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1. Introduction and preliminaries

Convexity and generalized convexity play a central role in mathematical economics, en-
gineering, and optimization theory. Therefore, the research on convexity and general-
ized convexity is one of the most important aspects in mathematical programming (see
[1–4, 6–11] and the references therein). Weir and Mond [7] and Weir and Jeyakumar
[6] introduced the definition of preinvexity for the scalar function f : X ⊂ Rn → R. Re-
cently, Yang and Li [9] gave some properties of preinvex function under Condition C.
Yang and Li [9] introduced the definitions of strict preinvexity and semistrict preinvexity
for the scalar function f : X ⊂ Rn → R and discussed the relationships among preinvex-
ity, strictly preinvexity, and semistrictly preinvexity for the scalar functions. Yang [8] also
obtained some properties of semistrictly convex function and discussed the interrelations
among convex function, semistrictly convex function, and strictly convex function.

Throughout this paper, we will use the following assumptions. Let X be a real topolog-
ical vector space and Y a real locally convex vector space, let S⊂ X be a nonempty subset,
let D ⊂ Y be a nonempty pointed closed convex cone, Y∗ is the dual space of Y , equipped
with the weak∗ topology. The dual cone D∗ of cone D is defined by

D∗ = { f ∈ Y∗ : f (y)= 〈 f , y〉 ≥ 0, ∀y ∈D
}
. (1.1)

From the bipolar theorem, we have the following.

Lemma 1.1. For all q ∈D∗, q(d)≥ 0 if and only if d ∈D.
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2 On D-preinvex-type functions

As a generalization of the definition of preinvexity for real-valued functions, Kazmi
[3] introduced the definition of D-preinvexity for vector-valued functions as follows.

Definition 1.2 (see [6, 7]). A set S⊂ X is said to be invex if there exists a vector function
η : X ×X → X such that

x, y ∈ S, α∈ [0,1]=⇒y +αη(x, y)∈ S. (1.2)

Definition 1.3 (see [3]). Let S ⊂ X be an invex set with respect to η : X ×X → X . The
vector-valued function F : S→ Y is said to be D-preinvex on S if for all x, y ∈ S, α∈ (0,1),
one has

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)−D. (1.3)

Equivalently, (1.3) can be written as

αF(x) + (1−α)F(y)−F
(
y +αη(x, y)

)∈D. (1.4)

In [3], Kazmi showed that (i) if F : S→ Y is D-preinvex, then any local weak mini-
mum of F is a global weak minimum; (ii) if F : S→ Y is D-preinvex and Fréchet differen-
tiable, then the vector optimization problem minx∈S F(x) and the vector variational-like
inequality

〈
F′
(
x0
)
,η
(
x,x0

)〉
/∈− intD, ∀x ∈ S, (1.5)

have the same solutions, where F′(x0) is the Fréchet derivative of F at x0.
In [1], Bhatia and Mehra introduced the definition of D-preinvexity for set-valued

functions and obtained some Lagrangian duality theorems for set-valued fractional pro-
gram.

As generalizations of definitions of strict preinvexity and semistrict preinvexity for
scalar function, we introduce the definitions of D-strict preinvexity and D-semistrict
preinvexity for vector-valued functions as follows.

Definition 1.4. Let S⊂ X be an invex set with respect to η : X ×X → X . The vector-valued
function

(i) F : S→ Y is said to be D-semistrictly preinvex on S if for all x, y ∈ S such that
f (x) �= f (y), and for any α∈(0,1), one has

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)− intD; (1.6)

(ii) F : S→ Y is said to be D-strictly preinvex on S if for all x, y ∈ S such that x �= y,
and for any α∈ (0,1), one has

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)− intD. (1.7)

In [2], Jeyakumar et al. introduced the∗-lower semicontinuity for vector-valued func-
tion as follows.
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Definition 1.5. The vector-valued function F : S→ Y is ∗-lower semicontinuous if for
every q ∈D∗, q(F)(·)= 〈q,F(·)〉 is lower semicontinuous on S.

