be a random multivalued mapping such that for each t € Q and x € E, J(t,x)
is a closed convex subset in E and J(Q X D) C g(Q X D). Then the measurable mappings
x:Q — D and u,v,& : Q — E are the solutions of (1.1) if and only if for any t € Q, u(t) €
T(t,x(t)), v(t) € F(t,x(t)), &(t) € S(t,x(t)), and

g(t,x(1)) = Prairy [g (6x(2)) — p() (N (8, f (£,x(2)),&()) + A(t,u(t))) ], (3.1)

where p : Q) — (0,+00) is a measurable function and (A(t,x),y) = a(t,x, y) forallt € Q and
x,y € E.

Based on Lemma 3.1, we are now in a position to propose the following generalized
and unified new projection-contraction iterative algorithm for solving the problem (1.1).

Algorithm 3.2. Let D be a nonempty subset of a separable real Hilbert space E and let
— (0,1) be a measurable step size function. Let g: QXD — E, f: Q X E — E, and
N :Q X E X E — E be measurable single-valued mappings. Let T,S: Q X D — CB(E) and
F:Q x D — CB(D) be multivalued random mappings. Let ] : O X D — P(E) be a ran-
dom multivalued mapping such that for each t € Q and x € D, J(t,x) is closed convex
and J(QA X D) € g(Q x D). Then by Lemma 2.7 and Himmelberg [12], we know that for
given xo(-) € D, the multivalued mappings T(-,x0(-)),F(-,x0(-)), and S(-,x0(-)) are
measurable, and there exist measurable selections uy(-) € T(+,x0(+)), vo(+) € F(+,x0(+)),
and E(+) € S(-,x0()). Set glt,x1(£)) =g(t, %0 () ~AD{g(E:x0(£)) = Pyamyien [t x0(8) —
(£)(N( t,f(t x0(£)),&0(t)) + A(t,up(t)))]}, where p and A are the same as in Lemma 3.1.
Then it is easy to know that x; : Q — E is measurable. Since uy(t) € T(t,x0(t)) € CB(E),
vo(t) € F(t,x0(t)) € CB(D), and &y(t) € S(t,x0(t)) € CB(E), by Lemma 2.8, there exist
measurable selections u(t) € T(t,x1(t)), vi(t) € F(t,x1(t)), and & (t) € S(t,x;(t)) such
that forallt € Q,

luo(t) — ur (1)|| <

—
—
+

IA
~/
—
+
— | — —| = —| =

JH(T (t300), T (63161,
vo(6) = (8] JE(E (6000, E (131 (1), (32)

oot = &l < (141 ) H(S(30(0),8(6.31(0)):
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By induction, we can define sequences {x,(t)}, {u,(t)}, {v,(£)}, and {&,(¢)} inductively
satisfying
(6041 (1) = g(t,x,(8)) = A g (£:%4(1)) = Pyt [ (£, (1))
—p(O) (N (t, f (t,x4(1)),&a(1)) + A(t,un(1))) ]},

un(t) € T(t,x4(1)),

ln(®) = s (0] = (14 - JHT (650 0),T (650 (),

vn(t) € F(t,x4(1)),

) = sl < (14 - JHE (300, E (150 (),

&a(t) € S(t,xa(1)),

1600 = & (O] = (14 JH(S(050(0),S (6501 ().

n+1
(3.3)

Similarly, we have the following algorithms.

Algorithm 3.3. Suppose that D, A, g, f, N, T, S, F, A are the same as in Algorithm 3.2
and J(t,z(t)) = m(t,z(t)) + K for all t € Q and measurable operator z: QO — D, where
m:Q x D — E is a single-valued mapping and K is a closed convex subset of E. For an ar-
bitrarily chosen measurable mapping xo : QO — D, the sequences {x,(£)}, {un(t)}, {va(£)},
and {,(t)} are generated by a random iterative procedure

g(txn1 (1)) = g(t,x0(1)) = M) {g (£, x4 (2)) — m(t,vn(t)) — P [g(t,xn(2))
—pO (N, f(t,x4(1)), &) +A(t un(t))) +m(t, v () ]},
uy(t) € T(t,x,(1)),

