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Let X be a Banach space and let S(X)= {x ∈ X , ‖x‖ = 1} be the unit sphere of X . Param-
eters E(X) = sup{α(x), x ∈ S(X)}, e(X) = inf{α(x), x ∈ S(X)}, F(X) = sup{β(x), x ∈
S(X)}, and f (X) = inf{β(x), x ∈ S(X)}, where α(x) = sup{‖x + y‖2 + ‖x − y‖2, y ∈
S(X)}, and β(x) = inf{‖x + y‖2 + ‖x− y‖2, y ∈ S(X)} are introduced and studied. The
values of these parameters in the lp spaces and function spaces Lp[0,1] are estimated.
Among the other results, we proved that a Banach space X with E(X) < 8, or f (X) > 2 is
uniform nonsquare; and a Banach space X with E(X) < 5, or f (X) > 32/9 has uniform
normal structure.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Preliminaries

Let X be a normed linear space, and let S(X) = {x ∈ X : ‖x‖ = 1} and B(X) = {x ∈ X :
‖x‖ ≤ 1} be the unit sphere and unit ball of X respectively.

The following two concepts, the modulus of convexity: δ(ε) = inf{1− ‖x + y‖/2 :
‖x− y‖ ≤ ε, x, y ∈ S(X2)} where 0 ≤ ε ≤ 2, and the modulus of smoothness: ρX(ε) =
sup{(‖x + y‖ + ‖x− y‖ − 2)/2, x ∈ S(X), ‖y‖ = ε} where ε ≥ 0 have strong effect for
studying and describing the shape of unit spheres and unit balls of Banach spaces.

Many other parameters were introduced and used to study the geometry of unit
spheres and unit balls, more properties of Banach spaces were obtained and some results
were improved, see [6–8, 11, 12, 14]. However most of the above-defined parameters are
linear in the norm.

The Pythagorean theorem describes the shape of unit sphere of Euclidean spaces H by
considering the inscribed triangle with two antipodal points x and−x on S(H), and char-
acterizes the Euclidean spaces by the equation ‖x + y‖2 + ‖x− y‖2 = 4, for all y ∈ S(H).
In this paper we use this idea to introduce some quadratic parameters, then compute the
values of these new parameters for some classical Banach spaces, and demonstrate the
relationships between these parameters and uniformly nonsquare spaces, and the spaces
with uniform normal structure.
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Let X be a Banach space. A mapping T : X → X is called a nonexpansive mapping if
‖Tx−Ty‖ ≤ ‖x− y‖ for any x, y ∈ X . Kirk [10] proved that if a weakly compact convex
subset K of X has normal structure then any nonexpansive mapping on K has a fixed
point.

Definition 1.1 [1]. A bounded convex subset K of a Banach space X is said to have normal
structure if every convex subset H of K that contains more than one point contains a
point x0 ∈H such that sup{‖x0− y‖, y ∈H} < d(H), where d(H)= sup{‖x− y‖, x, y ∈
H} denotes the diameter of H . A Banach space X is said to have normal structure if every
bounded, convex subset of X has normal structure. A Banach space X is said to have weak
normal structure if each weakly compact convex set K in X that contains more than one
point has normal structure. X is said to have uniform normal structure if there exists
0 < c < 1 such that for any subset K as above, there exists x0 ∈ K such that sup{‖x0 −
y‖, y ∈ K} < c · (d(K)).

For a reflexive Banach space X , the normal structure and weak normal structure co-
incide.

Definition 1.2 [5]. Let X be a Banach space, a hexagon H in X is called a normal hexagon
if the length of each side is 1 and each pair of two opposite sides are parallel.

Lemma 1.3 [5]. Let X be a Banach space without weak normal structure, then for any
0 < ε < 1, there exist infinitely many inscribed normal hexagons with vertices x1, x2, x3 in
S(X) satisfying

(i) x2− x3 = x1;
(ii) ‖(x1 + x2)/2‖ > 1− ε;

(iii) ‖(x3 + (−x1))/2‖ > 1− ε.

A continuous mapping x(t) from a closed interval [a,b] to a Banach space X is called
a curve in X : C = x(t), a ≤ t ≤ b. A curve is called simple if it does not have multiple
points. A curve is called closed if x(a) = x(b). A closed curve is called symmetric about
the origin if x ∈ C, then also −x ∈ C.

The concept of the length of a curve in Banach spaces resembles the same concept in
Euclidean spaces.

