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We consider an extension of Möbius-Pompeı̈u theorem of the elementary geometry over
metric spaces. We specially take into consideration Ptolemaic metric spaces.
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1. The Möbius-Pompeı̈u theorem and metric spaces

In this paper we consider the following statement of elementary geometry [2, 3].

Theorem 1.1 (Möbius-Pompëıu). Let ABC be an equilateral triangle and M any point in
its plane. Then segments MA, MB, and MC are sides of a triangle.

Let us consider an analogous problem for the metric space (X ,d) with at least four
points. Let A,B,C ∈ X be three fixed points. Then, for the point M ∈ X , we suppose that
a triangle can be formed from the distances d1 = d(M,A), d2 = d(M,B), and d3 = d(M,C)
if and only if the following conjunction of inequalities is true:

d1 +d2−d3 ≥ 0, d2 +d3−d1 ≥ 0, d3 +d1−d2 ≥ 0. (1.1)

If in conjunction (1.1) at least one equality is true, then we suppose that a degenerative
triangle can be formed. If in (1.1) sharp inequalities are true:

d1 +d2−d3 > 0, d2 +d3−d1 > 0, d3 +d1−d2 > 0, (1.2)

then we suppose that a nondegenerative triangle can be formed. In this case, for the point
M, for which the conjunction (1.2) is true, we define that the point has Möbius-Pompëıu
metric property. The main subject of this paper is to determine points M which do not
have Möbius-Pompeı̈u metric property, that is, these points which fulfill the following
disjunction of the inequalities:

d1 +d2−d3 ≤ 0, d2 +d3−d1 ≤ 0, or d3 +d1−d2 ≤ 0. (1.3)
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2 The Möbius-Pompeı̈u metric property

Let us notice that the point M ∈ {A,B,C} does not have Möbius-Pompeı̈u metric prop-
erty. Thus in consideration which follows, we assume that the metric space (X ,d) has at
least four points.

2. Ptolemaic metric spaces

A metric space (X ,d) is called a Ptolemaic metric space if Ptolemaic inequality holds:
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d
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(2.1)

for every x1,x2,x3,x4 ∈ X [1]. A normed space (X ,| · |) is a Ptolemaic normed space if
metric space (X ,d) is Ptolemaic with the distance d(x, y)= |x− y|. Let us notice that the
following lemma is true [1].

Lemma 2.1. A normed space is Ptolemaic if and only if it is an inner product space.

We give two basic examples of Ptolemaic spaces [1].

Example 2.2. (10) The spaceRn with the Euclidean metric d(x, y)= |x− y| is a Ptolemaic
metric space.

(20) The spaceRn with the chordal metric on the unit Riemann sphere d(x, y)= 2|x−
y|/(

√
1 + |x|2

√
1 + |y|2) is a Ptolemaic metric space.

We will illustrate the following considerations with the previous examples of Ptolemaic
metric spaces in the case of dimension n= 2.

3. The main results

Let (X ,d) be a metric space. Let us fix three points A,B,C ∈ X and form distances:

a= d(B,C), b = d(C,A), c = d(A,B). (3.1)

For any point M ∈ X let us form distances:

d1 = d(M,A), d2 = d(M,B), d3 = d(M,C). (3.2)

Inequality d2 + d3 ≤ d1. Let us determine a set of M points of metric spaces X for which
the following inequality is true:

d2 +d3 ≤ d1. (3.3)

Let us form two functions:

α1 = α1(M)= 4d2
2 d

2
3 −

(
d2

1 −
(
d2

2 +d2
3

))2
,

β1 = β1(M)= d2
2 +d2

3 −d2
1 .

(3.4)

Lemma 3.1. For points A, B, and C, inequality α1 ≤ 0 is true.

Proof. For point A, d1 = 0 and α1 = −(c2− b2)2 ≤ 0 are true. Similarly, the previous in-
equality is true for the points B and C. �
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Example 3.2. Let vertices A, B, C of the triangle ABC in the plane R2 be given by coordi-
nates A(a1,b1), B(a2,b2), C(a3,b3), and let M(x, y) be any point in its plane.

(10) Let us in the planeR2 use Euclidean metric d. Let us specify the forms of the terms
α1 and β1 which correspond to functions (3.4), respectively. It is true that

α1=k
(
x2 + y2)2

+
(
A1x+B1y

)(
x2 + y2)+C1x

2 +D1xy +E1y
2 +F1x+G1y +H1 (3.5)

for some coefficients k,A1,B1,C1,D1,E1,F1,G1,H1 ∈ R (k = 3). Equality α1 = 0 deter-
mines the algebraic curve of the fourth order. By inequality α1 < 0, we determine the
interior of the previous curve. Also, it is true that

β1 = A2
(
x2 + y2)+B2x+C2y +D2 (3.6)

for some coefficients A2,B2,C2,D2 ∈ R (A2 = 1). If B2
2 +C2

2 > 4D2, the equality β1 = 0 is
possible and determines the circle. Then by inequality β1 < 0, we determine the interior
of the circle.

