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We establish some inequalities for the dual p-centroid bodies which are the dual forms of
the results by Lutwak, Yang, and Zhang. Further, we establish a Brunn-Minkowski-type
inequality for the polar of dual p-centroid bodies.
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1. Introduction

Corresponding to each convex (or more general) subset of n-dimensional Euclidean
space, Rn, there is a unique ellipsoid with the following property. The moment of in-
ertia of the ellipsoid and the moment of inertia of the convex set are the same about every
1-dimensional subspace of Rn. This ellipsoid is called the Legendre ellipsoid of the con-
vex set. The Legendre ellipsoid is a well-known concept from classical mechanics. For a
star-shaped (about the origin) set K ⊂Rn, it is easy to see that its Legendre ellipsoid, usu-
ally denoted by Γ2K , is an object of the dual Brunn-Minkowski theory. In [6], the dual
analog of the classical Legendre ellipsoid in the Brunn-Minkowski theory is introduced.
For a convex body (i.e., a compact, convex subset with nonempty interior) K in Rn, its
dual analog of Γ2K is dented by Γ−2K . More in general, in [8], the Lp analog of centroid
bodies, ΓpK for a convex body K also being investigated, and, in [7], the dual of ΓpK ,
Γ−pK are defined. The main aim of this article is to establish some affine inequalities for
Γ−pK , which are dual analog of the main results in [5, 8]. The techniques developed by
Lutwak, Yang, and Zhang play a critical role throughout our paper.

Let Sn−1 denote the unit sphere in Rn. Let B denote the unit ball (the convex hull of
Sn−1) in Rn, and write ωn for the n-dimensional volume of B. Note that

ωn = πn/2

Γ(1 +n/2)
(1.1)
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defines ωn for all nonnegative real n (not just the positive integer). For real p ≥ 1, define
cn,p by

cn,p =
ωn+p

ω2ωnωp−1
. (1.2)

If K is a convex body in Rn that contained the origin in its interior and p > 0, then
the p-dual centroid body of K , Γ−pK , is defined as the body whose radial function, for
u∈ Sn−1, is given by

ρΓ−pK (u)−p = 1
ncn−2,pV(K)

∫
Sn−1
|u · v|pdSp(K ,v), (1.3)

where Sp(K ,v) denote the p-surface area measure.
For p ≥ 1 the body Γ−pK is a convex body. The normalization is chosen so that for the

standard unit ball B inRn, we have Γ−pB = B and this definition of Γ−pK is different from
the definition given by Lutwak et al. in [7].

The main results of ours are the following Theorems 1.1, 1.4, and 1.5.

Theorem 1.1. If K is a convex body in Rn, then for p ≥ 1,

V
(
Γ−pK

)≤V(K), (1.4)

with equality if and only if K is an ellipsoid centered at the origin.

The dual analog of Theorem 1.1 for ΓpK has been established by Lutwak et al. in [5]
(see Campi and Gronchi [1] for an alternate approach), that is, the following holds.

Theorem 1.2. If K is a star body (about the origin) in Rn, then for p ≥ 1,

V
(
ΓpK

)≥V(K), (1.5)

with equality if and only if K is an ellipsoid centered at the origin.

One of the most important affine isoperimetric inequalities is the Blaschke-Santaló
inequality, that is,

V(K)V
(
K∗
)≤ ω2

n, (1.6)

with equality if and only if K is an ellipsoid.
Here the polar of a convex body K in Rn is defined by

K∗ = {x ∈Rn | x · y ≤ 1∀y ∈ K
}

, (1.7)

where x · y denotes the standard inner product of x and y.
In [8], Lutwak and Zhang generalized this result and get the following theorem.

Theorem 1.3. If K is a star body (about the origin) in Rn, then for 1≤ p ≤∞,

V(K)V
(
Γ∗p K

)≤ ω2
n, (1.8)

with equality if and only if K is an ellipsoid centered at the origin.
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Obviously, let p→∞, one can just get the Blaschke-Santaló inequality. Note that we
use Γ∗p K rather than (ΓpK)∗ to denote the polar of ΓpK .

In this paper, we establish the weak dual analog of Theorem 1.3 for Γ−pK and get the
following inequality.

Theorem 1.4. If K is a convex body in Rn such that Γ∗−pK is an ellipsoid, then for p ≥ 1,

V(K)V
(
Γ∗−pK

)≥ ω2
n, (1.9)

with equality if and only if K is a centered ellipsoid.

