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Let μ be a nonnegative Radon measure on Rd which satisfies the growth condition that
there exist constants C0 > 0 and n∈ (0,d] such that for all x ∈Rd and r > 0, μ(B(x,r))≤
C0rn, where B(x,r) is the open ball centered at x and having radius r. In this paper, the
authors establish the uniform boundedness for approximations of the identity introduced
by Tolsa in the Hardy space H1(μ) and the BLO-type space RBLO (μ). Moreover, the

authors also introduce maximal operators
.

�s (homogeneous) and �s (inhomogeneous)

associated with a given approximation of the identity S, and prove that
.

�s is bounded
from H1(μ) to L1(μ) and �s is bounded from the local atomic Hardy space h1,∞

atb (μ) to
L1(μ). These results are proved to play key roles in establishing relations between H1(μ)
and h1,∞

atb (μ), BMO-type spaces RBMO (μ) and rbmo (μ) as well as RBLO (μ) and rblo
(μ), and also in characterizing rbmo (μ) and rblo (μ).
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1. Introduction

Recall that a nondoubling measure μ onRd means that μ is a nonnegative Radon measure
which only satisfies the following growth condition, namely, there exist constants C0 > 0
and n∈ (0,d] such that for all x ∈Rd and r > 0,

μ
(
B(x,r)

)≤ C0r
n, (1.1)

where B(x,r) is the open ball centered at x and having radius r. Such a measure μ is not
necessary to be doubling, which is a key assumption in the classical theory of harmonic
analysis. In recent years, it was shown that many results on the Calderón-Zygmund theory
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remain valid for nondoubling measures; see, for example, [1–9]. One of the main moti-
vations for extending the classical theory to the nondoubling context was the solution
of several questions related to analytic capacity, like Vitushkin’s conjecture or Painlevé’s
problem; see [10–12] or survey papers [13–16] for more details.

In particular, Tolsa [8] constructed a class of approximations of the identity and used
it to develop a Littlewood-Paley theory with nondoubling measures in Lp(μ) with p ∈
(1,∞) and establish some T(1) theorems. The main purpose of this paper is to investi-
gate behaviors of approximations of the identity and some kind of maximal operators
associated with it at the extremal cases, namely, when p = 1 or p =∞. To be precise, in
this paper, we first establish the uniform boundedness for approximations of the identity
in the Hardy space H1(μ) of Tolsa [7, 9] and the BLO-type space RBLO(μ) of Jiang [1],
respectively. We then introduce the homogeneous maximal operator �̇S and inhomoge-
neous maximal operator �S and prove that �̇S is bounded from H1(μ) to L1(μ) and �S

is bounded from the local atomic Hardy space h1,∞
atb (μ) to L1(μ). These results are proved

in [17] to play key roles in establishing relations between H1(μ) and h1,∞
atb (μ), BMO-type

spaces RBMO(μ) and rbmo(μ) as well as BLO-type spaces RBLO(μ) and rblo(μ), and
also in characterizing rbmo(μ) and rblo(μ). An interesting open problem is if H1(μ) and
h1,∞

atb (μ) can be characterized by �̇S and �S, respectively.
The organization of this paper is as follows. In Section 2, we recall some necessary

definitions and notation, including the definitions and characterizations of the spaces
H1(μ), RBLO(μ), h1,∞

atb (μ), and approximations of the identity. Section 3 is devoted to
prove that approximations of the identity are uniformly bounded onH1(μ) and RBLO(μ).
In Section 4, we introduce the homogeneous maximal operator �̇S and the inhomoge-
neous maximal operator �S associated with a given approximation of the identity S,
and prove that �̇S is bounded from H1(μ) to L1(μ) and �S is bounded from h1,∞

atb (μ)
to L1(μ).

Since the approximation of the identity in [8] strongly depends on “dyadic” cubes
constructed by Tolsa in [8, 9], it is expectable that properties of these “dyadic” cubes
will play a key role in the proofs of all these results in this paper. In [17], we introduce
a quantity on these “dyadic” cubes, which further clarifies the geometric properties of
“dyadic” cubes of Tolsa in [8, 9]; see Lemma 2.18 below. These properties together with
some known properties of “dyadic” cubes (see, e.g., [8, Lemmas 3.4 and 4.2]) indeed play
key roles in the whole paper.