For a normed linear space X , we use X2 to denote a two-dimensional subspace of X ,
then S(X2) is a simple closed curve which is symmetric about the origin and unique up
to orientation.

Theorem 1.4 [2, 12]. Let X2 be a two-dimensional Banach space, and K1, K2 be closed
convex subsets of X2, and have nonvoid interiors. If K1 ⊆ K2, then l(∂(K1)) ≤ l(∂(K2)),
where l(∂(Ki)) denote the lengths of the circumferences of Ki, i= 1,2.

For x ∈ S(X2), let κ be one of the arcs of S(X2) from x to −x counterclockwise, and let
g : [0,L]→ κ be the standard representation in terms of arc length, where L is the length
of κ.

Lemma 1.5 [7]. The functions Φ,Ψ : [0,L]→ [0,2] defined by Φ(s) = ‖g(s)− x‖, Ψ(s) =
‖g(s) + x‖ are continuously increasing, and decreasing respectively.
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2. Parameters E(X), e(X), F(X), and f (X)

Definition 2.1. For x ∈ S(X), let
(i) α(x)= sup{‖x+ y‖2 +‖x− y‖2, y ∈ S(X)} and

(ii) β(x)= inf{‖x+ y‖2 +‖x− y‖2, y ∈ S(X)}.
We define

E(X)= sup
{
α(x), x ∈ S(X)

}
, e(X)= inf

{
α(x), x ∈ S(X)

}
,

F(X)= sup
{
β(x), x ∈ S(X)

}
, f (X)= inf

{
β(x), x ∈ S(X)

}
.

(2.1)

Lemma 2.2. If a≥ 0, b ≥ 0, and a+ b ≥ 2, then a2 + b2 ≥ 2.

Proof. a2 + b2 ≥ a2 + (2− a)2 = a2 + 4− 4a + a2 = 2(a2 − 2a + 2) ≥ 2[(a− 1)2 + 1] ≥ 2.
�

Proposition 2.3. For any Banach space X , 2≤ f (X)≤ e(X)≤ E(X)≤ 8, and 2≤ f (X)≤
F(X)≤ E(X)≤ 8.

Proof. Since ‖x ± y‖ ≤ ‖x‖ + ‖y‖ ≤ 2, we have E(X) = sup{‖x + y‖2 + ‖x − y‖2, x ∈
S(X), y ∈ S(X)} ≤ 4 + 4 = 8; and since ‖x + y‖+ ‖x− y‖ ≥ ‖2x‖ = 2, we have f (X) =
inf{‖x+ y‖2 +‖x− y‖2, x ∈ S(X), y ∈ S(X)} ≥ 2, by the about lemma. �

We now list the values of these parameters for some special two-dimensional normed
linear spaces.

For any x ∈ X , y ∈ X we use [x, y] to denote the line segment connecting x and y in
X .

Lemma 2.4. Let x, y ∈ S(X) with ‖x+ y‖ = ‖x− y‖ = a, and u, v be the normalization of
x+ y, x− y, respectively, then ‖u+ v‖ = ‖u− v‖ = 2/a.

Proof. Since −x− y = −au, x− y = av, then 2x = (x− y)− (−x− y)= a(u+ v). There-
fore ‖u+ v‖ = 2‖x‖/a= 2/a. Similarly, we can prove ‖u− v‖ = 2/a. �

Proposition 2.5. S(X2) is affinely homeomorphic to a parallelogram if and only if E(X2)=
8, or f (X2)= 2.

Proposition 2.6. If S(X2) is affinely homeomorphic to a normal hexagon, then E(X2)≥ 5,
and f (X2)≤ 32/9.

Lemma 2.7 [7]. Let x, y ∈ S(X), and ‖x + y‖/2 > 1− ε, then for any z ∈ [x, y], the line
segment connecting x and y, ‖z‖ > 1− 2ε.

Theorem 2.8. A Banach space with E(X2) < 8, or f (X) > 2 is uniformly nonsquare.

Proof. Suppose X is not uniformly nonsquare. For any ε > 0, there exist x, y ∈ S(X) such
that both ‖x+ y‖ and ‖x− y‖ > 2− ε/2 [9]. Then, both ‖x− y‖2 and ‖x− y‖2 ≥ 4− 2ε.
Since ε can be arbitrarily small we have E(X)= sup{‖x + y‖2 + ‖x− y‖2, x ∈ S(X), y ∈
S(X)} = 8.