Here we use Γ∗−pK to denote the polar of Γ−pK and a centered ellipsoid is the ellipsoid
whose symmetric center is the origin.

Note. The general inequality with the form of Theorem 1.4 does not exist since we can
get a contradiction to the Blaschke-Santaló inequality if p→∞.

Finally, we establish the following Brunn-Minkowski-type inequality for the polar of
Γ−pK . Here +̇p denote the p-Blaschke sum.

Theorem 1.5. If K and L are centered convex bodies in Rn, then for p > 1 and n 
= p,

V
(
K+̇pL

)
V
(
Γ∗−p

(
K+̇pL

))p/n ≥V(K)V
(
Γ∗−pK

)p/n
+V(L)V

(
Γ∗−pL

)p/n
. (1.10)

and the equality holds if and only if V(K)Γ∗−pK and V(L)Γ∗−pL are dilates, that is,

V(K)Γ∗−pK = rV(L)Γ∗−pL for some r > 0. (1.11)

Let ΠpK denote the p-projection of K . Theorem 1.5 is equivalent to the following.

Theorem 1.6. If K and L are centered convex bodies in Rn, then for p > 1 and n 
= p,

V
(
Πp
(
K+̇pL

))p/n ≥V
(
ΠpK

)p/n
+V

(
ΠpL

)p/n
, (1.12)

and the equality holds if and only if ΠpK and ΠpL are dilates.

2. Mixed and dual mixed volumes and the operator Γ−p

For quick reference, we recall some basic properties regarding the Lp-mixed volume and
its dual theory, and some properties of the operator Γ−p also being established by different
method from [7]. For general reference of convex body and mixed volume, the reader may
wish to consult Gardner [3], Schneider [9] and Thompson [10].

If K is a convex body in Rn, then its support function hK (·) : Sn−1 →R is defined by

hK (u)=max{u · x : x ∈ K}. (2.1)

The radial function, ρK (·) : R− {0} → [0,∞), of a compact, star-shaped (about the
origin) K ⊂R, is defined, for x 
= 0, by

ρK (x)=max{λ≥ 0 : λx ∈ K}. (2.2)

If ρK is positive and continuous, then we call K a star body (about the origin).
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It follows from the definitions of support and radial functions, and the definition of
polar body, that

hK∗ = 1
ρK

, ρK∗ = 1
hK

. (2.3)

For p ≥ 1, convex bodies K , L and ε > 0, the Firey Lp-combination K +p ε ·L is defined
as the convex body whose support function is given by

h
p
K+pε·L(·)= h

p
K (·) + εh

p
L(·). (2.4)

Firey combinations of convex bodies were defined and studied by Firey [2] (who called
them p-means of convex bodies).

For p ≥ 1, the Lp-mixed volume, Vp(K ,L), of the convex bodies K , L can be defined
by

n

p
Vp(K ,L)= limε→0+

V
(
K +p ε ·L

)−V(K)

ε
. (2.5)

That this limit exists was demonstrated in [4].
It was shown in [4] that corresponding to each convex body K containing the origin

in its interior in Rn, there is a positive Borel measure, Sp(K ,·), on Sn−1 such that

Vp(K ,Q)= 1
n

∫
Sn−1

h
p
Q(u)dSp(K ,u), (2.6)

for each convex body Q. The measure S1(K ,·) is just the classical surface area measure of
K and usually denoted by S(K ,·) or SK .

In [4], a solution to the even Lp-Minkowski problem in Rn was given for all p ≥ 1,
except for p = n− 1. From this, the p-Blaschke addition was defined in [4]. For centered
convex bodies K and L in Rn, and n 
= p ≥ 1, define K+̇pL, p-Blaschke sum of K and L,
by

Sp
(
K+̇pL

)= Sp(K ,·) + Sp(L,·). (2.7)

For the Lp-mixed volume Vp, it has been shown in [5] that

Vp(φK ,L)=Vp
(
K ,φ−1L

)
, (2.8)

where φ ∈ SL(n) and K , L are convex bodies.
If K is a convex body in Rn that contained the origin in its interior and p > 0, then

the dual p-centroid body of K , Γ−pK , is defined as the body whose radial function, for
u∈ Sn−1, is given by

ρΓ−pK (u)−p = 1
ncn−2,pV(K)

∫
Sn−1
|u · v|pdSp(K ,v). (2.9)
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For p ≥ 1 the body Γ−pK is a convex body. Note that our definition of Γ−pK is different
from the definition given by Lutwak et al. in [7]. That is for K = B, we have