We will introduce a new notation as follows.

Definition 1.6. The vector-valued function F : S→ Y is called ∗-upper semicontinuous if
for every q ∈D∗, q(F)(·) is upper semicontinuous on S.

Mohan and Neogy [4] introduced Condition C defined as follows.

Condition C. The vector-valued function η : X ×X → X is said to satisfy Condition C if
for all x, y ∈ X and for all α∈ (0,1),

η
(
y, y +αη(x, y)

)=−αη(x, y), (C1)

η
(
x, y +αη(x, y)

)= (1−α)η(x, y). (C2)

And they proved that a differentiable function which is invex with respect to η is also
preinvex under Condition C. Mohan and Neogy also give an example which shows that
Condition C may hold for a general class of function η, rather than just for the trivial case
of η(x, y)= x− y.

In this paper, we will use the ∗-lower semicontinuity and ∗-upper semicontinuity to
obtain some properties of D-preinvexity for vector-valued function in Section 2 and dis-
cuss the interrelations among D-preinvexity, D-semistrict preinvexity and D-strict prein-
vexity for vector-valued function in Section 3. The results in this paper generalize some
results in [5, 8–10] from scalar case to vector case.

2. Properties of the D-preinvex functions

In this section, we will give some properties of D-preinvex functions.

Lemma 2.1. Let S be a nonempty invex set in X with respect to η : X ×X → X , where η
satisfies Condition C. If F : S→ Y satisfies the following conditions: for all x, y ∈ S, F(y +
η(x, y))∈ F(x)−D, and there exists an α∈ (0,1) such that

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)−D, ∀x, y ∈ S, (2.1)

then the set A = {λ ∈ [0,1] | F(y + λη(x, y)) ∈ λF(x) + (1− λ)F(y)−D} is dense in the
interval [0,1].

Proof. Note that both λ= 0 and 1 belong to set A based on the fact that F(y)∈ F(y)−D
and the assumption F(y + η(x, y))∈ F(x)−D. Suppose that the hypotheses hold and A
is not dense in [0,1]. Then there exist a λ0 ∈ (0,1) and a neighborhood N(λ0) of λ0 such
that N(λ0)∩A=∅. Define λ1 = inf{λ∈ A | λ≥ λ0}, λ2 = sup{λ∈ A | λ ≤ λ0}, then we
have 0 ≤ λ2 < λ1 ≤ 1. Since {α, (1− α)} ⊂ (0,1), we can choose u1,u2 ∈ A with u1 ≥ λ1

and u2 ≤ λ2 such that max{α, (1−α)}(u1−u2) < λ1− λ2, then u2 ≤ λ2 < λ1 ≤ u1.



4 On D-preinvex-type functions

Next, let us consider λ= αu1 + (1−α)u2. From Condition C, we have

y +u2η(x, y) +αη
(
y +u1η(x, y), y +u2η(x, y)

)

= y +u2η(x, y) +αη
(
y +u1η(x, y), y +u1η(x, y)− (u1−u2

)
η(x, y)

)

= y +u2η(x, y) +αη
(
y +u1η(x, y), y +u1η(x, y) +

u1−u2

u1
η
(
y, y +u1η(x, y)

))

= y +u2η(x, y)−α
u1−u2

u1
η
(
y, y +u1η(x, y)

)

= y +
(
u2 +α

(
u1−u2

))
η(x, y)= y + λη(x, y), ∀x, y ∈ S.

