TO A NONLOCAL GENERALIZATION OF THE DIRICHLET PROBLEM

GIVI BERIKELASHVILI

Received 20 August 2004; Accepted 22 September 2004

A mixed problem with a boundary Dirichlet condition and nonlocal integral condition is considered for a two-dimensional elliptic equation. The existence and uniqueness of a weak solution of this problem are proved in a weighted Sobolev space.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The first paper devoted to a nonlocal boundary value problem with integral conditions goes back to Cannon [1]. More general nonlocal conditions for different types of partial differential equations were considered later (see, e.g., [2, 4–6, 9, 11, 13, 14]).

In the present paper, a mixed problem with a boundary Dirichlet condition and nonlocal integral condition is considered in a unit square for a second-order elliptic equation. The existence and uniqueness of a weak solution of this problem in the weighted Sobolev space $W_2^1(\Omega, \rho)$ are proved. The proof is based on the Lax-Milgram lemma. It is shown that a nonlocal problem can be regarded as a generalization of the Dirichlet boundary value problem.

2. Statement of the problem

Let $\Omega = \{(x_1, x_2) : 0 < x_k < 1, k = 1, 2\}$ be a unit square with boundary Γ , $\Gamma_1 = \{(0, x_2) : 0 < x_2 < 1\}$, $\Gamma_* = \Gamma \setminus \Gamma_1$, $\Omega_{\xi} = (0, \xi) \times (0, 1)$, let ξ be a fixed point from (0, 1].

By $L_2(\Omega, \rho)$ we denote a weighted Lebesgue space of all real-valued functions u(x) on Ω with the inner product and the norm

$$(u,v)_{\rho} = \int_{\Omega} \rho(x) u(x) v(x) \, dx, \qquad \|u\|_{\rho} = (u,u)_{\rho}^{1/2}.$$
(2.1)

The weighted Sobolev space $W_2^1(\Omega,\rho)$ is usually defined as a linear set of all functions $u(x) \in L_2(\Omega,\rho)$ whose derivatives $\partial u/\partial x_k$, k = 1, 2 (in the generalized sense), belong

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 93858, Pages 1–6 DOI 10.1155/JIA/2006/93858

2 To a nonlocal generalization of the Dirichlet problem

to $L_2(\Omega, \rho)$. It is a normed linear space if equipped with the norm

$$\|u\|_{1,\rho} = \left(\|u\|_{\rho}^{2} + |u|_{1,\rho}^{2}\right)^{1/2}, \qquad |u|_{1,\rho}^{2} = \left\|\frac{\partial u}{\partial x_{1}}\right\|_{\rho}^{2} + \left\|\frac{\partial u}{\partial x_{2}}\right\|_{\rho}^{2}.$$
 (2.2)

Let us choose a weight function $\rho(x)$ as follows:

$$\rho(x) = \begin{cases} (x_1/\xi)^{\varepsilon}, & x_1 \le \xi, \\ 1, & x_1 > \xi, \end{cases} \quad \varepsilon \in (0,1).$$
(2.3)

It is well known (see, e.g., [7, page 10], [10, Theorem 3.1]) that $W_2^1(\Omega,\rho)$ is a Banach space and $C^{\infty}(\bar{\Omega})$ is dense in $W_2^1(\Omega,\rho)$ and in $L_2(\Omega,\rho)$. As an immediate consequence, we can define the space $W_2^1(\Omega,\rho)$ as a closure of $C^{\infty}(\bar{\Omega})$ with respect to the norm $\|\cdot\|_{1,\rho}$ and these both definitions are equivalent.

Define the subspace of the space $W_2^1(\Omega,\rho)$ which can be obtained by closing the set $\overset{*}{C^{\infty}}(\bar{\Omega}) = \{u \in C^{\infty}(\bar{\Omega}) : \operatorname{supp} u \cap \Gamma_* = \emptyset, \ l(u) = 0, \ 0 < x_2 < 1\}$ with the norm $\|\cdot\|_{1,\rho}$. Denote it by $W_2^1(\Omega,\rho)$.

For $f \in L_{\infty}(\Omega)$, denote $||f||_{\infty} = \operatorname{vraimax}_{x \in \Omega} |f(x)|$.

We say that the function *b* has the *property* (P) if $b \in L_{\infty}(\Omega)$ and $0 \le x_1^{\varepsilon} \partial (x_1^{1-\varepsilon}b) / \partial x_1 \in L_{\infty}(\Omega_{\xi})$.