Γ−pB = B. (2.10)

For each compact star-shaped about the origin K ⊂Rn, u∈ Sn−1, and 1≤ p ≤∞, the
Lp-centroid body of K , which is dual to Γ−pK , is defined in [8] by

h
p
ΓpK (u)= 1

cn,pV(K)

∫
K
|u · x|pdx. (2.11)

It has been known that in [5], for φ∈ SL(n),

ΓpφK = φΓpK. (2.12)

For star bodies K , L, and p ≥ 1, ε > 0, the Lp-harmonic radial combination K +−p ε ·L
is defined as the star body whose radial function is given by

ρ
−p
K+−pε·L(·)= ρ

−p
K (·) + ερ

−p
L (·). (2.13)

The dual mixed volume V−p(K ,L) of the star bodies K , L can be defined by

−n

p
V−p(K ,L)= limε→0+

V
(
K +−p ε ·L

)−V(K)

ε
. (2.14)

The definition above and the polar coordinate formula for volume give the following
integral representation of the dual mixed volume V−p(K ,L) of the star bodies K , L:

V−p(K ,L)= 1
n

∫
Sn−1

ρ
n+p
K (v)ρ

−p
L (v)dS(v), (2.15)

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
For the L−p-mixed volume V−p, it has been shown in [5] that

V−p(φK ,L)=V−p
(
K ,φ−1L

)
, (2.16)

where φ ∈ SL(n) and K , L are star bodies.
A connection between the operators Γp and Γ−p is given in the following identity.

Lemma 2.1. Suppose K ,L⊂Rn. If K is a convex body that contains the origin in its interior
and L is a star body about the origin, then

Vp
(
L,ΓpK

)
V(L)

= V−p
(
K ,Γ−pL

)
V(K)

. (2.17)

Proof. From the integral representation (2.6), definition (2.11), Fubini’s theorem, defini-
tion (2.9), the integral representation (2.15), and the property of Γ-function, it follows
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that

Vp
(
L,ΓpK

)

= 1
n

∫
Sn−1

h
p
ΓpK (u)dSp(L,u)

= 1
n

∫
Sn−1

1
cn,pV(K)

∫
K
|u · x|pdxdSp(L,u)

= 1
n

∫
Sn−1

1
(n+ p)cn,pV(K)

∫
Sn−1
|u · v|pρn+p

K (v)dS(v)dSp(L,u)

= cn−2,pV(L)

(n+ p)cn,pV(K)

∫
Sn−1

1
ncn−2,pV(L)

∫
Sn−1
|u · v|pdSp(L,u)ρ

n+p
K (v)dS(v)

= cn−2,pV(L)

(n+ p)cn,pV(K)

∫
Sn−1

ρ
−p
Γ−pL(v)ρ

n+p
K (v)dS(v)

= ncn−2,pV(L)

(n+ p)cn,pV(K)
V−p

(
K ,Γ−pL

)

= V(L)
V(K)

V−p
(
K ,Γ−pL

)
.

(2.18)

�

A connection between the operators Γ2 and Γ−2, which is similar to the above lemma,
has been established in [6].

From the above lemma, we can get the following proposition which has been obtained
in [7] by different method.

Proposition 2.2. If p > 0 and K is a convex body in Rn that contains the origin in its
interior, then for φ ∈GL(n),

Γ−pφK = φΓ−pK. (2.19)

Proof. From Lemma 2.1, (2.8), (2.12), Lemma 2.1 again, and (2.16), we have for each star
body Q and φ ∈ SL(n)

V−p
(
Q,Γ−pφK

)
V(Q)

= Vp
(
φK ,ΓpQ

)
V(φK)

= Vp
(
K ,φ−1ΓpQ

)
V(K)

= Vp
(
K ,Γpφ−1Q

)
V(K)

= V−p
(
φ−1Q,Γ−pK

)
V
(
φ−1Q

)

= V−p
(
Q,φΓ−pK

)
V(Q)

.

(2.20)



Si Lin et al. 7

But V−p(Q,Γ−pφK)/V(Q)=V−p(Q,φΓ−pK)/V(Q) for all star bodies Q implies that

Γ−pφK = φΓ−pK. (2.21)

Combing with the fact (from the definition of Γ−pK)

Γ−pλK = λΓ−pK for λ > 0, (2.22)

we can get the conclusion. �

For each convex body K , in [5] the support function of Lp-projection body ΠpK is
defined by

h
p
ΠpK (u)= 1

nωncn−2,p

∫
Sn−1
|u · v|pdSp(K ,v). (2.23)

From the above definitions (2.3) and (2.9), we can get the following.