We finally make some convention. Throughout the paper, we always denote by C a
positive constant which is independent of the main parameters, but it may vary from line
to line. Constant with subscript such as C1 does not change in different occurrences. The
notation Y � Z means that there exists a constant C > 0 such that Y ≤ CZ, while Y � Z
means that there exists a constant C > 0 such that Y ≥ CZ. The symbol A ∼ B means that
A � B � A. Moreover, for any D ⊂Rd, we denote by χD the characteristic function of D.
We also set N= {1,2, . . .}.

2. Preliminaries

Throughout this paper, by a cube Q ⊂Rd, we mean a closed cube whose sides are parallel
to the axes and centered at some point of supp(μ), and we denote its side length by l(Q)
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and its center by xQ. If μ(Rd) <∞, we also regard Rd as a cube. Let α, β be two positive
constants, α∈ (1,∞) and β ∈ (αn,∞). We say that a cube Q is an (α,β)-doubling cube if
it satisfies μ(αQ) ≤ βμ(Q), where and in what follows, given λ > 0 and any cube Q, λQ
denotes the cube concentric with Q and having side length λl(Q). It was pointed out by
Tolsa (see [7, pages 95-96] or [8, Remark 3.1]) that if β > αn, then for any x ∈ supp(μ)
and any R > 0, there exists some (α,β)-doubling cube Q centered at x with l(Q)≥ R, and
that if β > αd, then for μ-almost everywhere x ∈ Rd, there exists a sequence of (α,β)-
doubling cubes {Qk}k∈N centered at x with l(Qk)→ 0 as k→∞. Throughout this paper,
by a doubling cube Q, we always mean a (2,2d+1)-doubling cube. For any cube Q, let Q̃
be the smallest doubling cube which has the form 2kQ with k ∈N∪{0}.

Given two cubes Q, R ⊂ Rd, let xQ be the center of Q, and QR be the smallest cube
concentric with Q containing Q and R. The following coefficients were first introduced
by Tolsa in [7]; see also [8, 9].

Definition 2.1. Given two cubes Q,R⊂Rd, we define

δ(Q,R)=max

{∫

QR\Q
1

∣
∣x− xQ

∣
∣n dμ(x),

∫

RQ\R
1

∣
∣x− xR

∣
∣n dμ(x)

}

. (2.1)

We may treat points x ∈ Rd as if they were cubes (with side length l(x) = 0). So, for
any x, y ∈Rd and cube Q ⊂Rd, the notation δ(x,Q) and δ(x, y) make sense.

We now recall the notion of cubes of generations in [8, 9].

Definition 2.2. We say that x ∈ Rd is a stopping point (or stopping cube) if δ(x,Q) <∞
for some cube Q 	 x with 0 < l(Q) <∞. We say that Rd is an initial cube if δ(Q,Rd) <∞
for some cube Q with 0 < l(Q) <∞. The cubes Q such that 0 < l(Q) <∞ are called transit
cubes.

Remark 2.3. In [8, page 67], it was pointed out that if δ(x,Q) <∞ for some transit cube
Q containing x, then δ(x,Q′) <∞ for any other transit cube Q′ containing x. Also, if
δ(Q,Rd) <∞ for some transit cube Q, then δ(Q′,Rd) <∞ for any transit cube Q′.

Let A be some big positive constant. In particular, we assume that A is much bigger
than the constants ε0, ε1, and γ0, which appear, respectively, in [8, Lemmas 3.1, 3.2, and
3.3]. Moreover, the constants A, ε0, ε1, and γ0 depend only on C0, n, and d. In what
follows, for ε > 0 and a,b ∈R, the notation a= b± ε does not mean any precise equality
but the estimate |a− b| ≤ ε.