(2.2)

Hence,

F
(
y + λη(x, y)

)

= F
(
y +u2η(x, y) +αη

(
y +u1η(x, y), y +u2η(x, y)

))

∈ αF
(
y +u1η(x, y)

)
+ (1−α)F

(
y +u2η(x, y)

)−D

⊂ α
[
u1F(x) +

(
1−u1

)
F(y)−D

]
+ (1−α)

[
u2F(x) +

(
1−u2

)
F(y)−D

]−D

= λF(x) + (1− λ)F(y)−D−D ⊂ λF(x) + (1− λ)F(y)−D,

(2.3)

that is, λ∈ A.
If λ≥ λ0, then λ−u2 = α(u1−u2) < λ1− λ2, and therefore λ < λ1. Because λ≥ λ0 and

λ∈ A, this is a contradiction to the definition of λ1. If λ≤ λ0, then λ−u1 = (1−α)(u2−
u1) > λ2 − λ1, and therefore λ > λ2. Because λ ≤ λ0 and λ ∈ A, this is a contradiction to
the definition of λ2. �

Theorem 2.2. Let S be a nonempty open invex set in X with respect to η : X ×X → X , where
η satisfies Condition C, and F : S→ Y is ∗-upper semicontinuous. If F satisfies the following
condition: for all x, y ∈ S, F(y +η(x, y))∈ F(x)−D, then F is a D-preinvex function for the
same η on S if and only if there exists an α∈ (0,1) such that

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)−D, ∀x, y ∈ S. (2.4)

Proof. The necessity follows directly from the definition of D-preinvexity for the vector-
valued function F. We only need to prove the sufficiency.

Suppose that the hypotheses hold and F is not D-preinvex on S. Then, there exist
x, y ∈ S and λ∈ (0,1) such that

F
(
y + λη(x, y)

)
/∈ λF(x) + (1− λ)F(y)−D. (2.5)

Let z = y + λη(x, y). From Lemma 2.1, we know that there exists a sequence {λn} with
λn ∈ A and λn < λ (the definition of A in Lemma 2.1) such that λn → λ (n→∞). Define
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yn = y + ((λ̄− λn)/(1− λn))η(x, y). Then yn → y (n→∞). Note that S is an open invex
set with respect to η. Thus for n is sufficiently large, we have yn ∈ S.

Furthermore, by Condition C, we have

yn + λnη
(
x, yn

)= y +
(
λ̄− λn
1− λn

)
η(x, y) + λnη

(
x, y +

(
λ̄− λn
1− λn

)
η(x, y)

)
= y + λη(x, y)= z.

(2.6)

As λn ∈ A, we have

F(z)= F
(
y + λη(x, y)

)= F
(
yn + λnη

(
x, yn

))∈ λnF(x) +
(
1− λn

)
F
(
yn
)−D. (2.7)

By the ∗-upper semicontinuity of F on S, for every q ∈D∗, q(F)(·) is upper semicontin-
uous, it follows that for any ε > 0, there exists an N > 0 such that the following holds:

q(F)
(
yn
)≤ q(F)(y) + ε, ∀n > N. (2.8)

Hence,

q(F)(z)≤ λnq(F)(x) +
(
1− λn

)
q(F)

(
yn
)≤ λnq(F)(x)

+
(
1− λn

)[
q(F)(y) + ε

]−→ λq(F)(x) + (1− λ)
[
q(F)(y) + ε

]
(n−→∞).

(2.9)

Since ε > 0 may be arbitrary small, then for all q ∈D∗, we have

q(F)(z)≤ λq(F)(x) + (1− λ)q(F)(y). (2.10)

Since q is linear and by Lemma 1.1, we have

F(z)∈ λF(x) + (1− λ)F(y)−D. (2.11)

Equation (2.11) is a contradiction to (2.5), thus the conclusion is correct. �

Theorem 2.3. Let S be a nonempty invex set in X with respect to η : X ×X → X , where η
satisfies Condition C, and F : S→ Y is ∗-lower semicontinuous. If F satisfies the following
condition: for all x, y ∈ S, F(y +η(x, y))∈ F(x)−D, then F is a D-preinvex function if and
only if for all x, y ∈ S, there exists an α∈(0,1) such that

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)−D. (2.12)

Proof. The necessity follows directly from the definition of D-preinvexity of F. We only
need to prove the sufficiency.