(20) Let us in the plane R2 use chordal metric d. Let us specify the forms of the terms
α1 and β1 which correspond to functions (3.4), respectively. It is true that

α1= k
(
x2 + y2

)2
+
(
A1x+B1y

)(
x2 + y2

)
+C1x2 +D1xy +E1y2 +F1x+G1y +H1

(
1 + x2 + y2

)2(
1 + a2

1 + b2
1

)2(
1 + a2

2 + b2
2

)2(
1 + a2

3 + b2
3

)2 (3.7)

for some coefficients k,A1,B1,C1,D1,E1,F1,G1,H1 ∈ R. If k �= 0, the equality α1 = 0 de-
termines the algebraic curve of the fourth order. Then by inequality α1 < 0, we determine
the interior of the previous curve. Also, it is true that

β1 =
A2
(
x2 + y2

)
+B2x+C2y +D2(

1 + x2 + y2
)(

1 + a2
1 + b2

1

)(
1 + a2

2 + b2
2

)(
1 + a2

3 + b2
3

) (3.8)

for some coefficients A2,B2,C2,D2 ∈R. If A2 �= 0 and B
2
2 +C

2
2 > 4A2D2, the equality β1 =

0 is possible and determines the circle. Then by the inequality β1 < 0, we determine the
interior of the circle.

Further, let us notice that for the function α1,

α1 =
(
d2 +d3−d1

)(
d3 +d1−d2

)(
d1 +d2−d3

)(
d1 +d2 +d3

)
. (3.9)

According to (3.9), the equality α1 = 0 is equivalent with the union of equalities

α(1)
1 = d2 +d3−d1 = 0,

α(2)
1 = d3 +d1−d2 = 0,

α(3)
1 = d1 +d2−d3 = 0.

(3.10)

Subject to our further consideration is an inequality α(1)
1 ≤ 0.

Lemma 3.3. (10) For the point B, d2 +d3 ≤ d1 if and only if c ≥ a.
(20) For the point C, d2 +d3 ≤ d1 if and only if b ≥ a.
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Remark 3.4. If a > b,c, then for the points B and C, α1 ≤ 0 and α(1)
1 > 0.

Lemma 3.5. If for point M, d2 +d3 ≤ d1, then the following inequalities hold:

d1 +d2 ≥ d3, where the equality is true for M = B, a= c, (3.11)

d3 +d1 ≥ d2, where the equality is true for M = C, a= b. (3.12)

Proof. It is true that
(
d1
)

+d2−d3 ≥
(
d2 +d3

)
+d2−d3 = 2d2 ≥ 0. (3.13)

Hence, the inequality (3.11) follows. Thus, the equality is true only if M = B (d2 = 0) and
a= c. Analogously, it is true that

d3 +
(
d1
)−d2 ≥ d3 +

(
d2 +d3

)−d2 = 2d3 ≥ 0. (3.14)

Hence, the inequality (3.12) follows. Thus, the equality is true only if M = C (d3 = 0) and
a= b. �

Lemma 3.6. (10) If the point M fulfills d2 +d3 ≤ d1, then the following implication is true:

α1 ≤ 0=⇒ β1 ≤ 0. (3.15)

(20) If the point M fulfills d3 + d1 ≤ d2 or d1 + d2 ≤ d3, then the following implication is
true:

α1 ≤ 0=⇒ β1 ≥ 0. (3.16)

Proof. The implications (3.15) and (3.16) have the same assumptions:

α1 = 4d2
2d

2
3 −

(
d2

1 −d2
2 −d2

3

)2 = (2d2d3−d2
1 +d2

2 +d2
3

)(
2d2d3 +d2

1 −d2
2 −d2

3

)≤ 0,
(3.17)

which follow if the conjunction
(
2d2d3−d2

1 +d2
2 +d2

3

)≤ 0,
(
2d2d3 +d2

1 −d2
2 −d2

3

)≥ 0 (3.18)

or
(
2d2d3−d2

1 +d2
2 +d2

3

)≥ 0,
(
2d2d3 +d2

1 −d2
2 −d2

3

)≤ 0 (3.19)

is true
(10) Let d2 + d3 ≤ d1 be true. For M = B or M = C, implication (3.15) is directly veri-

fied. Especially for M = B and a= c or for M = C and a= b, the equality β1 = 0 is true.
Let us assume that M �= B,C and let us assume that α1 ≤ 0 in (3.15) is true. On the ba-
sis of d2 + d3 ≤ d1, according to Lemma 3.5, it follows that d1 + d2 > d3 and d3 + d1 > d2.
Therefore,

2d2d3−d2
1 +d2

2 +d2
3 =

(
d2 +d3

)2−d2
1 ≤ 0,

2d2d3 +d2
1 −d3

2 −d2
3 =

(
d1−d2 +d3

)(
d1 +d2−d3

)
> 0.