Definition 2.4. Assume thatRd is not an initial cube. We fix some doubling cube R0 ⊂Rd.
This will be our “reference” cube. For each j ∈N, let R− j be some doubling cube concen-
tric with R0, containing R0, and such that δ(R0,R− j) = jA± ε1 (which exists because of
[8, Lemma 3.3]). If Q is a transit cube, we say that Q is a cube of generation k ∈ Z if it is
a doubling cube, and for some cube R− j containing Q we have δ(Q,R− j)= ( j + k)A± ε1.
If Q ≡ {x} is a stopping cube, we say that Q is a cube of generation k ∈ Z if for some cube
R− j containing x we have δ(Q,R− j)≤ ( j + k)A+ ε1.

We remark that the definition of cubes of generations is proved in [8, page 68] to be
independent of the chosen reference {R− j} j∈N∪{0} in the sense modulo some small errors.
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Definition 2.5. Assume that Rd is an initial cube. Then we choose Rd as our “reference”
cube. If Q is a transit cube, we say that Q is a cube of generation k ≥ 1, if Q is doubling
and δ(Q,Rd) = kA± ε1. If Q ≡ {x} is a stopping cube, we say that Q is a cube of gen-
eration k ≥ 1 if δ(x,Rd) ≤ kA+ ε1. Moreover, for all k ≤ 0, we say that Rd is a cube of
generation k.

In what follows, we also regard that Rd is a cube centered at all the points x ∈ supp(μ).
Using [8, Lemma 3.2], it is easy to verify that for any x ∈ supp(μ) and k ∈ Z, there exists
a doubling cube of generation k; see [8, page 68]. Throughout this paper, for any x ∈
supp(μ) and k ∈ Z, we denote by Qx,k a fixed doubling cube centered at x of generation k.
By [18, Proposition 2.1] and Definition 2.5, it follows that for any x ∈ supp(μ), l(Qx,k)→
∞ as k→−∞.

Remark 2.6. We should point out that when Rd is an initial cube, cubes of generations in
[8] were not assumed to be doubling. However, by using [8, Lemma 3.2], it is easy to check
that doubling cubes of generations exist even in this case. Moreover, it is not so difficult
to verify that (2,2d+1)-doubling cubes in [8] can be replaced by (ρ,ρd+1)-doubling cubes
for any ρ ∈ (1,∞).

In [8], Tolsa constructed an approximation of the identity S ≡ {Sk}∞k=−∞ related to
doubling cubes {Qx,k}x∈Rd ,k∈Z, which consists of integral operators given by kernels
{Sk(x, y)}k∈Z on Rd ×Rd satisfying the following properties:

(A-1) Sk(x, y)= Sk(y,x) for all x, y ∈Rd;
(A-2) for any k ∈ Z and any x ∈ supp(μ), if Qx,k is a transit cube, then

∫

Rd
Sk(x, y)dμ(y)= 1; (2.2)

(A-3) if Qx,k is a transit cube, then supp(Sk(x,·))⊂Qx,k−1;
(A-4) if Qx,k and Qy,k are transit cubes, then there exists a constant C > 0 such that

0≤ Sk(x, y)≤ C
[
l
(
Qx,k

)
+ l
(
Qy,k

)
+ |x− y|]n ; (2.3)

(A-5) if Qx,k, Qx′,k, and Qy,k are transit cubes, and x,x′ ∈Qx0,k for some x0 ∈ supp(μ),
then there exists a constant C > 0 such that

∣
∣Sk(x, y)− Sk(x′, y)

∣
∣≤ C

|x− x′|
l
(
Qx0,k

)
1

[
l
(
Qx,k

)
+ l
(
Qy,k

)
+ |x− y|]n . (2.4)

Moreover, Tolsa also pointed out that (A-1) through (A-5) also hold if any of Qx,k, Qx′,k,
and Qy,k is a stopping cube, and that (A-1), (A-3) through (A-5) also hold if any of Qx,k,
Qx′,k, and Qy,k coincides with Rd, except that (A-2) is replaced by (A-2’). If Qx,k =Rd for
some x ∈ supp(μ), then Sk = 0. In what follows, without loss of generality, for any x ∈
supp(μ), we always assume that Qx,k is not a stopping cube, since the proofs for stopping
cubes are similar.