Proposition 2.3. Suppose K ⊂Rn is a convex body that contains the origin in its interior,
then

ΠpK =
(
V(K)
ωn

)1/p

Γ∗−pK. (2.24)

The following proposition given in [5] will be used as a lemma.

Lemma 2.4. If K is a convex body in Rn, then for p ≥ 1,

V(K)(n−p)/pV
(
Π∗p K

)≤ ω
n/p
n , (2.25)

with equality if and only if K is an ellipsoid centered at the origin.

Proof of Theorem 1.1. From (2.3), Proposition 2.3, and Lemma 2.4, we have

V(K)(n−p)/pV
((

ωn

V(K)

)1/p

Γ−pK
)
≤ ω

n/p
n . (2.26)

By the volume formula of convex body,

V(K)(n−p)/p
(

ωn

V(K)

)n/p
V
(
Γ−pK

)≤ ω
n/p
n , (2.27)

that is,

V
(
Γ−pK

)≤V(K), (2.28)

with equality if and only if K is an ellipsoid centered at the origin. �
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3. Mixed volume inequalities and the operator Γ∗−p

We will require some basic inequalities regarding the Lp-mixed volumes Vp and the dual
mixed volume V−p. The Lp analog of the classical Minkowski inequality states that for
convex bodies K , L,

Vp(K ,L)≥V(K)(n−p)/nV(L)p/n, (3.1)

with equality if and only if K and L are dilates. The Lp-Minkowski inequality was es-
tablished in [4] by using the Minkowski inequality. The basic inequality for dual mixed
volume V−p is that for star bodies K , L,

V−p(K ,L)≥V(K)(n+p)/nV(L)−p/n, (3.2)

with equality if and only if K and L are dilates. This inequality is an immediate conse-
quence of the Hölder inequality and the integral representation (2.15).

Lemma 3.1. If K and Q are convex bodies in Rn and p ≥ 1, then

Vp
(
K ,Γ∗−pQ

)
V(K)

= Vp
(
Q,Γ∗−pK

)
V(Q)

. (3.3)

Proof. From the integral representation (2.3), (2.6), and (2.9), we have for p ≥ 1 that

Vp
(
K ,Γ∗−pQ

)
V(K)

= 1
nV(K)

∫
Sn−1

h
p
Γ∗−pQ(u)dSp(K ,u)

= 1
nV(K)

∫
Sn−1

ρ
−p
Γ−pQ(u)dSp(K ,u)

= 1
n2cn−2,pV(K)V(Q)

∫∫
Sn−1
|u · v|pdSp(Q,v)dSp(K ,u)

= 1
nV(Q)

∫
Sn−1

ρ
−p
Γ−pK (v)dSp(Q,v)

= Vp
(
Q,Γ∗−pK

)
V(Q)

.

(3.4)

The dual analog of the above equality has been established in [5]. �

Lemma 3.2. If p ≥ 1 and K is a convex body in Rn, then

V
(
Γ∗−pΓ

∗
−pK

)≤V(K), (3.5)

with equality if and only if K and Γ∗−pΓ∗−pK are dilates.

Proof. In Lemma 3.1, let Q = Γ∗−pK , then we get

Vp
(
K ,Γ∗−pΓ∗−pK

)
V(K)

= Vp
(
Γ∗−pK ,Γ∗−pK

)
V
(
Γ∗−pK

) . (3.6)
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Note that Vp(Γ∗−pK ,Γ∗−pK)=Vp(Γ∗−pK), so

V(K)=Vp
(
K ,Γ∗−pΓ

∗
−pK

)
. (3.7)

By (3.1), we have

Vp
(
K ,Γ∗−pΓ

∗
−pK

)≥V(K)(n−p)/nV p/n
(
Γ∗−pΓ

∗
−pK

)
, (3.8)

with equality if and only if K and Γ∗−pΓ∗−pK are dilates.
That is

V
(
Γ∗−pΓ

∗
−pK

)≤V(K), (3.9)

with equality if and only if K and Γ∗−pΓ∗−pK are dilates. �

Proof of Theorem 1.4. Because that Γ∗−pK is an ellipsoid, there exist φ ∈ GL(n) such that
Γ∗−pK = φB. By Proposition 2.2 and the definition of Γ−pK , it follows that