() — i (D] < (1 " ﬁ)H(T(t,xm)),T(t,xn+1<t>)),

va(t) € F(t,xa (1),
1
() = v O] = (14 5 JHE(30,(0) F (6501 ()),
§u(t) € S(t,xa(1)),

1E,(5) — Exnn (D) < (1 N i)H(S(t,xn(w),su,xm(t))).

n+1
(3.4)
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Algorithm 3.4. Let D, A, g, f, N, J, A be the same as in Algorithm 3.2 and let T,S: Q X
D — E be two measurable single-valued mappings. For an arbitrarily chosen measurable
mapping xo : QO — D, we can define the sequence {x,(f)} of measurable mappings by

g(txni1 (1))
:g(taxn(t)) t){g(t xn(t ) P] (t,x4(1)) [g(t’xn(t)) _P(t) (N(t’f(t:xn(t))’S(t’xn(t)))

+A(LT(tx.(1))))]} (3.5)

It is easy to see that if we suppose that the mapping g: QO X D — E is expansive, then the
inverse mapping ¢! of g exists and each x,(¢) is computable for all t € Q.

Now, we prove the existence of solutions of the problem (1.1) and the convergence of
Algorithm 3.2.

THEOREM 3.5. Let D be a nonempty subset of a separable real Hilbert space E and let
g:Q XD — E be a measurable mapping such that g(Q X D) is a closed set in E. Suppose
that N : Q X E X E — E is a random «(t)-Lipschitz continuous single mapping with respect
to the third argument and ] : QX D — P(E) is a random multivalued mapping such that
J(Q x D) Cc g(Qx D), for each t € Q and x € E, J(t,x) is nonempty closed convex and
Pj1x) s an y(t)-Lipschitz continuous random operator on Q X D. Let f:Q X E — E be
&(t)-strongly monotone and o(t)-Lipschitz continuous on Q X D with respect to the sec-
ond argument of N and g, and let a: Q X EX E — R be a random [(t)-bounded bilinear
function. Let random multivalued mappings T,S: QX D — CB(E), F: QO X D CB(D)
be H-Lipschitz continuous with respect to g with measurable functions ¢(t), 7(t), and {(t)
respectively. If for any t € Q,

v(t) = k(t)T(t) + B(t)g(t) < o(t),

1—n(6)¢(1)
0< p(t) < T,

3(1) > w(1) (1 = (D) ++n(D(BD) (2 = n(OLD)) (0(1)2 = n(1)?),

8(t) —v(t) (1 —n(){(t)) ‘
o(t)? —v(t)?

J(8(8) = v() (1 = g(DL(1)) = n(DLB (2 = (1) (a(£)2 - n(£)?)
< 5
o(t)? —v(t)?

then for any t € Q, there exist x*(t) € D, u*(t) € T(t,x*(t)), v*(t) € F(t,x*(¢)), and
EX(t) € S(t,x*(t)) such that (x*(t),u*(t),v*(¢),E*(¢)) is a solution of the problem (1.1)
and

(3.6)

‘p(t) -

gtx ) — gt,x* (), un® — u* O, va) —v*@), &) — &) asn— oo,
(3.7)

where {x,(t)}, {u, (1)}, {va(t)}, and {&,(£)} are iterative sequences generated by Algorithm
3.2.
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Proof. It follows from (3.3), Lemma 2.11, and Definition 2.12 that

llg (£, 41 (1)) = g (tx(D)) || < (1= A(0))|Ig (6,20 (8)) — g (£, 01 (1)) ]|
+ AP0 [ (820 () = p(8) (N (£, f (£,0(1)),€n (1)) + A(t,un(1))) ]
— Pyt (n [€ (1,01 (£)) =p() (N (&, f (£, %01 (#)), &1 () +A (1 (D)) 1]
+MO|[Pre, 09 [ (%01 (1)) = p(O) (N (8, f (£, x0-1(2)), §u1 (1)) + At a1 (1)) ]
— Pty ) g (6 x0-1 (1)) — P(t YNt f (xa-1(8)),Enm1 () +A (11 (1)) ]]]
< (1=20)Ig(txa(1) = g (6251 () [[+ MO ()| [Vi (1) = v (B)]]
+A®|[g (tx: 1) —g (£, %01 (1) —pO N (&, f (625 1), & () =N (¢, f (£, %51 1), & 1))
+p(OADIN(t, f (t,x0-1(8)),€0(8)) = N (&, f (£,20-1(2)),&n1 (1)) ]