We next recall the notions of the spaces H1(μ) and RBMO(μ) in [9] and the space
RBLO(μ) in [1].
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Definition 2.7. Given f ∈ L1
loc(μ), we set

�Φ( f )(x)= sup
ϕ∼x

∣
∣
∣
∣

∫

Rd
f ϕdμ

∣
∣
∣
∣, (2.5)

where the notation ϕ ∼ x means that ϕ∈ L1(μ)∩C1(Rd) and satisfies
(i) ‖ϕ‖L1(μ) ≤ 1;

(ii) 0≤ ϕ(y)≤ 1/|y− x|n for all y ∈Rd;
(iii) |∇ϕ(y)| ≤ 1/|y− x|n+1 for all y ∈Rd, where∇= (∂/∂x1, . . . ,∂/∂xd).

Definition 2.8. The Hardy space H1(μ) is the set of all functions f ∈ L1(μ) satisfying that∫
Rd f dμ= 0 and �Φ f ∈ L1(μ). Moreover, we define the norm of f ∈H1(μ) by

‖ f ‖H1(μ) = ‖ f ‖L1(μ) +
∥
∥�Φ( f )

∥
∥
L1(μ). (2.6)

On the Hardy space, Tolsa established the following atomic characterization (see [7,
9]).

Definition 2.9. Let η > 1 and 1 < p ≤∞. A function b ∈ L1
loc(μ) is called a p-atomic block

if
(i) there exists some cube R such that supp(b)⊂ R;

(ii)
∫
Rd b(x)dμ(x)= 0;

(iii) for j = 1,2, there exist functions aj supported on cubes Qj ⊂ R and numbers
λj ∈R such that b = λ1a1 + λ2a2, and

∥
∥aj

∥
∥
Lp(μ) ≤

[
μ
(
ηQj

)]1/p−1[
1 + δ

(
Qj ,R

)]−1
. (2.7)

We then let |b|H1,p
atb (μ) = |λ1|+ |λ2|.

A function f ∈ L1(μ) is said to belong to the space H
1,p
atb (μ) if there exist p-atomic

blocks {bi}i∈N such that f =∑∞
i=1 bi with

∑∞
i=1 |bi|H1,p

atb (μ) <∞. The H
1,p
atb (μ) norm of f

is defined by ‖ f ‖H1,p
atb (μ) = inf{∑∞

i=1 |bi|H1,p
atb (μ)}, where the infimum is taken over all the

possible decompositions of f in p-atomic blocks as above.

Remark 2.10. It was proved in [7, 9] that the definition of H
1,p
atb (μ) in [7] is independent

of the chosen constant η > 1, and for any 1 < p <∞, all the atomic Hardy spaces H
1,p
atb (μ)

coincide with H1,∞
atb (μ) with equivalent norms. Moreover, Tolsa proved that H1,∞

atb (μ) co-
incides with H1(μ) with equivalent norms (see [9, Theorem 1.2]). Thus, in the rest of

this paper, we identify the atomic Hardy space H
1,p
atb (μ) with H1(μ), and when we use the

atomic characterization of H1(μ), we always assume η = 2 and p =∞ in Definition 2.9.

Definition 2.11. Let η ∈ (1,∞). A function f ∈ L1
loc(μ) is said to be in the space RBMO(μ)

if there exists some constant C̃ ≥ 0 such that for any cube Q centered at some point of
supp(μ),

1
μ(ηQ)

∫

Q

∣
∣ f (y)−mQ̃( f )

∣
∣dμ(y)≤ C̃, (2.8)
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and for any two doubling cubes Q ⊂ R,

∣
∣mQ( f )−mR( f )

∣
∣≤ C̃

[
1 + δ(Q,R)

]
, (2.9)

wheremQ( f ) denotes the mean of f over cubeQ, namely,mQ( f )=(1/μ(Q))
∫
Q f (y)dμ(y).

Moreover, we define the RBMO(μ) norm of f by the minimal constant C̃ as above and
denote it by ‖ f ‖RBMO(μ).

Remark 2.12. It was proved by Tolsa [7] that the definition of RBMO(μ) is indepen-
dent of the choices of η. As a result, throughout this paper, we always assume η = 2 in
Definition 2.11.

The following space RBLO(μ) was introduced in [1]. It is obvious that L∞(μ)
⊂ RBLO(μ)⊂ RBMO(μ).