(3.20)
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From (3.20), we can conclude that the conjunction (3.18) is true and conjunction (3.19) is
not true. From the conjunction (3.18), it follows that d2

1 −d2
2 −d2

3 ≥ 2d2d3 > d2
2 +d2

3 −d2
1,

and from there, d2
1 > d2

2 +d2
3, that is, β1 < 0.

(20) Let d3 + d1 ≤ d2 be true. For M = B or M = C, implication (3.16) is directly veri-
fied. Especially for M = B and a= c or for M = C and a= b, the equality β1 = 0 is true.
Let us assume that M �= B,C and let us assume that α1 ≤ 0 in (3.16) is true. On the basis of
d3 +d1 ≤ d2, according to the lemma analogous to Lemma 3.5, it follows that d2 +d3 > d1

and d1 +d2 > d3. Therefore

2d2d3−d2
1 +d2

2 +d2
3 =

(
d2 +d3

)2−d2
1 > 0,

2d2d3 +d2
1 −d3

2 −d2
3 =

(
d1−d2 +d3

)(
d1 +d2−d3

)≤ 0.
(3.21)

From (3.21), we can conclude that conjunction (3.19) is true and conjunction (3.18) is
not true. From conjunction (3.19), it follows that d2

2 +d2
3 −d2

1 ≥ 2d2d3 > d2
1 −d2

2 −d2
3 and

therefore, d2
2 + d2

3 > d2
1, that is, β1 > 0. The implication (3.16) is similarly verified in the

case of the inequality d1 +d2 ≤ d3. �

Lemma 3.7. In the metric space X , the condition d2 + d3 ≤ d1 is equivalent to the conjunc-
tions α1 ≤ 0 and β1 ≤ 0.

Proof. (⇒) Let for the point M the condition d2 + d3 ≤ d1 be true. On the basis of the
equality (3.9) and on the basis of Lemma 3.5, it follows that α1 ≤ 0. Therefore, on the
basis of Lemma 3.6, it follows that β1 ≤ 0.

(⇐) Let for the point M conjunctions α1 ≤ 0 and β1 ≤ 0 be true. Then from the con-
junction

α1 =
(
d2 +d3−d1

)(
d2 +d3 +d1

)(
2d2d3−β1

)≤ 0, β1 ≤ 0, (3.22)

it follows the condition d2 +d3 ≤ d1. �

Lemma 3.8. In Ptolemaic metric space X , an inequality α(1)
1 ≤ 0 is true if and only if b ≥ a

or c ≥ a.

Proof. On the basis of Lemma 3.3, if a≤ c, then for the point B, we have α(1)
1 = a− c ≤ 0,

or if a≤ b, then for the point C, we have α(1)
1 = b− a≤ 0. Conversely, let a > b,c be true.

Let M ∈ X\{A,B,C} be any point. Then on the basis of the Ptolemaic inequality

c ·d3 + b ·d2 ≥ a ·d1 (3.23)

and the assumption a > b,c, we can conclude that

(c− a)d3 + (b− a)d2 + a
(
d2 +d3−d1

)≥ 0=⇒ α(1)
1 = d2 +d3−d1 > 0. (3.24)

By contraposition the statement follows. �

On the basis of the previous lemmas, we can conclude that the following theorem is
true.
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Theorem 3.9. In the metric space X , a point M fulfills α(1)
1 = d2 +d3−d1 ≤ 0 if and only if

α1 ≤ 0 and β1 ≤ 0 are true. In Ptolemaic metric spaceX , the set of these pointsM is nonempty
if and only if

b ≥ a or c ≥ a. (3.25)

Inequalities d2 + d3 ≤ d1, d3 + d1 ≤ d2, d1 + d2 ≤ d3. Let us determine a set of points M
in (Ptolemaic) metric spaces for which some inequalities in (1.3) are true. With respect
to point A, we formed functions (3.4). Next, with respect to point B, let us form the
functions

α2 = α2(M)= 4d2
3d

2
1 −

(
d2

2 −
(
d2

3 +d2
1

))2
,

β2 = β2(M)= d2
3 +d2

1 −d2
2,

(3.26)

and with respect to C point, let us form the functions

α3 = α3(M)= 4d2
1d

2
2 −

(
d2

3 −
(
d3

1 +d2
2

))2
,

β3 = β3(M)= d2
1 +d2

2 −d2
3 .