+p(OAD)||A (L, un(t)) — At up 1 (1))]]-
(3.8)

Since f: QX E — E is §(t)-strongly monotone and o(t)-Lipschitz continuous with re-
spect to the second argument of N and g, T, S, and F are H-Lipschitz continuous with
respect to ¢ with measurable functions ¢(¢), (), and {(t), respectively, N is (¢)-Lipschitz
continuous with respect to the third argument, and a is a random f(¢)-bounded bilinear
function, we get

g (£:x,(2)) = g (£, 201 () = p(E) (N (&, f (£,x4(1)),€a(t)) = N (8, f (£,20-1(1)),€a (1)) |
<1=2p(08() +p(1)20 (1?8 (t,4(8)) — g (201 (1) |,

(3.9
[[va(t) = vuo1(8)]] < (1 +&)H (F(t,x4(2)), F (t,x0-1(1)))

<(1+e)l()]|g(t,xa(t)) — g(t,xu-1(1))]],

||N(t)f(t)xn71(t)))fn(t)) _N(t)f(t)xnfl(t))’fnfl(t))||
< k(D)[|E:(t) = &1 (D] = (A +)H (S(£,x4(1)), S(t,x0-1(1))) (3.11)
< (1 +e)r(t)r(t)||g(t,x, (1)) — g(t,x0-1(2)) ],

(3.10)

[[A(t,un(1)) — At un—1(1))|| < BO)|tn(t) — ttn—1 (1)]]
< (1+e)BOH (T (t,x4(1)), T (t,x0-1(1))) (3.12)
< (1+e)B(1)s(0)lg(t,xa (1)) — g (t,x0-1())]].

Using (3.9)—(3.12) in (3.8), for all t € O, we have
llg (£, 011 (8)) — g (£, (1)) |
< {1 M)+ A0 [ (1 +e)+ \/1 —2p(1)8(t) +p(t)2a(t)?

+p(1)(1+8) (k(D)7(0) + f(1)s(D) ]}
X ||g(t)xn(t)) _g(t)xnfl(t))” = S(t)E)Hg(t)xn(t)) _g(t)xnfl(t))H’

(3.13)
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where

A(t,e) = 1-A(t) (1 —k(t,¢)),

k(t,€) = n(DC(D(1+e) +4/1-2p(1)3(1) +p(£)2a(t)? (3.14)
+p()(1+e) (x(t)7(t) + B(1)g(t)).

Let k(t) = n()¢(t) + \/1 —=2p(t)8(t) +p(t)2a(t)* + p(t) (x(t)T(2) + f()g(2)), t) =1 —
A)(1 —k(t)). Then k(t,&) — k(t), 9(t,e) — 9(t) as € — 0. From condition (3.6), we know
that 0 < 9(t) < 1 forall t € Q and so 0 < I(¢,¢) < 1 for ¢ sufficiently small and all £ € Q. Tt
follows from (3.13) that {g(t,x,(t))} is a Cauchy sequence in g(Q x D). Since g(€2 X D)
is closed in E, there exists a measurable mapping x* : QO — D such that for t € Q,

g(tx,(1)) — g(t,x*(¢)) asn— oo, (3.15)

By (3.10)—(3.12), we know that {u,(t)}, {v,(¢)}, and {&,(t)} are also Cauchy sequences
in E. Let

un(t) — u(t), va(t) —v*(t), &(t) —&*(t) asn— oo (3.16)
Now we show that u*(t) € T(t,x*(t)). In fact, we have

d(u* (1), T(t,x* (1)) = inf {|[u*(t) - y|[: y € T(6,x* (1))}
< |u* (5) = un()]| + d (D), T (£,%(1)) )
(3.17)
< |[[u* () = un (]| + H(T (t,x4(1)), T (£,x*(1)))
< |[|u* (1) = ua (O] + c(D)||g (£, x4 (1)) — g (£,x* (1)) ]| — O.