Suppose that the hypotheses hold and F is not D-preinvex on S. Then, there exist
x, y ∈ S and λ∈ (0,1) such that

F
(
y + λη(x, y)

)
/∈ λF(x) + (1− λ)F(y)−D. (2.13)

Let xt = y + tη(x, y), t ∈ (λ,1], and B = {xt ∈ S | t ∈ (λ,1], F(xt) = F(y + tη(x, y)) ∈
tF(x) + (1− t)F(y)−D}, u= inf{t ∈ (λ,1] | xt ∈ B}. It is easy to check that x1 ∈ B from
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the assumption and xλ̄ /∈ B. Then, t ∈ [λ,u) implies xt /∈ B, and there exists a sequence
tn with tn ≥ u and xtn ∈ B such that tn → u (n→∞). Hence, F(xtn) = F(y + tnη(x, y)) ∈
tnF(x) + (1− tn)F(y)−D. Then for all q ∈D∗, we have

q(F)
(
xtn
)≤ tnq(F)(x) +

(
1− tn

)
q(F)(y). (2.14)

Since F is ∗-lower semicontinous, for every q ∈D∗, q(F)(·) is lower semicontinuous, it
follows that

q(F)
(
xu
)= q(F)

(
y +uη(x, y)

)≤ lim
n→∞q(F)

(
xtn
)

≤ lim
n→∞

[
tnq(F)(x) +

(
1− tn

)
q(F)(y)

]= uq(F)(x) + (1−u)q(F)(y).
(2.15)

Since q is linear and by Lemma 1.1, we have F(xu) ∈ uF(x) + (1−u)F(y)−D. Hence,
xu ∈ B.

Let yt = y + tη(x, y), t ∈ [0,λ), and D = {yt ∈ S | t ∈ [0,λ), F(yt) = F(y + tη(x, y)) ∈
tF(x) + (1− t)F(y)−D}, v = sup{t ∈ [0,λ) | yt ∈D}. It is easy to check that y0 = y ∈D
from the assumption and yλ̄ = y + λη(x, y) /∈D. Then, t ∈ (v,λ] implies yt /∈D, and there
exists a sequence tn with tn ≤ v and ytn ∈ D such that tn → v (n→∞). Hence F(ytn) =
F(y + tnη(x, y))∈ tnF(x) + (1− tn)F(y)−D. Then for all q ∈D∗, we have

q(F)
(
ytn
)≤ tnq(F)(x) +

(
1− tn

)
q(F)(y). (2.16)

Since F : S→ Y is ∗-lower semicontinous, for every q ∈D∗, q(F)(·) is lower semicontin-
uous, it follows that

q(F)
(
yv
)= q(F)

(
y + vη(x, y)

)≤ lim
n→∞q(F)

(
ytn
)

≤ lim
n→∞

[
tnq(F)(x) +

(
1− tn

)
q(F)(y)

]= vq(F)(x) + (1− v)q(F)(y).
(2.17)

Since q is linear and by Lemma 1.1, we have F(yv) ∈ vF(x) + (1− v)F(y)−D. Hence,
yv ∈D.

By the definition of u, v, we have 0≤ v < λ < u≤ 1. From Condition C, for all λ∈(0,1),
we have

xu + λη
(
yv,xu

)

= y +uη(x, y) + λη
(
y + vη(x, y), y +uη(x, y)

)

= y +uη(x, y) + λη
(
y + vη(x, y), y + vη(x, y) + (u− v)η(x, y)

)

= y +uη(x, y) + λη
(
y + vη(x, y), y + vη(x, y) +

u− v

1− v
η
(
x, y + vη(x, y)

)
)

= y +uη(x, y)− λ
u− v

1− v
η
(
x,η
(
x, y + vη(x, y)

))

= y +
[
u− λ(u− v)

]
η(x, y)= y +

[
λv+ (1− λ)u

]
η(x, y).

(2.18)
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From above, we get

λF
(
yv
)

+ (1− λ)F
(
xu
)∈ λ

[
vF(x) + (1− v)F(y)−D

]
+ (1− λ)

[
uF(x) + (1−u)F(y)−D

]

= [λv+ (1− λ)u
]
F(x) +

[
1− λv− (1− λ)u

]
F(y)−D.