Definition 2.13. A function f ∈ L1
loc(μ) is said to belong to the space RBLO(μ) if there

exists some constant C̃ ≥ 0 such that for any doubling cube Q,

1
μ(Q)

∫

Q

[
f (x)− ess inf

Q
f (y)

]
dμ(x)≤ C̃, (2.10)

and for any two doubling cubes Q ⊂ R,

mQ( f )−mR( f )≤ C̃
[
1 + δ(Q,R)

]
. (2.11)

The minimal constant C̃ as above is defined to be the norm of f in the space RBLO(μ)
and denote it by ‖ f ‖RBLO(μ).

Remark 2.14. Let η ∈ (1,∞). It was proved in [17] that we obtain an equivalent norm of
RBLO(μ) if (2.10) and (2.11) in Definition 2.13 are, respectively, replaced by that there ex-
ists a nonnegative constant C̃ such that for any cube Q centered at some point of supp(μ),

1
μ(ηQ)

∫

Q

[
f (x)− ess inf

Q̃
f (y)

]
dμ(x)≤ C̃, (2.12)

and for any two doubling cubes Q ⊂ R,

ess inf
Q

f (y)− ess inf
R

f (y)≤ C̃
[
1 + δ(Q,R)

]
. (2.13)

If Rd is not an initial cube, letting {R− j}∞j=0 be as in Definition 2.4, we then define

the set �= {Q ⊂Rd : there exists a cube P ⊂Q and j ∈N∪{0} such that P ⊂ R− j with
δ(P,R− j)≤ ( j + 1)A+ ε1}. If Rd is an initial cube, we define the set �= {Q ⊂Rd : there
exists a cube P ⊂Q such that δ(P,Rd)≤A+ ε1}.
Remark 2.15. In [17], it was pointed out that if Q ∈�, then any R containing Q is also in
� and the definition of the set � is independent of the chosen reference {R− j} j∈N∪{0} in
the sense modulo some small error (the error is no more than 2ε1 + ε0); see also [8, page
68]. Moreover, it was also proved in [17] that if μ is the d-dimensional Lebesgue measure
on Rd, then for any cube Q⊂Rd, Q ∈� if and only if l(Q) � 1.
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In [17], we used the set � to introduce the local Hardy spaces h
1,p
atb,η(μ), p ∈ (1,∞], in

the sense of Goldberg [19].

Definition 2.16. For a fixed η ∈ (1,∞) and p ∈ (1,∞], a function b ∈ L1
loc(μ) is called a

p-atomic block if it satisfies (i), (ii), and (iii) of Definition 2.9. A function b ∈ L1
loc(μ)

is called a p-block if it only satisfies (i) and (iii) of Definition 2.9. In both cases, we let
|b|h1,p

atb,η(μ) =
∑2

j=1 |λj|.
Moreover, a function f ∈ L1(μ) is said to belong to the space h

1,p
atb,η(μ) if there exist

p-atomic blocks or p-blocks {bi}i such that f =∑i bi and
∑

i |bi|h1,p
atb,η(μ) <∞, where bi

is a p-atomic block if supp(bi) ⊂ Ri with Ri /∈�, while bi is a p-block if supp(bi) ⊂ Ri

and Ri ∈�. We define the h
1,p
atb,η(μ) norm of f by letting ‖ f ‖h1,p

atb,η(μ) = inf{∑i |bi|h1,p
atb,η(μ)},

where the infimum is taken over all possible decompositions of f in p-atomic blocks or
p-blocks as above.

Remark 2.17. It was proved in [17] that the definition of h
1,p
atb,η(μ) is independent of the

chosen constant η > 1, and for any 1 < p <∞, all the atomic Hardy spaces h
1,p
atb,η(μ) co-

incide with h1,∞
atb,η(μ) with equivalent norms. Thus, in the rest of this paper, we always

assume η = 2 and p =∞ in Definition 2.16.

In what follows, for any cube R and x ∈ R∩ supp(μ), let Hx
R be the largest integer

k such that R ⊂ Qx,k. The following properties of Hx
R play key roles in the proofs of all

theorems in this paper, whose proofs can be found in [17].

Lemma 2.18. The following properties hold.
(a) For any cube R and x ∈ R∩ supp(μ), Qx,Hx

R+1 ⊂ 3R and 5R⊂Qx,Hx
R−1.