This implies that u*(¢) € T(t,x*(¢)). Similarly, we have v*(¢) € F(t,x*(¢)) and {*(t) €
S(t,x*(t)).
Next, we prove that

2(6x* (1)) = Prey o [g (5™ (1)) — p() (N (8, f (£,x* (1)), &% (1)) + A(t,u™(1))) ].
(3.18)

Indeed, from (3.3), we know that it is enough to prove that

%ijgpj(t,vn(t)) [g(tvxn(t)) _P(t) (N(t>f(t>xn(t)),fn(t)) +A(t’un(t)))]

(3.19)
= Piiy ) [g (657 (1) — p() (N (t, f (1,57 (1)), &* (1)) + A(t,u™(1))) ].
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It follows from Lemma 2.11 and Definition 2.12 that
Py ten(en [ (8,2 (1)) = p(O) (N (2, f (£,24(2)), €a (1)) + A(2, un(t)))]
= Pyeyren [g (667 (1) = p() (N (8, f (6,7 (1)), &% (1) + A(t,u™ (1)) ]|
< 1Pttt [g(t,xn (1) - (N(t,f(t,xn(t)),fn(t))+A(t,un(t)))]
= Pyt (en [g (6% ) P (N (8, f (£x7(1)),&%(1) + A(t,u* (1)) ]]]
+{[Pynen [g (67 (1) - ((N(t,f(t,x*(t)),f*(t))+A(t,u*(t)))]
= Py ap [g (67 (1)) — p(0) (N (8, f (1,27 (1)), (1)) + A(t,u™(1))) ]|
< llg(t,xa(0) =g (£,x* (1)) = p() (N (£, f (£,24(8)),§u(1)) =N (8, f (£, (1)), £:(1)))|
+p[IN(E, f (£,x%(1),&:(1) = N (¢, f (627 (1)), £() |
+p(O||A(Hun(t)) — A(t,u™ () || +5(0)||va(t) — v*(2)]]
<\[1=2p(1)8(t) +p(1)20(1)2[[g (t,xa(1)) — g (£,x* (1)) |
+p(Ox(O[[8x(1) = & (O] + p(O)BE)|[un(t) — u* (1)]]

(O)|[va(t) —v*()]I.

(3.20)

This implies that (3.19) holds and so (3.18) is true. This completes the proof. O
From Theorem 3.5, we can obtain the following results.

THEOREM 3.6. Let D, g, N, f, T, F, S, and a be the same as in Theorem 3.5. Suppose that
K is a nonempty closed convex subset of E and that m: QX D — E is an y(t)/2-Lipschitz
continuous random operator. If there exists a measurable mapping p : QO — (0,+00) such that
condition (3.6) holds, then for any t € Q) there exist x*(t) € D, u*(t) € T(t,x* (1)), v*(t) €
F(t,x*(t)), and £*(t) € S(t,x*(t)) such that (x*(t),u* (t),v*(t),E*(t)) is a solution of the
problem (1.3) and

g(txa(1)) — g(t,x* (1), un(t) — u* (1), va(t) — v (1), &(t) — EF (1)
(3.21)

as n — oo, where {x,(t)}, {un(£)}, {va(t)}, and {&,(t)} are iterative sequences generated by
Algorithm 3.3.

Proof. The conclusion follows from Lemma 2.13 and Theorem 3.5. O

Remark 3.7. If J(t,x) = K for all t € Q and x € D, then from Theorem 3.5, we can obtain
the corresponding result.