If ‖x + y‖ �= ‖x− y‖, take z such that y and z are on the same arc κ from x to −x,
and ‖x + z‖ = ‖x− z‖. From Lemma 1.5 both ‖x + z‖ and ‖x− z‖ > 2− ε/2. Let u and
v be normalization of x + z and x− z respectively. From Lemma 2.4, both ‖u+ v‖ and
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‖u− v‖ ≤ 2/(2− ε/2)≤ 1 + ε/2. Since ε can be arbitrarily small we have f (X)= inf{‖x+
y‖2 +‖x− y‖2, x ∈ S(X), y ∈ S(X)} = 2. �

3. Parameters E(X) and f (X), and normal structure

Lemma 3.1. Let x ∈ S(X) and ‖y‖ > 1, then ‖x + t(y − x)‖ is an increasing function of
t ∈ (1,∞).

Proof. It is clear that ‖x+ t(y− x)‖ > 1 for any t > 1. Otherwise

‖y‖ =
∥
∥
∥
∥
x+ t(y− x)

t
+

(t− 1)x
t

∥
∥
∥
∥

≤
∥
∥x+ t(y− x)

∥
∥

t
+

(t− 1)‖x‖
t

≤ 1
t

+
t− 1
t
= 1.

(3.1)

If there are t1 > t2 > 1 such that 1≤ a= ‖x+ t1(y− x)‖ < ‖x+ t2(y− x)‖, then

∥
∥x+ t2(y− x)

∥
∥=

∥
∥
∥
∥
t2[x+ t1(y− x)]

t1
+

(
t1− t2

)
x

t1

∥
∥
∥
∥

≤ t2
∥
∥x+ t1(y− x)

∥
∥

t1
+

(
t1− t2

)‖x‖
t1

= t2a

t1
+
t1− t2
t1

≤ t2a

t1
+

(
t1− t2

)
a

t1
= a.

(3.2)

This is a contradiction. �

Theorem 3.2. A Banach space X with E(X) < 5, or f (X) > 32/9 has normal structure.

Proof. Suppose X does not have normal structure, then there exist x1, x2 and x3 ∈ S(X)
such that x1 = x2− x3, ‖(x1 + x2)/2‖ > 1− ε, and ‖(x3 + (−x1))/2‖ > 1− ε by Lemma 1.3.
Then, ‖x3 − x1‖2 > 4− 8ε and ‖x3 + x1‖2 = ‖x2‖2 = 1. Since ε can be arbitrarily small
we have E(X) = sup{‖x + y‖2 + ‖x − y‖2, x ∈ S(X), y ∈ S(X)} ≥ 5. The first assert is
approved.

To prove the second assert, let y = (x2 + x3)/2, then y− x1 = (x2 + x3)/2− x1 = (x2 +
x3 − 2x1)/2 = (x1 + x3 + x3 − 2x1)/2 = (2x3 − x1)/2 = 3/2(2x3/3 + (−x1)/3). Since ‖(x3 +
(−x1))/2‖ > 1− ε and 2x3/3 + (−x1)/3 ∈ [−x1,x3], by Lemma 2.7 we have ‖y − x1‖ =
3/2‖2x3/3 + (−x1)/3‖ > 3/2(1− 2ε). Let y′ be normalization of y = (x2 + x3)/2. From
Lemma 3.1, ‖y′ − x1‖ ≥ ‖y− x1‖ > 3/2(1− 2ε).

Similarly we can prove ‖y′ + x1‖ ≥ ‖y + x1‖ > 3/2(1− 2ε).
If ‖y′ + x1‖ �= ‖y′ − x1‖, let z ∈ S(X) such that ‖z+ x1‖ = ‖z− x1‖. From Lemma 1.5

we have ‖z + x1‖ = ‖z− x1‖ > 3/2(1− 2ε). Let u, v be the normalization of z + x1, z−
x1 respectively, by Lemma 2.4 we have both ‖u + v‖ and ‖u− v‖ < 2/(3/2(1− 2ε)) <
4/3(1 + 4ε). Since ε can be arbitrarily small, we have f (X)= inf{‖x+ y‖2 +‖x− y‖2, x ∈
S(X), y ∈ S(X)} = 2(4/3)2 = 32/9. �



Ji Gao 5

4. Inequalities of parameters for some classical spaces

Proposition 4.1. E(H)= e(X)= F(X)= f (X)= 4, where H is a Hilbert space.