(2.19)

Hence,

λF
(
yv
)

+ (1− λ)F
(
xu
)−D ⊂ [λv+ (1− λ)u

]
F(x) +

[
1− λv− (1− λ)u

]
F(y)−D.

(2.20)

By the definition of u, v, we have

F
(
xu + λη

(
yv,xu

))= F
(
y +
[
λv+ (1− λ)u

]
η(x, y)

)

/∈ [λv+ (1− λ)u
]
F(x) +

[
1− λv− (1− λ)u

]
F(y)−D.

(2.21)

Hence, for all λ∈ (0,1),

F
(
xu + λη

(
yv,xu

))
/∈ λF

(
yv
)

+ (1− λ)F
(
xu
)−D. (2.22)

Equation (2.22) is a contradiction to (2.12), thus the conclusion is correct. �

Remark 2.4. Theorems 2.2 and 2.3 generalize [9, Theorems 3.1 and 3.2] from scalar case
to vector-valued case, respectively.

3. Relationship among D-preinvexity, D-strict preinvexity, and
D-semistrict preinvexity

It is easy to see thatD-strict preinvexity impliesD-semistrict preinvexity by Definition 1.4.
The following examples illustrate that a D-semistrictly preinvex function may be neither
a D-preinvex function nor a D-strictly preinvex function and a D-preinvex function does
not imply a D-semistrictly preinvex function.

Example 3.1. This example illustrates that a semistrictly D-preinvex mapping may be
neither a D-preinvex function nor a D-strictly preinvex function. Let D = {(x, y) | x ≥
0, y ≥ 0}, F(x)= ( f1(x), f2(x)).

f1(x)=
⎧
⎪⎨

⎪⎩

−|x| if |x| ≤ 1,

−1 if |x| ≥ 1,
f2(x)=

⎧
⎪⎨

⎪⎩

−3|x| if |x| ≤ 1,

−3 if |x| ≥ 1,

η(x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x− y if x ≥ 0, y ≥ 0, or x ≤ 0, y ≤ 0,

x− y if x > 1, y <−1, or x <−1, y > 1,

y− x if − 1≤ x ≤ 0, y ≥ 0, or − 1≤ y ≤ 0, x ≥ 0,

y− x if 0≤ x ≤ 1, y ≤ 0, or 0≤ y ≤ 1, x ≤ 0.

(3.1)
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Then, F is a semistrictly D-preinvex mapping on S = R2 with respect to η. However, by
letting x = 3, y =−3, λ= 1/2, we have

F
(
y + λη(x, y)

)= F
(
− 3 +

1
2
η(3,−3)

)
= F(0)= (0,0),

λF(x) + (1− λ)F(y)= F(3)= F(−3)= (−1,−3).

(3.2)

So

F
(
y + λη(x, y)

)
/∈ λF(x) + (1− λ)F(y)−D,

F
(
y + λη(x, y)

)
/∈ λF(x) + (1− λ)F(y)− intD.

(3.3)

That is, may be neither a D-preinvex function nor a D-strictly preinvex function with
respect to the same η.

Example 3.2. This example illustrates that a D-preinvex mapping is not necessarily a D-
semistrictly preinvex mapping. Let D = {(x, y) | x ≥ 0, y ≥ 0}, F(x)= ( f1(x), f2(x)),

f1(x)=−|x|, f2(x)=−2|x|.

η(x, y)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x− y if x ≥ 0, y ≥ 0,

x− y if x ≤ 0, y ≤ 0,

y− x if x ≤ 0, y ≥ 0,

y− x if x ≥ 0, y ≤ 0.

(3.4)

Then, F is a D-preinvex mapping with respect to η on S= R2. However, by letting y = 1,
x = 2, λ= 1/2, we have F(y)= F(1)= (−1,−2) �= (−2,−4)= F(x), and

F
(
y + λη(x, y)

)= F
(

1 +
1
2
η(2,1)

)
= F

(
3
2

)
=
(
− 3

2
,−3

)

= 1
2
F(2) +

1
2
F(1)= λF(x) + (1− λ)F(y).