Tueorem 3.8. Let D, g, N, f, and a be the same as in Theorem 3.5. Suppose that J : Q) X
D — P(E) is a random multivalued mapping such that J(Q X D) C g(Q X D), for each t €
Q and x € E, J(t,x) is nonempty closed convex and Py is an 1(t)-Lipschitz continuous
random operator on Q) X D with respect to g, and T,S : Q X D — E are Lipschitz continuous
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on Q x D with respect to g with measurable functions ¢(t) and 1(t), respectively. If there
exists a measurable mapping p : QO — (0,+00) such that

v(t) = x(t)T(t) + (t)s(t) < a(t),
1-7()
p(t) < O

8(8) > wt) (1= (1) +n(D)(2 = () (a(£)2 = w(£)2),

8()—v(t)(1-n(t)) ’<\/(5(t)1/(t)(1ﬂ(f)))2ﬂ(t)(Zﬂ(t))(G(t)ZV(t)z)

o(£)2—(t)? o(t)2-v(t)? ’
(3.22)

p(t)—

then there exists a unique measurable mapping x* : Q — D, which is the solution of the
problem (1.5) and lim,, .. g(t,x,(t)) = g(t,x*(t)) for all t € Q, where {x,,(t)} is the iterative
sequence generated by Algorithm 3.4.

Proof. From Theorem 3.5, we know that there exists a measurable mapping x* : QO — D
such that it is the solution of the problem (1.5) and lim,— . g(t,x,(t)) = g(t,x*(¢)) for all
t € Q. Now we prove that x* : O — D is a unique solution of the problem (1.5). In fact, if
x:Q — D is also a solution of the problem (1.5), then

g(6:x(1) = Prean g (6:x(1) = p(O (N (8, f (£:x(1)),S(8,x(1))) + A4, T (1,x(1)))) ]
(3.23)
By the proof of (3.13) in Theorem 3.5, we have

llg(t,x()) — g(t,x*(1))||
<|lg(t,x(1)) =g (t,x* (1)) —p(t) (N (£, f (£,x(£)), S(£,x(1))) = N, f (£,x* (1)),S(t,x(1)))) ||
(t)IIN(t,f(t,x*() S(t,x(1))) - (tf(tx (1),S(t,x* (1)) ]|

(OIA (T (6 x(t )))— (6T (Lx*O)|[+n®)]lg(Lx(1) — gt @) ]]
!Ig t,x(1) —g(Lx*(1))]],
(3.24)
where @(t) = 17(t)+\/1 =2p(1)8(t) +p(£)2a(t)? + p(t) (x(t)T(t) + f(t)s(t)). It follows from

(3.22) that 0 < @(t) < 1 and so x*(t) = x(¢t) forall t € Q ThlS completes the proof. O
Remark 3.9. From Theorems 3.5-3.8, we get several known results of [4, 5, 10, 13, 15, 17,
20] as special cases.

4. Random perturbed algorithm and stability

In this section, we construct a new perturbed iterative algorithm for solving the random
generalized nonlinear implicit quasi-variational inequality problem (1.5) and prove the
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convergence and stability of the iterative sequence generated by the perturbed iterative
algorithm.
For our purpose, we first review the following concept and lemma.

Definition 4.1. Let S be a self-map of E, x € E, and let x,,1; = h(S,x,) define an iteration
procedure which yields a sequence of points {x,},—, in E. Suppose that {x € E: Sx =
x} # @ and that {x,};_, converges to a fixed point x* of S. Let {u,} C E and let €, =
lt41 — H(S,un)|l. If lime,, = 0 implies that u,, — x™*, then the iteration procedure defined
by x4+1 = h(S,x,) is said to be S-stable or stable with respect to S.

LEmMa 4.2 [23]. Let {y,} be a nonnegative real sequence and let {A,} be a real sequence in
[0,1] such that >,y A, = oo. If there exists a positive integer ny such that

Vi1 < (1= Ap)yn+Au0u,  Vnu=mny, (4.1)
where 0, = 0 for alln = 0 and 0, = 0 as n — oo, then lim, .o y, = 0.

