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We obtain Schwarz-Pick-type estimates for the hyperbolic derivative of an analytic self-
map of the unit disk in C.
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1. Preliminaries

We denote by Δ the open unit disk in C, and for z ∈ Δ, we denote by φz ∈ Aut(Δ) the
automorphism which interchanges 0 and z: φz(λ)= (z− λ)/(1− zλ). We denote by ρ the
hyperbolic distance on Δ:

ρ(λ,z)= tanh−1∣∣φz(λ)
∣
∣= 1

2
log

1 +
∣
∣φz(λ)

∣
∣

1−∣∣φz(λ)
∣
∣
. (1.1)

The following is a well-known consequence of the maximum principle.

Schwarz’s Lemma 1.1. Let f : Δ→ Δ be analytic with f (0)= 0. Then

∣
∣ f (λ)

∣
∣≤ |λ|, that is, ρ

(

f (λ), f (0)
)≤ ρ(λ,0)∀λ∈ Δ. (1.2)

Consequently, we have also | f ′(0)| ≤ 1. To remove the normalization f (0) = 0, one
may consider the function

g = φf (z) ◦ f ◦φz, (1.3)

which has

g(0)= 0, g′(0)= f ′(z)
(

1−|z|2)

1−∣∣ f (z)
∣
∣

2 (1.4)

to obtain the following.
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2 Schwarz-Pick-type estimates for the hyperbolic derivative

Schwarz-Pick Lemma 1.2. Let f : Δ→ Δ be analytic. Then,

∣
∣φf (z) ◦ f (λ)

∣
∣≤ ∣∣φz(λ)

∣
∣, that is, ρ

(

f (λ), f (z)
)≤ ρ(λ,z)∀λ,z ∈ Δ. (1.5)

Consequently, f ∗(z) := g′(0) has | f ∗(z)| ≤ 1, and so ρ( f ∗(z),·) is defined on Δ, as
long as f is not an automorphism—for in this case, | f ∗| ≡ 1. As such, we are interested
in the following two results.

Theorem 1.3 (see [6]). Let f : Δ→ Δ be analytic, and not an automorphism. Then

∣
∣ρ
(

0, f ∗(λ)
)− ρ

(

0, f ∗(z)
)∣
∣≤ 2ρ(λ,z) ∀λ,z ∈ Δ. (1.6)

So, for example, if f ∗(λ) and f ∗(z) are on the same side of a ray emanating from the origin,
then ρ( f ∗(λ), f ∗(z))≤ 2ρ(λ,z).

Theorem 1.4 (see [1]). Let f : Δ→ Δ be analytic, not an automorphism, with f (0) = 0.
Then

ρ
(

f ∗(0), f ∗(z)
)≤ 2ρ(0,z) ∀z ∈ Δ. (1.7)

In the next section of this paper, we employ a procedure which yields simple proofs of
Theorems 1.3 and 1.4 and extends these results. In particular, Theorem 1.4 is not appli-
cable if f (0) 
= 0, as the function exp((λ+ 1)/(λ− 1)) shows. Below however, we obtain
a version (Proposition 2.3) which removes the normalization and applies at any pair of
points in Δ, thus furnishing a more complete analog of Schwarz-Pick Lemma 1.2 for f ∗.
In the final section, we obtain some further related results.

We will use the following easily verified facts.
(A) Schwarz-Pick Lemma 1.2 and a little manipulation reveal that f (λ) lies in the

closed disk with center c = f (z)(1− |φz(λ)|2)/(1− | f (z)|2|φz(λ)|2) and radius
r = |φz(λ)|(1− | f (z)|2)/(1− | f (z)|2|φz(λ)|2). Consequently, |c| − r ≤ | f (λ)| ≤
|c|+ r. That is,

∣
∣ f (z)

∣
∣−∣∣φz(λ)

∣
∣

1−∣∣ f (z)
∣
∣
∣
∣φz(λ)

∣
∣
≤ ∣∣ f (λ)

∣
∣≤

∣
∣ f (z)

∣
∣+

∣
∣φz(λ)

∣
∣

1 +
∣
∣ f (z)

∣
∣
∣
∣φz(λ)

∣
∣
. (1.8)

(B) For x ∈ [0,1], (t + x)/(1 + tx) and (t− x)/(1− tx) are increasing functions of t ∈
[0,1].