(3.5)

So

F
(
y + λη(x, y)

)
/∈ λF(x) + (1− λ)F(y)− intD. (3.6)

That is, F is not a semistrictly D-preinvex mapping with respect to the same η.

About relationship between D-preinvexity and D-strict preinvexity, we have the fol-
lowing result.

Theorem 3.3. Let S be a nonempty invex set in X with respect to η : X ×X → X , where
η satisfies Condition C, and F : S→ Y is a D-preinvex function for the same η on S. If F
satisfies the following condition: there exists an α∈ (0,1) such that for all x, y ∈ S with x �= y
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implying that

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)− intD, (3.7)

then F is a D-strictly preinvex function on S.

Proof. Assume that F is not a D-strictly preinvex function, then there exist x, y ∈ S with
x �= y and there exists λ∈ (0,1) such that

F
(
y + λη(x, y)

)
/∈ λF(x) + (1− λ)F(y)− intD. (3.8)

Choose β1, β2 with 0 < β1 < β2 < 1 and λ = αβ1 + (1− α)β2. Let x = y + β1η(x, y), y =
y +β2η(x, y). Since F is a D-preinvex function, we have

F(x)∈ β1F(x) +
(
1−β1

)
F(y)−D, F(y)∈ β2F(x) +

(
1−β2

)
F(y)−D. (3.9)

By Condition C, we have

y +αη(x, y)

= y +β2η(x, y) +αη
(
y +β1η(x, y), y +β1η(x, y) +

(
β2−β1

)
η(x, y)

)

= y +β2η(x, y) +αη
(
y +β1η(x, y), y +β1η(x, y) +

(
β2−β1

)

1−β1
η
(
x, y +β1η(x, y)

)
)

= y +β2η(x, y)−α

(
β2−β1

)

1−β1
η
(
x, y +β1η(x, y)

)

= y +
(
β2−α

(
β2−β1

))
η(x, y)= y + λη(x, y).

(3.10)

That is, y +αη(x, y)= y + λη(x, y). By (3.7), we have

F
(
y + λη(x, y)

)∈ αF(x) + (1−α)F(y)− intD. (3.11)

By (3.9), (3.11), and D+ intD ⊂ intD, we have

F(y) + λη(x, y)

∈ α
[
β1F(x) +

(
1−β1

)
F(y)−D

]

+ (1−α)
[
β2F(x) +

(
1−β2

)
F(y)−D

]− intD

⊂ (αβ1 + (1−α)β2
)
F(x) +

(
1−αβ1− (1−α)β2

)
F(y)− intD

= λF(x) + (1− λ)F(y)− intD.

(3.12)

This is a contradiction to (3.8), hence F is a D-strictly preinvex function on S. �

Remark 3.4. If the vector-valued function F : S→ Y is replaced by a scalar function F :
S→R and D = {r ≥ 0 : r ∈R}, then by Theorem 3.5, we can obtain the following result,
which is [5, Theorem 1].
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Let S be a nonempty invex set in X with respect to η : X ×X → X , where η satisfies
Condition C, and f : S→ R is a preinvex function for the same η on S. If f satisfies the
following condition: there exists an α∈ (0,1) such that for all x, y ∈ S with x �= y implying
that

f
(
y +αη(x, y)

)≤ α f (x) + (1−α) f (y), (3.13)

then f is a strictly preinvex function on S.

About relationship between D-semistrict preinvexity and D-strict preinvexity, we have
a result as follows.

Theorem 3.5. Let S be a nonempty invex set in X with respect to η : X ×X → X , where η
satisfies Condition C, and F : S→ Y is a D-semistrictly preinvex function for the same η on
S. If F satisfies the following condition: there exists an α∈(0,1) such that for all x, y ∈ S with
x �= y implying that

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)− intD, (3.14)

then F is a D-strictly preinvex function on S.