Γ−p
(
Γ∗−pK

)= Γ−p(φB)= φΓ−p(B)= φB = Γ∗−pK. (3.10)

Thus

Γ∗−p
(
Γ∗−pK

)= (Γ∗−pK)∗. (3.11)

With the fact that the product of the volumes of centered polar reciprocal ellipsoid is
ω2
n, we get

V
(
Γ∗−pΓ

∗
−pK

)=V
((
Γ∗−pK

)∗)= ω2
n

V
(
Γ∗−pK

) . (3.12)

By Lemma 3.2, we prove the inequality

V(K)V
(
Γ∗−pK

)≥ ω2
n. (3.13)

From the equality condition of Lemma 3.2, it follows that K and Γ∗−pΓ∗−pK are dilates.
But Γ∗−pΓ∗−pK = (Γ∗−pK)∗ is a centered ellipsoid. Hence, in Theorem 1.4, the equality im-
plies that K is a centered ellipsoid. �

Proof of Theorem 1.1. Second method. In Lemma 2.1, let K = Γ−pL, and note that V−p(K ,
K)=V(K), then we can get

V(L)=Vp
(
L,ΓpΓ−pL

)
. (3.14)

By (2.23), we get

V(L)=Vp
(
L,ΓpΓ−pL

)≥V(L)(n−p)/nV
(
ΓpΓ−pL

)p/n
. (3.15)

In Theorem 1.2, let K = Γ−pL, then we get

V(L)≥V(L)(n−p)/nV
(
ΓpΓ−pL

)p/n ≥V(L)(n−p)/nV
(
Γ−pL

)p/n
, (3.16)
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that is

V(L)≥V
(
Γ−pL

)
. (3.17)

�

Proof of Theorem 1.6. First, we established the following inequality for centered convex
bodies K , L in Rn:

V
(
Πp
(
K+̇pL

))p/n ≥V
(
ΠpK

)p/n
+V

(
ΠpL

)p/n
. (3.18)

From (2.6), (2.23), (3.1), and the definition of p-Blaschke addition, we have for n 
=
p > 1, and any convex body Q

Vp
(
Q,Πp

(
K+̇pL

))= 1
n

∫
Sn−1

h
p
Πp(K+̇pL)(u)dSp(Q,u)

= 1
n

∫
Sn−1

h
p
ΠpK (u)dSp(Q,u) +

1
n

∫
Sn−1

h
p
ΠpL(u)dSp(Q,u)

=Vp
(
Q,ΠpK

)
+Vp

(
Q,ΠpL

)

≥V(Q)(n−p)/nV
(
ΠpK

)p/n
+V(Q)(n−p)/nV

(
ΠpL

)p/n

=V(Q)(n−p)/n
(
V
(
ΠpK

)p/n
+V

(
ΠpL

)p/n)
.

(3.19)

Let Q =Πp(K+̇pL) in the above inequality, then we get

V
(
Πp
(
K+̇pL

))p/n ≥V
(
ΠpK

)p/n
+V

(
ΠpL

)p/n
, (3.20)

with equality if and only if ΠpK and ΠpL are dilates.
By Proposition 2.3 and (3.20), we can get Theorem 1.5 immediately. �

Acknowledgments

The authors are grateful to the referee for many suggested improvements and for the
thoughtful and careful reading given to the original draft of this paper. This work is sup-
ported by National Natural Sciences Foundation of China (10271071).

References

[1] S. Campi and P. Gronchi, The Lp-Busemann-Petty centroid inequality, Advances in Mathematics
167 (2002), no. 1, 128–141.

[2] Wm. J. Firey, p-means of convex bodies, Mathematica Scandinavica 10 (1962), 17–24.

[3] R. J. Gardner, Geometric Tomography, Encyclopedia of Mathematics and Its Applications, vol.
58, Cambridge University Press, Cambridge, 1995.

[4] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem,
Journal of Differential Geometry 38 (1993), no. 1, 131–150.

[5] E. Lutwak, D. Yang, and G. Zhang, Lp affine isoperimetric inequalities, Journal of Differential
Geometry 56 (2000), no. 1, 111–132.



Si Lin et al. 11

[6] , A new ellipsoid associated with convex bodies, Duke Mathematical Journal 104 (2000),
no. 3, 375–390.

[7] , Lp John ellipsoids, Proceedings of the London Mathematical Society. Third Series 90
(2005), no. 2, 497–520.
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