This is a direct result of parallelogram law: ‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for
all x, y ∈H , in the Hilbert spaces.

Theorem 4.2. Let p,q ≥ 1 and 1/p+ 1/q = 1, then
(i) f (lp)= 21+2/q, F(lp)≤ 21+2/p ≤ e(lp)≤ E(lp), 1 < p ≤ 2;

(ii) f (lp)≤ F(lp)≤ 21+2/p ≤ e(lp), E(lp)= 21+2/q, p > 2.

Proof. (i) To prove e(lp) ≥ 21+2/p, for any 0 < δ < 1 and y = (y1, y2, y3, . . . , yn, . . .) ∈ S(lp)
takeN such that |yN | < δ. Let eN = (0,0, . . . ,0,1,0, . . .), where theNth entry is 1 and others
are 0. Since (1− x)p ≥ 1− px for 0≤ x ≤ 1 and p > 1, we have

∥
∥y± eN

∥
∥p = ∣∣y1

∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN ± 1

∣
∣p +

∣
∣yN+1

∣
∣p + ···

≥ ∣∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣1−∣∣yN

∣
∣
∣
∣p +

∣
∣yN+1

∣
∣p + ···

≥ (1 +
∣
∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN

∣
∣p +

∣
∣yN+1

∣
∣p + ···)

− p
∣
∣yN

∣
∣−∣∣yN

∣
∣p ≥ 2− 2pδ.

(4.1)

Since δ can be arbitrarily small, by definition of α(y), α(y) ≥ 2 · 22/p = 21+2/p. Since
y ∈ S(lp) is arbitrary, by definition of e(X), we have e(lp)≥ 21+2/p.

To prove F(lp)≤ 21+2/p, we need the inequality: (1 + x)p ≤ 1 + 2px if x is small enough
and p > 1. For any y = (y1, y2, y3, . . . , yn, . . .)∈ S(lp).

Take N such that |yN | < δ < 1. Let eN = (0,0, . . . ,0,1,0, . . .), where the Nth entry is 1
and others are 0, we have

∥
∥y± eN

∥
∥p = ∣∣y1

∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN ± 1

∣
∣p +

∣
∣yN+1

∣
∣p + ···

≤ ∣∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣1 +

∣
∣yN

∣
∣
∣
∣p +

∣
∣yN+1

∣
∣p + ···

≤ (∣∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN

∣
∣p +

∣
∣yN+1

∣
∣p + ···)

+ 1 + 2p
∣
∣yN

∣
∣≤ 2 + 2pδ.

(4.2)

Since δ can be arbitrarily small, by definition of β(y), β(y) ≤ 2 · 22/p = 21+2/p. Since
y ∈ S(lp) is arbitrary, by definition of F(X), we have F(lp)≤ 21+2/p.

To prove f (lp) = 21+2/q, let x = 2−1/p(1,1,0, . . . ,0, . . .), y = 2−1/p(1,−1,0, . . . ,0, . . .) ∈
S(lp). Then ‖x+ y‖2 +‖x− y‖2 = 2−2/p(‖(2,0,0, . . . ,0, . . .)‖2

lp
+‖(0,2,0, . . . ,0, . . .)‖2

lp
)= 2 ·

2−2/p · 4= 23−2/p = 21+2/q. From definition of f (X), we have f (lp)≤ 21+2/q.
On the other hand, by using Lagrange multipliers in basic calculus, the function u2 +

v2, under the constraint up + vp = a for 1 < p ≤ 2, assumes its minimum 21−2/p · a2/p at
u= v = (a/2)1/p.

The Clarkson inequality [3, 4]: ‖x + y‖p + ‖x− y‖p ≥ (‖x‖+ ‖y‖)p + |‖x‖− ‖y‖|p,
for all x, y ∈ X , implies that ‖x+ y‖p +‖x− y‖p ≥ 2p, for all x, y ∈ S(lp). Therefore ‖x+
y‖2 + ‖x − y‖2 ≥ 21−2/p · (2p)2/p = 23−2/p = 21+2/q, for all x, y ∈ S(lp). By definition of
f (X) we have f (lp)≥ 21+2/q.

Finally, f (lp)= 21+2/q.
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(ii) To prove F(lp) ≤ 21+2/p, we need the inequality: (1 + x)p ≤ 1 + 2px if x is small
enough and p > 1. For any y = (y1, y2, y3, . . . , yn, . . .)∈ S(lp).