(b) For any cube R, x ∈ R∩ supp(μ) and k ∈ Z with k ≥Hx
R + 2, Qx,k ⊂ (7/5)R.

(c) For any cube R⊂Rd and x, y ∈ R∩ supp(μ), |Hx
R−H

y
R| ≤ 1.

(d) If Rd is not an initial cube, then for any cube R and x ∈ R∩ supp(μ), Hx
R ≤ 1 when

R ∈� and Hx
R ≥ 0 when R /∈�. If Rd is an initial cube, then 0 ≤Hx

R ≤ 1 for any
cube R∈� and x ∈ R∩ supp(μ).

(e) For any cube R and x ∈ R ∩ supp(μ), there exists a constant C > 0 such that
δ(R,Qx,Hx

R
)≤ C and δ(Qx,Hx

R+1,R)≤ C.

3. Uniform boundedness in H1(μ) and RBLO(μ)

This section is devoted to establishing the boundedness for approximations of the identity
in the spaces H1(μ) and RBLO(μ).

Theorem 3.1. For any k ∈ Z, let Sk be as in Section 2. Then there exists a constant C > 0
independent of k such that for all f ∈H1(μ),

∥
∥Sk( f )

∥
∥
H1(μ) ≤ C‖ f ‖H1(μ). (3.1)

Proof. We use some ideas from [20]. By the Fatou lemma, to show Theorem 3.1, it suffices
to prove that for any ∞-atomic block b =∑2

j=1 λjaj as in Definition 2.9, �Φ(Sk(b)) ∈
L1(μ) and ‖�Φ(Sk(b))‖L1(μ) �

∑2
j=1 |λj|, where �Φ is the maximal operator as in
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Definition 2.7. Moreover, if k ≤ 0 and Rd is an initial cube, then Sk = 0, and Theorem 3.1
holds automatically in this case. Therefore, we may assume that Rd is not an initial cube
when k ≤ 0. Using the notation as in Definition 2.9 and choosing any x0 ∈ supp(μ)∩R,
we now consider the following two cases: (1) k ≤Hx0

R ; (2) k ≥Hx0
R + 1.

In case (1), write

∥
∥�Φ

(
Sk(b)

)∥∥
L1(μ) =

∫

8R
�Φ

(
Sk(b)

)
(x)dμ(x) +

∫

Rd\8R
··· ≡ I + II. (3.2)

Since �Φ is sublinear, we have that

I ≤
2∑

j=1

∣
∣λj

∣
∣
∫

8R
�Φ

(
Sk
(
aj
))

(x)dμ(x)

=
2∑

j=1

∣
∣λj

∣
∣
∫

2Qj

�Φ
(
Sk
(
aj
))

(x)dμ(x) +
2∑

j=1

∣
∣λj

∣
∣
∫

8R\2Qj

··· ≡ I1 + I2.

(3.3)

By (A-2) and (A-4), we see that for any x ∈ 2Qj , j = 1, 2, and ϕ ∼ x,

∣
∣
∣
∣

∫

Rd
ϕ(y)Sk

(
aj
)
(y)dμ(y)

∣
∣
∣
∣≤

∫∫

Rd
ϕ(y)Sk(y,z)

∣
∣aj(z)

∣
∣dμ(z)dμ(y)≤ ∥∥aj

∥
∥
L∞(μ), (3.4)

which implies that �Φ(Sk(aj))(x)≤ ‖aj‖L∞(μ). This together with (2.7) further yields

I1 ≤
2∑

j=1

∣
∣λj

∣
∣
∥
∥aj

∥
∥
L∞(μ)μ

(
2Qj

)
�

2∑

j=1

∣
∣λj

∣
∣. (3.5)

On the other hand, for any x ∈ 8R \ 2Qj and z ∈Qj , j = 1, 2, |x− z|∼ |x− xj|, where
xj denotes the center of Qj . This observation together with the fact that for any x, y,z ∈
Rd, if |y− z| < (1/2)|x− z|, then |x− z| < 2|x− y|. The properties (A-2) and (A-4) imply
that for any x ∈ 8R \ 2Qj , ϕ ∼ x and z ∈Qj ,

∫

Rd
ϕ(y)Sk(y,z)dμ(y) �

∫

|y−z|≥(1/2)|x−z|
ϕ(y)
|y− z|n dμ(y) +

∫

|y−z|<(1/2)|x−z|
Sk(y,z)
|x− y|n dμ(y)

�
∫

|y−z|≥(1/2)|x−z|
ϕ(y)
|x− z|n dμ(y) +

∫

|y−z|<(1/2)|x−z|
Sk(y,z)
|x− z|n dμ(y)

� 1
∣
∣x− xj

∣
∣n .