(C)

(

1 +
(y + x)/(1 + yx) + x

1 +
(

(y + x)/(1 + yx)
)

x

)

÷
(

1− (y + x)/(1 + yx) + x

1 +
(

(y + x)/(1 + yx)
)

x

)

= 1 + y

1− y

(
1 + x

1− x

)2

.

(1.9)

(D)

(

1 +
(y− x)/(1− yx)− x

1− ((y− x)/(1− yx)
)

x

)

÷
(

1− (y− x)/(1− yx)− x

1− ((y− x)/(1− yx)
)

x

)

= 1 + y

1− y

(
1− x

1 + x

)2

.

(1.10)
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2. Results

We see below that the following has Theorem 1.3 as a consequence.

Proposition 2.1. Let f : Δ→ Δ be analytic. Then for all z1, z2 ∈ Δ,

(∣
∣ f ∗

(

z1
)∣
∣−∣∣φz1

(

z2
)∣
∣
)

/
(

1−∣∣ f ∗(z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣
)−∣∣φz1

(

z2
)∣
∣

1−
(∣
∣ f ∗

(

z1
)∣
∣−∣∣φz1

(

z2
)∣
∣
)

/
(

1−∣∣ f ∗(z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣
)∣
∣φz1

(

z2
)∣
∣

≤ ∣∣ f ∗(z2
)∣
∣≤

(∣
∣ f ∗

(

z1
)∣
∣+

∣
∣φz1

(

z2
)∣
∣
)

/
(

1 +
∣
∣ f ∗

(

z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣
)

+
∣
∣φz1

(

z2
)∣
∣

1 +
((∣
∣ f ∗

(

z1
)∣
∣+

∣
∣φz1

(

z2
)∣
∣
)

/
(

1 +
∣
∣ f ∗

(

z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣
))∣
∣φz1

(

z2
)∣
∣
.

(2.1)

Proof. For f : Δ→ Δ analytic, we fix w1 = f (z1), w2 = f (z2) and set

g = (φw2 ◦ f
)

/φz2 , h= (φw1 ◦ f
)

/φz1 . (2.2)

By Schwarz-Pick Lemma 1.2, we have g,h : Δ→ Δ, and

g
(

z1
)= w2−w1

z2− z1

1− z2z1

1−w2w1
, g

(

z2
)= f ∗

(

z2
)

,

h
(

z2
)= w2−w1

z2− z1

1− z2z1

1−w2w1
, h

(

z1
)= f ∗

(

z1
)

.

(2.3)

The estimates in (A) give

∣
∣g
(

z1
)∣
∣−∣∣φz1

(

z2
)∣
∣

1−∣∣g(z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣
≤ ∣∣g(z2

)∣
∣≤

∣
∣g
(

z1
)∣
∣+

∣
∣φz1

(

z2
)∣
∣

1 +
∣
∣g
(

z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣

,

that is,

∣
∣h
(

z2
)∣
∣−∣∣φz1

(

z2
)∣
∣

1−∣∣h(z2
)∣
∣
∣
∣φz1

(

z2
)∣
∣
≤ ∣∣g(z2

)∣
∣≤

∣
∣h
(

z2
)∣
∣+

∣
∣φz1

(

z2
)∣
∣

1 +
∣
∣h
(

z2
)∣
∣
∣
∣φz1

(

z2
)∣
∣
.