Algorithm 4.3. Let D be a nonempty subset of a separable real Hilbert space E, let g :
QOXD—E, f:QXE—-EN:QXEXE— E,and T,S: QX D — E be measurable single-
valued mappings, and let J : O X D — P(E) be a random multivalued mapping such that
for each t € Q and x € D, J(¢t,x) is closed convex and J(Q2 X D) C g(Q x D). For a given
measurable mapping xj : QO — D, the perturbed iterative sequence {x, ()} is defined by
g(t,xnﬂ(t)) = (1 - ‘xn(t))g(t)xn(t))
+ 0 () Py, [ (£ yu (1)) = p() (N (£, f (£, yu(£)), S (£, yu(t)))
+A(LT(Lya(1))))],
g(tyn(1) = (1= Bu(t)) g (t;xa(1))
+ﬁn(t P](t,x,,(t)) [g(taxn(t)) - P(t) (N(tsf(tﬂxn(t)))s(t)xn(t)))
+A (LT (txa(1)))) ],

(4.2)

for n=0,1,2,..., where p and A are the same as in Lemma 3.1, and {«,(¢)} and {S,(¢)}
satisty the following conditions:

0<au(t), But)=1 (n=0), i an(t) =00, Vte. (4.3)

Let {u,(t)} be any sequence in E and define {€,(¢)} by
en(t) = [lg(t, un (1))
—{(1 = an(1)) g (£ un (1) + @ () Py, (1) [€ (£, vu (1))
—pO (N (1, f (£,va(1)),S(£va(1))) + AT (L va(1)))) 1],
g(Lva(®) = (1= Bu(1) g (t,un(t))
+ BP0 [§ (£ un (1)) — p(£) (N (£, f (£, (£)), S (£, un(1)))
+A(LT(tua(1)))],

(4.4)

forn=0,1,2,....
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THEOREM 4.4. Let D be a nonempty subset of a separable real Hilbert space E and let g :
Q X D — E be a measurable mapping such that g(Q x D) is a closed set in E. Suppose that
N :Q X EXE — E is a random «(t)-Lipschitz continuous single mapping with respect to the
third argument, and f : Q X E — E is §(t)-strongly monotone and o (t)-Lipschitz continuous
on Q X D with respect to the second argument of N and g. Let ] : O X D — P(E) be a random
multivalued mapping such that J(Q X D) C g(Q X D) for each t € Q and x € E, J(t,x)
is nonempty closed convex, and Py ) is an y(t)-Lipschitz continuous random operator on
Q x D with respect to g, and let T,S : Q) X D — E be Lipschitz continuous with respect to
g with measurable functions ¢(t) and 1(t), respectively. If a: QX E X E — R is a random
B(t)-bounded bilinear function such that (3.22) holds, then
(1) if limy—co > oIn[1 — a;(1 — q)] = —o0, where g =1 — 7+ (1 +Apa) (8 + pv),
then the sequence {x,(t)} generated by (4.2) converges strongly to the unique so-
lution x(t) of the problem (1.5) for all t €
(ii) moreover, if for any t € Q, 0 < a < a,(t), then limu,(t) = x(t) if and only if
lime,(t) = 0, where €,(t) is defined by (4.4).

Proof. From Theorem 3.8, we know that there exists a unique solution x(t) of the prob-
lem (1.5) and so

g(t,x(1)) = Py [g (6x(2)) — p(t) (N (8, f (£,x(2)),S(t,x(8))) + A(t, T (t,x(1))))].
(4.5)

From (4.2), (4.5), Lemma 2.11, and Definition 2.12, it follows that

g (t,2x1 (1)) — g (£,x(1)) ]
< (1 - au(0)|lg(txa(1)) — g (£,x(1))]|
+ (O] |Prieyun [€ (8 ya (1) = p() (N (8, £ (£, yu (1)), S (8, yu (1))
+A(LT(tya(1)))]
= Prteyupg (£:x(0) —p(£) (N (¢, f (1,x(£)), S (£, x(D)+A (¢, T (£, x(1)))]
+|Preyuor[g (x(8) —p () (N (8, f (£,x(1)), S (£,x())+A (L, T (£, x(1))))]
= Ptoxioplg (6:x() —p @) (N (¢, f (%)), S(t,x(2)))+A (& T (6 x(0)) |}
< (1= an()|lg(tx(1) — g (t,x(1)) |
+an(t){|[g (8 yu()) — g (tx(2)) = p(t) (N(t,f(t,yn(t)),S(t,yn(t)))
=N (8, f (:x(5)),S(t, ya ()|
+p(D[IN(t, f (t,x(1), (tyn (1)) = N(t, f(£,x(1),S(t,x(1)))
+pO|JA(L T (8, ya(t))) — A(, T(t,x(2)))||
+n(0)]1g (& ya(t)) — g (£,x(0))]}.