Consider the nonlocal boundary value problem

$$\mathcal{L}u = f(x), \quad x \in \Omega, \qquad u(x) = 0, \quad x \in \Gamma_*, \qquad l(u) = 0, \quad 0 < x_2 < 1,$$
 (2.4)

where

$$\mathscr{L}u = \sum_{i,j=1}^{2} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) - a_0 u, \qquad l(u) = \int_0^{\xi} \beta(x) u(x) \, dx_1, \tag{2.5}$$

 $\beta(x) = \varepsilon x_1^{\varepsilon - 1} / \xi^{\varepsilon} \text{ if } x_1 \leq \xi, \rho(x) = 0 \text{ if } x_1 > \xi.$

Let the right-hand side f(x) in (2.4) be a linear continuous functional on $W_2^1(\Omega,\rho)$ which can be represented as

$$f = f_0 + \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}, \qquad f_k(x) \in L_2(\Omega, \rho), \ k = 0, 1, 2.$$

$$(2.6)$$

We assume that the coefficients a_{ij} and a_0 satisfy the following conditions:

$$a_{1j} = a_{1j}(x) \in L_{\infty}(\Omega) \quad (j = 1, 2) \qquad a_{21} = \text{const};$$

$$a_{22} \text{ and } a_0 \text{ have property (P),} \qquad (2.7)$$

$$a_0 \ge 0, \quad \sum_{i,j=1}^2 a_{ij} t_i t_j \ge \nu (t_1^2 + t_2^2) \quad \text{a.e. in } \Omega, \ \nu = \text{const} > 0.$$

We say that the function $u \in W_2^*(\Omega, \rho)$ is a *weak solution* of problem (2.4)–(2.7) if the relation

$$a(u,v) = \langle f, v \rangle, \quad \forall v \in W_2^1(\Omega, \rho)$$
 (2.8)

holds, where

$$a(u,v) = \left(a_{11}\frac{\partial u}{\partial x_1}, \frac{\partial v}{\partial x_1}\right)_{\rho} + \left((a_{12} + a_{21})\frac{\partial u}{\partial x_2}, \frac{\partial v}{\partial x_1}\right)_{\rho} + \left(a_{22}\frac{\partial u}{\partial x_2}, K\frac{\partial v}{\partial x_2}\right)_{\rho} + (a_0u, Kv)_{\rho},$$
(2.9)

$$\langle f, \nu \rangle = \left(f_0, K\nu \right)_{\rho} - \left(f_1, \frac{\partial \nu}{\partial x_1} \right)_{\rho} - \left(f_2, K \frac{\partial \nu}{\partial x_2} \right)_{\rho}, \tag{2.10}$$

$$Kv(x) = v(x) - \frac{1}{\rho(x_1)} \int_0^{x_1} \beta(t)v(t, x_2) dt.$$
(2.11)

Equality (2.8) is formally obtained from $(\mathcal{L}u - f, Kv)_{\rho} = 0$ by integration by parts.

3. Solvability of a nonlocal problem

To prove the existence of a unique solution of problem (2.8) (a weak solution of the problem (2.4)-(2.7)), we will apply Lax-Milgram lemma [3]. First we will prove some auxiliary statements.

Lемма 3.1. *Let* $u \in W_2^1(\Omega, \rho)$. *Then*

$$|u|_{1,\rho} \le ||u||_{1,\rho} \le c_2 |u|_{1,\rho}, \quad c_2 = \sqrt{5}.$$
 (3.1)

Proof. The first inequality of the lemma is obvious. Integrating by parts, we obtain

$$\int_{\Omega} \rho(x) u^{2}(x) dx = -\frac{\varepsilon\xi}{\varepsilon+1} \int_{0}^{1} u^{2}(\xi, x_{2}) dx_{2} - 2 \int_{\xi}^{1} \int_{0}^{1} x_{1} u(x) \frac{\partial u}{\partial x_{1}} dx$$

$$-\frac{2}{\varepsilon+1} \int_{0}^{\xi} \int_{0}^{1} x_{1} \rho(x) u(x) \frac{\partial u}{\partial x_{1}} dx \leq 2 \int_{\Omega} \rho(x) \left| u \frac{\partial u}{\partial x_{1}} \right| dx.$$
(3.2)

Therefore

$$\|u\|_{\rho} \le 2 \left\| \frac{\partial u}{\partial x_1} \right\|_{\rho},\tag{3.3}$$

which proves the lemma.