Take N such that |yN | < δ < 1. Let eN = (0,0, . . . ,0,1,0, . . .), where the Nth entry is 1
and others are 0, we have

∥
∥y± eN

∥
∥p = ∣∣y1

∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN ± 1

∣
∣p +

∣
∣yN+1

∣
∣p + ···

≤ ∣∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣1 +

∣
∣yN

∣
∣
∣
∣p +

∣
∣yN+1

∣
∣p + ···

≤ (∣∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN

∣
∣p +

∣
∣yN+1

∣
∣p + ···)

+ 1 + 2p
∣
∣yN

∣
∣≤ 2 + 2pδ.

(4.3)

Since δ can be arbitrarily small, by definition of β(y), β(y) ≤ 2 · 22/p = 21+2/p. Since
y ∈ S(lp) is arbitrary, by definition of F(X), we have F(lp)≤ 21+2/p.

To prove e(lp)≥ 21+2/p, for any 0 < δ < 1 and y = (y1, y2, y3, . . . , yn, . . .)∈ S(lp) take N
such that |yN | < δ. Let eN = (0,0, . . . ,0,1,0, . . .), where the Nth entry is 1 and others are 0.
Since (1− x)p ≥ 1− px for 0≤ x ≤ 1 and p > 1, we have

∥
∥y± eN

∥
∥p = ∣∣y1

∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN ± 1

∣
∣p +

∣
∣yN+1

∣
∣p + ···

≥ ∣∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣1−∣∣yN

∣
∣
∣
∣p +

∣
∣yN+1

∣
∣p + ···

≥ (1 +
∣
∣y1
∣
∣p +

∣
∣y2
∣
∣p + ···+

∣
∣yN

∣
∣p +

∣
∣yN+1

∣
∣p + ···)

− p
∣
∣yN

∣
∣−∣∣yN

∣
∣p ≥ 2− 2pδ.

(4.4)

Since δ can be arbitrarily small, by definition of α(y), α(y) ≥ 2 · 22/p = 21+2/p. Since
y ∈ S(lp) is arbitrary, by definition of e(X), we have e(lp)≥ 21+2/p.

To prove E(lp) = 21+2/q, let x = 2−1/p(1,1,0, . . . ,0, . . .), y = 2−1/p(1,−1,0, . . . ,0, . . .)
∈ S(lp). Then ‖x+ y‖2 +‖x− y‖2 = 2−2/p(‖(2,0,0, . . . ,0, . . .)‖2

lp
+‖(0,2,0, . . . ,0, . . .‖lp)2)=

2 · 2−2/p · 4= 23−2/p = 21+2/q. From definition of E(X), we have E(lp)≥ 21+2/q.
On the other hand, by using Lagrange multipliers in basic calculus, the function u2 +

v2, under the constraint up + vp = a for p > 2, assumes its maximum 21−2/p · a2/p at u=
v = (a/2)1/p.

The Clarkson inequality: ‖x + y‖p + ‖x− y‖p ≤ (‖x‖+ ‖y‖)p + |‖x‖− ‖y‖|p, for all
x, y ∈ X , implies that ‖x + y‖p + ‖x− y‖p ≤ 2p, for all x, y ∈ S(lp). Therefore ‖x + y‖2 +
‖x− y‖2 ≤ 21−2/p · (2p)2/p = 23−2/p = 21+2/q, for all x, y ∈ S(lp). By the definition of E(X)
we have E(lp)≤ 21+2/q.

Finally, we have E(lp)= 21+2/q. �

Theorem 4.3. Let p,q ≥ 1 and 1/p+ 1/q = 1, then
(i) f (Lp[0,1])= F(Lp[0,1])= 21+2/q,

21+2/p ≤ e(Lp[0,1])≤ E(Lp[0,1]), 1 < p ≤ 2;
(ii) f (Lp[0,1])≤ F(Lp[0,1])≤ 21+2/p,

e(Lp[0,1])= E(Lp[0,1])= 21+2/q, p > 2.