)
(

(4.6)
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By (4.6) and the assumption of N, f, a, S, T, we obtain

llg (£, 301 (1)) —g(£x(D)) I < (1 — (1)) ||g (£, x4(2)) — g (£,x(1)) ]|

4.7
+au()q(0)||g (£, ya (1)) — g (£,x(1))]], (47

where

9() = 1= 2p(D0(1) + p(D20(£)2 + p(8) (k(OT(8) + BB)G(t) + (). (4.8)
Similarly, we have

llg (£ yn (1) — g (t,x())]] < (1= Bal(1))[|g (£, x4 (1)) — g (£,x(1)) |

4.9
+Bu(t)q(1)]|g (t,x4(1)) — g (t,x(1))]]. (49)

Combining (4.7) and (4.9), we obtain

llg (t;xn1 () — g (:x(0))]] < [1— () (1 — q(1)) (14 Ba (1)) 1[I (1,4 (1)) — g (£,x(0)) |-

(4.10)
Condition (3.22) implies that 0 < g(t) < 1, and so from (4.10), we have
g (£,%011(1)) — 1)]|
<[1- ocn(t)(l - q(t ) llg (6x0(1)) = g (t,x(1)) (4.11)

n

<[]l -a@®)(1-q®)]lg(txo(t) — g(t,x(1))]].

i=0

Since
%&n}oiln[l—ai(t)(l—q(t))] =—oc0, i.e., rlin;ﬁ[l—oc,-(t)(l—q(t))] =0, (4.12)
i=0 i=0

we know that g(t,x,(t)) — g(t,x(t)) as n — co.
Now we prove conclusion (ii). By (4.4), we obtain
|lg (t,unr1 (1)) — g (£,x(0)) |
< [1(1 = an(1))g (£, un (1))
+ 0 ()P (1,0 [§ (v (1) —=p (DN (& f (£,vu (1)), S (£,va (1)) + A (LT (8,vu(1)))) ]
—g(t,x(1)) ||+ €n(t).

(4.13)
As the proof of inequality (4.10), we have
(1 = () g (£, un(1))
+ 0 (D) Py o) [ (£va(2)) — p(6) (N (8, f (£,va(1)),S(8,va(2))) (4.14)

+A(t’T(t)Vn(t))))] 7g(t’x(t))||
< [1—an()(1—q(®)]llg(t;un()) — g (t,x(1))]l.
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Since 0 < a < a,(t) for all t € Q, by (4.13) and (4.14), we have

g (£, uni1 (£)) — g (£,x(0))[| < [1 = () (1 = g(1)) ]|g (£, un () — g (£, x(2)) ||

4.15
(1) (1 g(1)) - ﬁ (4.15)

Suppose that for any t € Q, lime,(t) = 0. Then from >.,7 ;a,(t) = oo and Lemma 4.2, we
have limg(t,u,(t)) = g(¢,x(t)) and so limu, () = x(t).
Conversely, if limu, (¢) = x(¢) for all t € Q, then we get

en(t) <|lg(tuna (1)) — g(6:x(1))]]
+[[(1 = au(8) g (t,un(t))
+an(t)PI(t,vn(t)) [g(l‘,Vn( )) P(t (N(t f(t Vn ) S(t’vn(t)))

4.16
AT ()]~ 620 1o
= ||g(t)un+l(t)) _g(tax(t))H
+[1 = an(t) (1= q(0)) lllg (t,un(8)) — g (£:x(1)) [| — 0,
as n — co. This completes the proof. O

Remark 4.5. If J(t,x) = m(t,x) + K for all t € Q) and x € D, where m: QO X D — E is an
1(t)/2-Lipschitz continuous random mapping and K is a closed convex subset of E, then
we can obtain the same results as in Theorem 4.4.
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