(3.27)

The following equality α1 = α2 = α3 is true. Analogously to Theorem 3.9, we can conclude
that the following theorems are true.

Theorem 3.10. In the metric space X , point M fulfills α(2)
1 = d3 +d1− d2 ≤ 0 if and only if

α1 ≤ 0 and β2 ≤ 0 are true. In Ptolemaic metric spaceX , the set of these pointsM is nonempty
if and only if

c ≥ b or a≥ b. (3.28)

Theorem 3.11. In the metric space X , point M fulfills α(3)
1 = d1 +d2− d3 ≤ 0 if and only if

α1 ≤ 0 and β3 ≤ 0 are true. In Ptolemaic metric spaceX , the set of these pointsM is nonempty
if and only if

a≥ c or b ≥ c. (3.29)

For (Ptolemaic) metric space X , the set of the points M with Möbius-Pompeı̈u metric
property fulfill a conjunction

α(1)
1 > 0, α(2)

1 > 0, α(3)
1 > 0. (3.30)

Using Theorems 3.9, 3.10, and 3.11, we can determine when some inequalities in
(3.30) are not true.

Finally, in the following example, let us illustrate a set of points in R2 with Möbius-
Pompeı̈u metric property, with respect to three fixed points A,B,C ∈R2, if we use metrics
d and d from Example 2.2.

Example 3.12. (10) Let in the plane R2 the Euclidean metric d be used. By Figure 3.1,

we illustrate the case of the triangle ABC for which a > c > b is true. Then α(1)
1 > 0 is
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y

C

A

B x

Figure 3.1

true (the curve α(1)
1 = 0, on the basis of Theorem 3.9, has empty interior and border),

otherwise the curves α(2)
1 = 0, α(3)

1 = 0 have nonempty interior and border. We can form
a nondegenerative triangle from the remaining points.

In the case of the equilateral triangle ABC, the curves α(1)
1 = 0, α(2)

1 = 0, and α(3)
1 = 0

transform onto the (smaller) arcs
�
BC,

�
CA, and

�
AB of the circumcircle. Hence, we have

Möbius-Pompeı̈u theorem in the following form: for equilateral triangle ABC, the set of
points M in the plane, such that from distances d1 = d(M,A), d2 = d(M,B), and d3 =
d(M,C) one can form a degenerative triangle, is circumcircle; from the other points in
the plane we can form nondegenerative triangle.

(20) Let in the plane R2 the chordal metric d is used. Let A,B,C ∈ �\{(0,0,1)} be
points on the unit Riemann sphere �, with uniquely determined projections:

A′ =�−1(A)= a1 + b1i, B′ =�−1(B)= a2 + b2i, C′ =�−1(C)= a3 + b3i∈ C, (3.31)

with inversely stereographical projection from the north pole:

�−1 =�−1(x, y,z)=
(

x

1− z

)
+
(

y

1− z

)
i : �\{(0,0,1)

}−→ C. (3.32)

Through points A,B,C on the Riemann sphere, let us set great circles (Figure 3.2).
In the complex plane we uniquely determine images of great circles as corresponding
circles through points A′, B′, C′ (Figure 3.3). By Figure 3.3 we illustrate the case of points

A′, B′, C′ for which b > c > a and k �= 0 are true. Then α(2)
1 > 0 (the curve α(2)

1 = 0, on
the basis of Theorem 3.10, has empty interior and border), otherwise curves α(1)

1 = 0,

α(3)
1 = 0 have nonempty interior and border. From the remaining points, we can form a

nondegenerative triangle.
Let us consider the case when A, B, C are chordally equidistantly arranged points on

the Riemann sphere �. Then the set of points M on the Riemann sphere, being such that
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y

C

A
B x

z

Figure 3.2

y

C′

A′

B′ x1

Figure 3.3

from chordal distances d1 = d(M,A), d2 = d(M,B), and d3 = d(M,C) one can form a
degenerative triangle, is circumcircle; from other points on the Riemann sphere one can
form a nondegenerative triangle. Using inverse stereographical projection �−1 we can
conclude that analogous statement in complex plane C is valid if we use chordal metric
d.
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Pompeı̈u Theorems, chapter 13, Kluwer Academic, Dordrecht, 1989, pp. 385–400.
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