LEMMA 3.2. Let $u, v \in L_2(\Omega, \rho)$ and let v satisfy the condition l(v) = 0. Then

$$\|v\|_{\rho} \le \|Kv\|_{\rho} \le c_1 \|v\|_{\rho}; \tag{3.4}$$

4 To a nonlocal generalization of the Dirichlet problem

further, if *b* belongs to $L_{\infty}(\Omega)$, then

$$|(bu, Kv)_{\rho}| \le c_1 ||b||_{\infty} ||u||_{\rho} ||v||_{\rho}, \qquad (3.5)$$

where $c_1 = (1 + \varepsilon)/(1 - \varepsilon)$.

Proof. Denote

$$J(\nu) = \int_{\Omega_{\xi}} \rho^{-1}(x) \left(\int_{0}^{x_{1}} \beta(t) \nu(t, x_{2}) dt \right)^{2} dx.$$
(3.6)

It is not difficult to verify that

$$J(\nu) = -\frac{2\varepsilon}{1-\varepsilon} \int_{\Omega_{\xi}} \nu(x) \int_{0}^{x_{1}} \beta(t)\nu(t,x_{2}) dt dx \le \frac{2\varepsilon}{1-\varepsilon} \|\nu\|_{\rho} J(\nu).$$
(3.7)

Thus

$$(J(\nu))^{1/2} \le 2\varepsilon (1-\varepsilon)^{-1} \|\nu\|_{\rho}.$$
 (3.8)

Since

$$\int_{0}^{x_{1}} \beta(t) v(t, x_{2}) dt = 0, \quad x_{1} \ge \xi,$$
(3.9)

from (2.11) we get

$$\|Kv\|_{\rho}^{2} = \|v\|_{\rho}^{2} + \left(\frac{1}{\varepsilon}\right)J(v), \qquad (3.10)$$

which using (3.8) yields (3.4).

Further, we can write

$$(bu, Kv)_{\rho} = (bu, v)_{\rho} - \int_{\Omega_{\xi}} bu \int_{0}^{x_{1}} \beta(t)v(t, x_{2}) dt dx, \qquad (3.11)$$

and by virtue of the Cauchy inequality we have

$$|(bu, Kv)_{\rho}| \le ||b||_{\infty} ||u||_{\rho} (||v||_{\rho} + (J(v))^{1/2}).$$
(3.12)

This together with (3.8) completes the proof of (3.5).

LEMMA 3.3. Let $v \in L_2(\Omega, \rho)$ and l(v) = 0. If b has property (P), then

$$(bv, Kv)_{\rho} \ge (bv, v)_{\rho}. \tag{3.13}$$

The proof follows from the easily verifiable identity

$$(bv, Kv)_{\rho} = (bv, v)_{\rho} - \int_{\Omega_{\xi}} bv \int_{0}^{x_{1}} \beta(t)v(t, x_{2}) dt dx = (bv, v)_{\rho} + \frac{1}{2\varepsilon} \tilde{J}, \qquad (3.14)$$

where

$$\tilde{J} = \int_{\Omega_{\xi}} x_1^{\varepsilon} \frac{\partial(x_1^{1-\varepsilon}b)}{\partial x_1} \rho^{-1} \left(\int_0^{x_1} \beta(t) \nu(t, x_2) \, dt \right)^2 dx < \infty.$$
(3.15)

By applying Lemmas 3.1, 3.2, 3.3, and conditions (2.7), from (2.9) we obtain the continuity

$$|a(u,v)| \le c_3 ||u||_{1,\rho} ||v||_{1,\rho}, \quad c_3 > 0, \ \forall u, v \in W_2^1(\Omega,\rho)$$
(3.16)

and the W_2^1 -ellipticity

$$a(u,u) \ge c_4 ||u||_{1,\rho}^2, \quad c_4 > 0, \ \forall u \in W_2^1(\Omega,\rho)$$
 (3.17)

of the bilinear form a(u, v).

Analogously, from (2.10) follows the continuity of the linear form $\langle f, v \rangle$:

$$|\langle f, v \rangle| \le c_5 ||v||_{1,\rho}, \quad c_5 > 0, \ \forall v \in W_2^1(\Omega, \rho).$$
 (3.18)

Thus, all conditions of the Lax-Milgram lemma are fulfilled. Therefore the following theorem is true.

THEOREM 3.4. The problem (2.4)–(2.7) has a unique weak solution from $W_2^1(\Omega,\rho)$.