Proof. Since F is D-semistrictly preinvex function, we only show that F(x)= F(y), x �= y
implies that

F
(
y + λη(x, y)

)∈ λF(x) + (1− λ)F(y)− intD = F(x)− intD, ∀λ∈ (0,1). (3.15)

Let x = y +αη(x, y). From (3.14) and for each x, y ∈ S, x �= y, we have

F(x)= F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)− intD = F(x)− intD. (3.16)

For each λ∈ (0,1), if λ < α, taking u= (α− λ)/α, then u∈ (0,1), and from Condition C,
we have x + uη(y,x) = y + αη(x, y) + ((α− λ)/α)η(y, y + αη(x, y)) = y + αη(x, y)− (α−
λ)η(x, y)= y + λη(x, y). By the D-semistrictly preinvexity of F and (3.16),

F
(
y + λη(x, y)

)= F
(
x+uη(y,x)

)∈ uF(x) + (1−u)F(y)− intD

⊂ u
(
F(x)− intD

)
+ (1−u)F(y)− intD

= F(x)− intD− intD = F(x)− intD.

(3.17)

If λ > α, taking v = (λ−α)/(1−α), then v ∈ (0,1) and from Condition C, we have

x+ vη(x,x)= y +αη(x, y) +
λ−α

1−α
η
(
x, y +αη(x, y)

)

= y +αη(x, y) + (λ−α)η(x, y)= y + λη(x, y).
(3.18)
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From the D-semistrictly preinvexity of F and (3.16),

F
(
y + λη(x, y)

)= F
(
x+ vη(x,x)

)∈ vF(x) + (1− v)F(x)− intD

⊂ v(F(x)− intD) + (1− v)F(x)− intD

= F(x)− intD− intD = F(x)− intD.

(3.19)

This completes the proof. �

Remark 3.6. Theorem 3.5 is the generalization of [8, Theorem 7].

About the relation between D-preinvexity and D-semistrict preinvexity, we will use the
separation theorem of convex sets to prove the following result.

Theorem 3.7. Let S be a nonempty invex set in X with respect to η : X ×X → X , where
η satisfies Condition C, and let F : S→ Y be ∗-lower semicontinuous and D-semistrictly
preinvex for the same η on S. Then F is a D-preinvex function on S.

Proof. Let x, y ∈ S. If F(x) �= F(y), then by the D-semistrict preinvexity of F, we have

F
(
y + λη(x, y)

)∈ λF(x) + (1− λ)F(y)− intD ⊂ λF(x) + (1− λ)F(y)−D, ∀λ∈ (0,1).
(3.20)

If F(x)= F(y), to show that F is a D-preinvex function, we need to show that

F
(
y + λη(x, y)

)∈ F(x)−D, ∀λ∈ (0,1). (3.21)

By contradiction, suppose there exists an α∈ (0,1) such that

F
(
y +αη(x, y)

)
/∈ F(x)−D. (3.22)

Let zα = y +αη(x, y). Since F(x)−D is a closed convex set, by the strong separation the-
orem for convex sets, there exist 0 �= q ∈ Y∗ and b ∈R such that

q(F)
(
zα
)
> b ≥ q

[
(F)(x)−d

]
, ∀d ∈D. (3.23)

Since D is a cone, we have that q(d) ≥ 0, for all d ∈ D, which implies that q ∈ D∗. By
0∈D and (3.23), we have

q(F)
(
zα
)
> q(F)(x). (3.24)

Since F is ∗-lower semicontinuous, there exists β : α < β < 1 such that

q(F)
(
zβ
)= q(F)

(
y +βη(x, y)

)
> q(F)(x)= q(F)(y). (3.25)

From Condition C,

zβ = zα +
β−α

1−α
η
(
x,zα

)
. (3.26)
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Hence, by (3.22) and D-semistrict preinvexity of F, we have

F
(
zβ
)∈ β−α

1−α
F(x) +

(
1− β−α

1−α

)
F
(
zα
)− intD. (3.27)

Since q ∈D∗, (3.24) and (3.27) imply

q(F)
(
zβ
)
<
β−α

1−α
q(F)(x) +

(
1− β−α

1−α

)
q(F)