(2.4)

Applying estimates (A) to |h(z2)| now (and observing (B)), we obtain the desired result.
�

Remark 2.2. If f is not an automorphism, then we may apply the increasing function
t �→ (1/2)log((1 + t)/(1− t)) to either side of Proposition 2.1, and we use (C) and (D) to
obtain

ρ
(

f ∗
(

z1
)

,0
)− 2ρ

(

z1,z2
)≤ ρ

(

f ∗
(

z2
)

,0
)≤ ρ

(

f ∗
(

z1
)

,0
)

+ 2ρ
(

z1,z2
)

, (2.5)

which is Theorem 1.3.
A more careful analysis yields a little more. With the same notation, we set

σ1 = g
(

z1
)= w2−w1

z2− z1

1− z2z1

1−w2w1
,

σ2 = h
(

z2
)= w2−w1

z2− z1

1− z2z1

1−w2w1
,

(2.6)
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p = φf ∗(z1) ◦ g, and q = φσ1 ◦h. Here, estimates in (A) give

∣
∣p
(

z1
)∣
∣−∣∣φz1

(

z2
)∣
∣

1−∣∣p(z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣
≤ ∣∣p(z2

)∣
∣≤

∣
∣p
(

z1
)∣
∣+

∣
∣φz1

(

z2
)∣
∣

1 +
∣
∣p
(

z1
)∣
∣
∣
∣φz1

(

z2
)∣
∣
. (2.7)

As before |p(z1)| = |q(z1)|, and applying (A) (and (B)) gives

∣
∣p
(

z2
)∣
∣= ∣∣φf ∗(z1)

(

f ∗
(

z2
))∣
∣

≤
(∣
∣q
(

z2
)∣
∣+

∣
∣φz1

(

z2
)∣
∣
)

/
(

1 +
∣
∣q
(

z2
)∣
∣
∣
∣φz1

(

z2
)∣
∣
)

+
∣
∣φz1

(

z2
)∣
∣

1 +
((∣
∣q
(

z2
)∣
∣+

∣
∣φz1

(

z2
)∣
∣
)

/
(

1 +
∣
∣q
(

z2
)∣
∣
∣
∣φz1

(

z2
)∣
∣
))∣
∣φz1

(

z2
)∣
∣

=
(∣
∣φσ1 (σ2)

∣
∣+

∣
∣φz1

(

z2
)∣
∣
)

/
(

1 +
∣
∣φσ1

(

σ2
)∣
∣
∣
∣φz1

(

z2
)∣
∣
)

+
∣
∣φz1

(

z2
)∣
∣

1 +
((∣
∣φσ1

(

σ2
)∣
∣+

∣
∣φz1

(

z2
)∣
∣
)

/
(

1 +
∣
∣φσ1

(

σ2
)∣
∣
∣
∣φz1

(

z2
)∣
∣
))∣
∣φz1

(

z2
)∣
∣
.

(2.8)

Likewise,

(∣
∣φσ1 (σ2)

∣
∣−∣∣φz1 (z2)

∣
∣
)

/
(

1−∣∣φσ1 (σ2)
∣
∣
∣
∣φz1 (z2)

∣
∣
)−∣∣φz1 (z2)

∣
∣

1− ((∣∣φσ1 (σ2)
∣
∣−∣∣φz1 (z2)

∣
∣
)

/
(

1−∣∣φσ1 (σ2)
∣
∣
∣
∣φz1 (z2)

∣
∣
))∣
∣φz1 (z2)

∣
∣
≤ ∣∣φf ∗(z1)

(

f ∗
(

z2
))∣
∣.

(2.9)

Again applying the increasing function t �→ (1/2) log((1 + t)/(1− t)) when f is not an
automorphism, we obtain the following, which improves Theorem 1.4. (Having z2 = 0
and requiring f (0)= 0 yield σ1 = σ2.)

Proposition 2.3. For f : Δ→ Δ analytic and not an automorphism,

∣
∣ρ
(

f ∗
(

z1
)

, f ∗
(

z2
))− ρ

(

σ1,σ2
)∣
∣≤ 2ρ

(

z1,z2
) ∀z1,z2 ∈ Δ. (2.10)

Remark 2.4. We cite [3], which contains various other generalizations of Theorem 1.4,
one of which (Corollary 4.4) has conclusion

ρ
(

1− z1z2

z1z2− 1
f ∗
(

z1
)

,
1−w1w2

w1w2− 1
f ∗
(

z2
)
)

≤ 2ρ
(

z1,z2
) ∀z1,z2 ∈ Δ. (2.11)

([3] also contains some Euclidean versions, as does [5].)