Proof. (i) To prove e(Lp[0,1])≥ 21+2/p, let x(t)∈ S(Lp[0,1]).
For any 0 < δ < 1, we can find a γ > 0, a subset E ⊆ [0,1] withmE = γ and

∫
E |x(t)|p dt <

δ, such that |x(t)| < γ−1/p(t ∈ E). To prove the existence of such a set E, for the given
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γ > 0 it is easy to take E ⊆ [0,1] such that mE = γ and
∫
E |x(t)|p dt < δ. Consider E1 =

{t ∈ E, |x(t)| < γ−1/p}. We claim then γ ≥ γ1 = mE1 > 0. Otherwise, if mE1 = 0 then∫
E |x(t)|p dt ≥ 1, and hence δ ≥ 1, this is a contradiction with 0 < δ < 1. We now can take

E1 as E, γ1 as γ, and for t ∈ E1, |x(t)| < γ−1/p implies |x(t)| < γ
−1/p
1 . Let

z(t)=
⎧
⎨

⎩
γ−1/p, t ∈ E,

0, otherwise.
(4.5)

By using the inequality: (1− x)p ≥ 1− px for 0≤ x ≤ 1, p > 1, and Hölder’s inequality:

∫

E

∣
∣x(t)

∣
∣dt ≤

(∫

E
1q dt

)1/q(∫

E

∣
∣x(t)

∣
∣p dt

)1/p

,

∥
∥x(t)± z(t)

∥
∥p =

∫

E

∣
∣x(t)± γ−1/p

∣
∣p dt+

∫

[0,1]−E

∣
∣x(t)

∣
∣p dt

≥ γ−1
∫

E

∣
∣1± γ1/px(t)

∣
∣p dt+ 1− δ ≥ γ−1

∫

E

(
1− γ1/p

∣
∣x(t)

∣
∣)p dt

+ 1− δ ≥ γ−1
∫

E

(
1− pγ1/p

∣
∣x(t)

∣
∣)dt+ 1− δ

= γ−1γ− pγ−1+1/p
∫

E

∣
∣x(t)

∣
∣dt+ 1− δ

≥ 1 + 1− pγ−1+1/p+1/q
(∫

E

∣
∣x(t)

∣
∣p dt

)1/p

− δ ≥ 2− pδ1/p− δ.

(4.6)

Since δ is arbitrary, α(x(t)) ≥ 2 · 22/p = 21+2/p. Since x(t) is also arbitrary, we have
e(Lp[0,1])≥ 21+2/p.

To prove F(Lp[0,1]) ≤ 21+2/q, let x(t) ∈ S(Lp[0,1]), then
∫ 1

0 |x(t)|p dt = 1. Take γ ∈
[0,1], such that

∫ γ
0 |x(t)|p dt = 1/2, then

∫ 1
γ |x(t)|p dt = 1/2 also. Let

y(t)=
⎧
⎨

⎩
x(t), 0≤ t < γ,

−x(t), γ ≤ t ≤ 1,
(4.7)

then y(t)∈ S(Lp[0,1]), and ‖x(t) + y(t)‖p = ∫ γ0 2p|x(t)|p dt = 2p−1.
Similarly ‖x(t)− y(t)‖p = 2p−1 too.
By definition of β(x(t)), β(x(t))≤ 2 · 2(2p−2)/p = 23−2/p = 21+2/q. Since x(t) is arbitrary,

we have F(Lp[0,1])≤ 21+2/q.
On the other hand, recall the function u2 + v2, under the constraint up + vp = a for

1 < p ≤ 2, assumes its minimum 21−2/p · a2/p at u= v = (a/2)1/p.
The Clarkson inequality [3, 4]: ‖x + y‖p + ‖x− y‖p ≥ (‖x‖+ ‖y‖)p + |‖x‖− ‖y‖|p,

for all x, y ∈ X , implies that ‖x+ y‖p +‖x− y‖p ≥ 2p, for all x, y ∈ S(lp). Therefore ‖x+
y‖2 + ‖x− y‖2 ≥ 21−2/p · (2p)2/p = 23−2/p = 21+2/q, for all x, y ∈ S(Lp[0,1]). By definition
of f (X), we have f (Lp[0,1])≥ 21+2/q.

From 21+2/q ≤ f (Lp[0,1]) ≤ F(Lp[0,1]) ≤ 21+2/q, we have f (Lp[0,1]) = F(Lp[0,1]) =
21+2/q.
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(ii) To prove F(Lp[0,1]) ≤ 21+2/p, for all y(t) ∈ S(Lp[0,1]), take δ > 0 such that (1 +
δ)p < 1 + 2pδ. We can find γ > 0 with

∫ γ
0 |x(t)|p dt < δ.