(
zα
)
< q(F)

(
zα
)
. (3.28)

On the other hand, from Condition C,

zα = zβ +
(

1− α

β

)
η
(
y,zβ

)
. (3.29)

Therefore, by (3.25) and D-semistrict preinvexity of F, we have

F
(
zα
)∈

(
1− α

β

)
F(y) +

α

β
F
(
zβ
)− intD. (3.30)

Since q ∈D∗, (3.25) and (3.30) imply

q(F)
(
zα
)
<
(

1− α

β

)
q(F)(y) +

α

β
q(F)

(
zβ
)
< q(F)

(
zβ
)
, (3.31)

which contradicts (3.28). This complete the proof. �

Remark 3.8. Theorem 3.7 is a generalization of [10, Theorem 5.1].

Theorem 3.9. Let S be a nonempty invex set in X with respect to η : X ×X → X , where η
satisfies Condition C, and F : S→ Y is a D-preinvex function for the same η on S. If for every
x, y ∈ S, F(x) �= F(y), there exists an α∈ (0,1) such that

F
(
y +αη(x, y)

)∈ αF(x) + (1−α)F(y)− intD, (3.32)

then F is a D-semistrictly preinvex function on S.

Proof. For each x, y ∈ S satisfy F(x) �= F(y) and λ∈ (0,1), by assumption, we have

F
(
y + λη(x, y)

)∈ λF(x) + (1− λ)F(y)−D. (3.33)

If λ≤ α, from Condition C,

y +
λ

α
η
(
y +αη(x, y), y

)= y +
λ

α
η
(
y +αη(x, y), y +αη(x, y)−αη(x, y)

)

= y +
λ

α
η
(
y +αη(x, y), y +αη(x, y) +η

(
y, y +αη(x, y)

))

= y− λ

α
η
(
y, y +αη(x, y)

)= y + λη(x, y).

(3.34)
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According to (3.32) and (3.33), we have

F
(
y + λη(x, y)

)= F
(
y +

λ

α
η
(
y +αη(x, y), y

)
)

∈ λ

α
F
(
y +αη(x, y)

)
+
(

1− λ

α

)
F(y)−D

⊂ λ

α

[
αF(x) + (1−α)F(y)− intD

]
+
(

1− λ

α

)
F(y)−D

⊂ λF(x) + (1− λ)F(y)− intD.

(3.35)

If λ > α,

0 <
1− λ

1−α
< 1. (3.36)

From Condition C,

y +αη(x, y) +
(

1− 1− λ

1−α

)
η
(
x, y +αη(x, y)

)= y + λη(x, y). (3.37)

According to (3.32) and (3.33), we have

F
(
y + λη(x, y)

)= F
(
y +αη(x, y) +

(
1− 1− λ

1−α

)
η
(
x, y +αη(x, y)

)
)

∈ 1− λ

1−α
F
(
y +αη(x, y)

)
+
(

1− 1− λ

1−α

)
F(x)−D

⊂ 1− λ

1−α

[
αF(x) + (1−α)F(y)− intD

]
+
(

1− 1− λ

1−α

)
F(x)−D

⊂ λF(x) + (1− λ)F(y)− intD.

(3.38)

Equations (3.35) and (3.38) imply that F is a D-semistrictly preinvex function on S. �

Remark 3.10. Theorem 3.9 is a new result even in scalar case.

Remark 3.11. It is yet unclear whether there exist similar results with those in this paper
while the single-valued function F : S→ Y replaced by a set-valued function F : S→ 2Y .

4. Conclusions

In this paper, we firstly obtain two properties of D-preinvexity for vector-valued function
which are equivalent conditions in terms of the D-preinvexity and intermediate-point
D-preinvexity. We then get two sufficient conditions of the D-strict preinvexity in terms
of intermediate-point D-strict preinvexity and D-preinvexity (or D-semistrict preinvex-
ity). We finally obtain both the sufficient condition and necessary condition of the D-
preinvexity in terms of the D-semistrict preinvexity.
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