3. Other results

Theorem 1.3 is obtained in [6] by integrating the following theorem.

Theorem 3.1 (see [6]). Let f : Δ→ Δ be analytic. Then,

∣
∣
∣
∣

d

dz

∣
∣ f ∗(z)

∣
∣

∣
∣
∣
∣≤

1−∣∣ f ∗(z)
∣
∣

2

1−∣∣z∣∣2 . (3.1)

Below we refine this result using the same sort of procedure as above. (Then, in prin-
ciple, a sharpening of Theorem 1.3 could be obtained via integration.)
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Proposition 3.2. Let f : Δ→ Δ be analytic. Then,

∣
∣
∣
∣

d

dz

∣
∣ f ∗(z)

∣
∣

∣
∣
∣
∣≤

∣
∣φf ∗(z)

(

φf (z)
(

f (0)
)

/z
)∣
∣+

∣
∣z
∣
∣

2

∣
∣z
∣
∣
(

1 +
∣
∣φf ∗(z)

(

φf (z)
(

f (0)
)

/z
)∣
∣
)

1−∣∣ f ∗(z)
∣
∣

2

1−∣∣z∣∣2 . (3.2)

Proof. With f as given, set

g(λ)= φf (z) ◦
(

f ◦φz(λ)
)

, h(λ)= φg′(0)
(

g(λ)/λ
)

. (3.3)

Then g(0)= 0, and so h(0)= 0. We apply the upper estimate in (A) to h(λ)/λ, then have
λ→ 0, to obtain

∣
∣h′(0)

∣
∣≤ |h(z)|+ |z|2

|z|(1 + |h(z)|) . (3.4)

Now h′(0)= g′′(0)/2(|g′(0)|2− 1), and so

∣
∣g′′(0)

∣
∣

2
(

1−∣∣g′(0)
∣
∣

2
) ≤ |h(z)|+ |z|2

|z|(1 + |h(z)|) . (3.5)

Here g′(0)= f ∗(z), and a straightforward computation (cf. [6, Section 2]) reveals that

∣
∣g′′(0)

∣
∣= 2

(

1−|z|2
)
∣
∣
∣
∣

d

dz

∣
∣ f ∗(z)

∣
∣

∣
∣
∣
∣, (3.6)

as desired. �

Remarks 3.3. (i) Schwarz’s Lemma 1.1 applied to h gives (|φf ∗(z)(φf (z)( f (0))/z)|+ |z|2)
/|z|(1 + |φf ∗(z)(φf (z)( f (0))/z)|)≤ 1, so this is indeed a refinement. (ii) The lower estimate
in (A) would similarly yield a lower estimate for |d/dz| f ∗(z)||. We leave the details to
the reader. (iii) In [6], the author compares Theorem 3.1 with Schwarz-Pick Lemma 1.2.
Proposition 3.2 may be similarly compared with Dieudonné’s lemma (e.g., [2, 4]), which
refines Schwarz-Pick Lemma 1.2. A perfect analog of Dieudonné’s lemma would read
|d/dz| f ∗(z)|| ≤ ((| f ∗(z)| + |z|2)/|z|(1 + | f ∗(z)|))((1 − | f ∗(z)|2)/(1 − |z|2)) (for
f ∗(0) = 0). However, this is not a refinement: for f (λ) = λ2, we have |d/dz| f ∗(z)|| =
(1− | f ∗(z)|2)/(1− |z|2) but (| f ∗(z)|+ |z|2)/|z|(1 + | f ∗(z)|) = 2 when z = 0. (At any z
for which f (z) = f (0), we have |h(z)| = | f ∗(z)|, so a perfect analog does occur at such
points.)
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