Let

y(t)=
⎧
⎨

⎩
γ−1/p, 0≤ t < γ,

0, γ ≤ t ≤ 1,
(4.8)

then by Minkowski inequality:

(∫ b

a

∣
∣x(t) + y(t)

∣
∣p dt

)1/p

≤
(∫ b

a

∣
∣x(t)

∣
∣p dt

)1/p

+
(∫ b

a

∣
∣y(t)

∣
∣p dt

)1/p

,

∥
∥x(t)± y(t)

∥
∥p =

∫ γ

0

∣
∣x(t)± γ−1/p

∣
∣p dt+

∫ 1

γ

∣
∣x(t)

∣
∣p dt

≤
[(∫ γ

0

∣
∣x(t)

∣
∣p dt

)1/p

+
(∫ γ

0

∣
∣γ−1/p

∣
∣p dt

)1/p]p
+ 1

≤ (δ1/p + 1
)p

+ 1.

(4.9)

Since δ is arbitrary, from definition of β(x(t)), β(x(t))≤ 2 · 22/p = 21+2/p. Since x(t) is
also arbitrary, we have F(Lp[0,1])≤ 21+2/p.

To prove e(Lp[0,1]) ≥ 21+2/q, let x(t) ∈ S(Lp[0,1]), then
∫ 1

0 |x(t)|p dt = 1. Take γ ∈
[0,1], such that

∫ γ
0 |x(t)|p dt = 1/2, then

∫ 1
γ |x(t)|p dt = 1/2 also. Let

y(t)=
⎧
⎨

⎩
x(t), 0≤ t < γ,

−x(t), γ ≤ t ≤ 1,
(4.10)

then y(t)∈ S(Lp[0,1]), and ‖x(t) + y(t)‖p = ∫ γ0 2p|x(t)|p dt = 2p−1.
Similarly ‖x(t)− y(t)‖p = 2p−1 too.
By definition of α(x(t)), α(x(t))≥ 2 · 2(2p−2)/p = 23−2/p = 21+2/q. Since x(t) is arbitrary

we have e(Lp[0,1])≥ 21+2/q.
On the other hand, recall the function u2 + v2, under the constraint up + vp = a for

p > 2, assumes its maximum 21−2/p · a2/p at u= v = (a/2)1/p.
The Clarkson inequality for p ≥ 2: ‖x + y‖p + ‖x − y‖p ≤ (‖x‖ + ‖y‖)p + |‖x‖

−‖y‖|p, for all x, y ∈ X , implies that ‖x+ y‖p +‖x− y‖p ≤ 2p, for all x, y ∈ S(lp). There-
fore ‖x + y‖2 + ‖x− y‖2 ≤ 21−2/p · (2p)2/p = 23−2/p = 21+2/q for all x, y ∈ S(Lp[0,1]). By
the definition of E(X) we have E(Lp[0,1])≤ 21+2/q.

From 21+2/q ≤ e(Lp[0,1]) ≤ E(Lp[0,1]) ≤ 21+2/q, we have e(Lp[0,1]) = E(Lp[0,1]) =
21+2/q. �

5. The parameters and uniform normal structure

Let U be an ultrafilter on an index set I . Let {Xi}i∈I be a family of Banach spaces and
let l∞(I ,Xi) denote the subspace of the product space equipped with the norm ‖(xi)‖ =
supi∈I ‖xi‖ <∞.
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Definition 5.1 [13]. Let U be an ultrafilter on I and let NU = {(xi)∈ l∞(I ,Xi) : limU ‖xi‖
= 0}. The ultraproduct of {Xi}i∈I is the quotient space l∞(I ,Xi)/NU equipped with the
quotient norm.

We will use (xi)U to denote the element of the ultraproduct. It follows from (ii) of the
fact, and the definition of quotient norm that

∥
∥(xi)U

∥
∥= lim

U

∥
∥xi
∥
∥. (5.1)

In the following we will restrict our index set I to be N , the set of natural numbers,
and let Xi = X , i∈N for some Banach space X . For an ultrafilter U on N , we use XU to
denote the ultraproduct.

Theorem 5.2. For any Banach space X , and for any nontrivial ultrafilter U on N , K(XU)=
K(X), where K stands for either f , F, e, or E.