Remark 3.5. If we notice that

$$u(\xi, x_2) - l(u) = \int_0^{\xi} \rho(x_1) \frac{\partial u(x)}{\partial x_1} dx_1,$$
 (3.19)

then, applying the Cauchy inequality, we get

$$\left|\int_{0}^{1} |u(\xi, x_{2}) - l(u)|^{2} dx_{2}\right| \leq c_{6} ||u||_{1,\rho}^{2}, \quad c_{6} = \frac{\xi}{\varepsilon + 1}.$$
(3.20)

Consequently,

$$\lim_{\xi \to 0} l(u) = u(0, x_2). \tag{3.21}$$

Thus, passing to the limit as $\xi \to 0$, the nonlocal condition l(u) = 0 transforms to $u(0, x_2) = 0$, while Theorem 3.4 transforms to the well-known theorem on the existence and uniqueness of a solution of the Dirichlet problem. In this sense, the nonlocal problem (2.4)–(2.7) can be regarded as a generalization of the Dirichlet boundary value problem.

Remark 3.6. By definition (2.9), for all $u \in D(\mathcal{L})$ we have $a(u,u) = (\mathcal{L}u, Ku)_{\rho}$. Hence, using (3.4) it follows from (3.17) that

$$(\mathscr{L}u, Ku)_{\rho} \ge c \|u\|_{\rho}^{2}, \qquad (\mathscr{L}u, Ku)_{\rho} \ge c \|Ku\|_{\rho}^{2}.$$
 (3.22)

Thus \mathcal{L} is a *K*-positive definite operator [8, 12].

6 To a nonlocal generalization of the Dirichlet problem

References

- [1] J. R. Cannon, *The solution of the heat equation subject to the specification of energy*, Quarterly of Applied Mathematics **21** (1963), no. 2, 155–160.
- [2] M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Analysis 30 (1997), no. 7, 4619–4627.
- [3] P. G. Ciarlet, *The Finite Element Method for Elliptic Problems*, Studies in Mathematics and Its Applications, vol. 4, North-Holland, Amsterdam, 1978.
- [4] H. De Schepper and M. Slodička, Recovery of the boundary data for a linear second order elliptic problem with a nonlocal boundary condition, ANZIAM Journal 42 (2000), Part C, C518–C535.
- [5] D. Gordeziani and G. Avalishvili, *Investigation of the nonlocal initial boundary value problems for some hyperbolic equations*, Hiroshima Mathematical Journal **31** (2001), no. 3, 345–366.
- [6] A. K. Gushchin and V. P. Mikhaĭlov, On the solvability of nonlocal problems for a second-order elliptic equation, Matematicheskiĭ Sbornik 185 (1994), no. 1, 121–160 (Russian), translated in Russian Academy of Sciences Sbornik Mathematics 81 (1995), no. 1, 101–136.
- [7] A. Kufner and A.-M. Sändig, Some Applications of Weighted Sobolev Spaces, Teubner-Texte zur Mathematik, vol. 100, BSB B. G. Teubner, Leipzig, 1987.
- [8] A. E. Martynyuk, Some new applications of methods of Galerkin type, Matematicheskiĭ Sbornik 49 (91) (1959), 85–108 (Russian).
- [9] S. Mesloub, A. Bouziani, and N. Kechkar, *A strong solution of an evolution problem with integral conditions*, Georgian Mathematical Journal **9** (2002), no. 1, 149–159.
- [10] A. Nekvinda and L. Pick, A note on the Dirichlet problem for the elliptic linear operator in Sobolev spaces with weight d_M^{ϵ} , Commentationes Mathematicae Universitatis Carolinae **29** (1988), no. 1, 63–71.
- [11] B. P. Paneyakh, *Some nonlocal boundary value problems for linear differential operators*, Matematicheskie Zametki **35** (1984), no. 3, 425–434 (Russian).
- [12] W. V. Petryshyn, *On a class of K*-p.d. *and non K*-p.d. *operators and operator equations*, Journal of Mathematical Analysis and Applications **10** (1965), no. 1, 1–24.
- [13] M. P. Sapagovas, A difference scheme for two-dimensional elliptic problems with an integral condition, Litovskii Matematicheskii Sbornik 23 (1983), no. 3, 155–159 (Russian).
- [14] A. L. Skubachevskiĭ and G. M. Steblov, On the spectrum of differential operators with a domain that is not dense in L₂(0,1), Doklady Akademii Nauk SSSR **321** (1991), no. 6, 1158–1163 (Russian), translated in Soviet Mathematics Doklady 44 (1992), no. 3, 870–875.

Givi Berikelashvili: A. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1 M. Aleksidze Street, Tbilisi 0193, Georgia, Caucasus *E-mail address*: bergi@rmi.acnet.ge