Proof. We first prove this theorem for K = f , the proof for K = E is similar.
For any δ > 0, from definition of f (X), there exists a two-dimensional subspace X2 ⊆

X , and x, y ∈ S(X2) such that ‖x+ y‖2 +‖x− y‖2 < f (X) + δ.
Let xi = x, and yi = y, for all i ∈ N . Then (xi)U , (yi)U ∈ S((XU)2), where (XU)2 is a

two-dimensional subspace, spanned by (xi)U and (yi)U , of XU . Then ‖(xi)U + (yi)U‖2 +
‖(xi)U − (yi)U‖2 = ‖x+ y‖2 +‖x− y‖2 < f (X) + δ. Therefore f (XU) < f (X) + δ.

Since δ can be arbitrarily small, we proved f (XU)≤ f (X).
To prove the reverse inequality, we choose a (XU)2 ⊆ XU , (xi)U , (yi)U ∈ S((XU)2) such

that ‖(xi)U + (yi)U‖2 +‖(xi)U − (yi)U‖2 < f (XU) + δ.
From (5.1) above, the sets
I = {i∈N : |‖xi‖− 1| < δ},
J = {i∈N : |‖yi‖− 1| < δ},
L = {i ∈ N : ‖xi + yi‖2 + ‖xi − yi‖2 < f (XU) + δ} are all in U . So the intersection

I
⋂
J
⋂
L is in U too, and is hence not empty.

Let i ∈ I
⋂
J
⋂
L, we have |‖xi‖− 1| < δ, |‖yi‖− 1| < δ, and ‖xi + yi‖2 + ‖xi − yi‖2 <

f (XU) + δ. Let x′i , y
′
i ∈ S(X2) be the normalization of xi, yi respectively. Since ‖x′i − xi‖

and ‖y′i − yi‖ ≤ δ, then ‖x′i + y′i‖ ≤ ‖xi + yi‖+ 2δ, ‖x′i − y′i‖ ≤ ‖xi− yi‖+ 2δ, and there-
fore ‖x′i + y′i‖2 + ‖x′i − y′i‖2 ≤ ‖xi + yi‖2 + ‖xi− yi‖2 + 18δ < f (XU) + 19δ. Hence f (X) <
f (XU) + 19δ. Since δ can be arbitrarily small, f (X)≤ f (XU).

We then prove this theorem for K = F, the proof for K = e is similar.
For any δ > 0, from definition of F(X), there exists a x ∈ S(X) such that ‖x + y‖2 +

‖x− y‖2 > F(X)− δ for all y ∈ S(X).
Let xi = x, for all i∈N , then (xi)U ∈ S((XU)). For any (yi)U ∈ XU , from definition of

the norm in XU , we may assume that yi ∈ S(X), for all i∈N . Therefore

∥
∥(xi

)
U +

(
yi
)
U

∥
∥2

+
∥
∥(xi

)
U −

(
yi
)
U

∥
∥2

= ∥∥(x+ yi
)
U

∥
∥2

+
∥
∥(x− yi

)
U

∥
∥2

= (∥∥x+ yi
∥
∥2

+
∥
∥x− yi

∥
∥2)

U > F(X)− δ.

(5.2)

Therefore F(XU) > F(X)− δ.
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Since δ can be arbitrarily small, we proved F(XU)≥ F(X).
To prove the reverse inequality, for any δ > 0, from definition of F(XU) there exists

a (xi)U ∈ S((XU)) such that ‖(xi)U + (ym)U‖2 + ‖(xi)U − (ym)U‖2 > f (XU)− δ for all
(ym)U ∈ S((XU)). From definition of the norm in XU , we may assume xi, ym ∈ S(X), for
all i,m∈N .

Let L = {i ∈ N : ‖xi + ym‖2 + ‖xi − ym‖2 > f (XU)− δ}, then L is in U , and is hence
not empty. Let j ∈ L, from (5.1) above, we have ‖xj + ym‖2 +‖xj − ym‖2 > f (XU)− δ for
ym ∈ S(X). But ym ∈ S(X) may be any vector on S(X). We have ‖xj + y‖2 + ‖xj − y‖2 >
f (XU)− δ for all y ∈ S(X). Therefore f (X) > f (XU)− δ. Since δ can be arbitrarily small,
f (X)≥ f (XU).

Finally f (X)= f (XU). �

Theorem 5.3. A Banach space X with either f (X) > 32/9 or E(X) < 5 has uniform normal
structure.

Proof. The idea of the proof is same as the proof of [7, Theorem 4.4]. �
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