(3.6)
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From this fact and (2.7), it then follows that

∣
∣
∣
∣

∫

Rd
ϕ(y)Sk

(
aj
)
(y)dμ(y)

∣
∣
∣
∣≤

∫

Qj

∣
∣aj(z)

∣
∣
∫

Rd
ϕ(y)Sk(y,z)dμ(y)dμ(z)

� 1
∣
∣x− xj

∣
∣n
∥
∥aj

∥
∥
L∞(μ)μ

(
Qj
)
� 1
∣
∣x− xj

∣
∣n

1
1 + δ

(
Qj ,R

) .

(3.7)

Thus, for any x ∈ 8R \ 2Qj ,

�Φ
(
Sk
(
aj
))

(x) � 1
∣
∣x− xj

∣
∣n

1
1 + δ

(
Qj ,R

) . (3.8)

Moreover, by [8, Lemma 3.1 (a) and (d)], we obtain

δ
(
2Qj ,8R

)≤ δ
(
Qj ,8R

)
� 1 + δ

(
Qj ,R

)
+ δ(R,8R) � 1 + δ

(
Qj ,R

)
. (3.9)

Therefore, it follows that

I2 �
2∑

j=1

∣
∣λj

∣
∣ δ
(
2Qj ,8R

)

1 + δ
(
Qj ,R

) �
2∑

j=1

∣
∣λj

∣
∣. (3.10)

To estimate II , by the observation that
∫
Rd Sk(b)(x)dμ(x)= 0, we write

II ≤
∫

Rd\8R
sup
ϕ∼x

∣
∣
∣
∣

∫

Rd
Sk(b)(y)

[
ϕ(y)−ϕ

(
x0
)]
dμ(y)

∣
∣
∣
∣dμ(x)

≤
∫

Rd\8R
sup
ϕ∼x

∫

2R

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)dμ(x)

+
∫

Rd\8R
sup
ϕ∼x

∣
∣
∣
∣

∫

Rd\2R
Sk(b)(y)

[
ϕ(y)−ϕ

(
x0
)]
dμ(y)

∣
∣
∣
∣dμ(x)≡ II1 + II2.

(3.11)

Notice that for any y ∈ 2R and x ∈ 2m+1R \ 2mR with m ≥ 3, |x− x0| ≥ l(2m−2R), and
|x0 − y| ≤ 2

√
dl(R), which implies that |y − x0| � |x0 − x|. This fact together with the

mean value theorem yields that for any ϕ ∼ x,

∣
∣ϕ(y)−ϕ

(
x0
)∣∣�

∣
∣y− x0

∣
∣

∣
∣x0− x

∣
∣n+1 . (3.12)

Moreover, letNj be the smallest integer k such that 2R⊂ 2kQj . Because {Sk}k are bounded
on L2(μ) uniformly, (A-4) together with the Hölder inequality, [8, Lemma 3.1], (3.12),



10 Journal of Inequalities and Applications

and (2.7) leads to

II1 ≤
2∑

j=1

∣
∣λj

∣
∣

∞∑

m=3

∫

2m+1R\2mR

{

sup
ϕ∼x

∫

2R\2Qj

∣
∣Sk
(
aj
)
(y)
∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)

+ sup
ϕ∼x

∫

2Qj

∣
∣Sk
(
aj
)
(y)
∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)

}

dμ(x)

�
2∑

j=1

∣
∣λj

∣
∣
∞∑

m=3

∫

2m+1R\2mR
l(R)

[
l
(
2mR

)]n+1

{∫

2R\2Qj

∫

Qj

∣
∣aj(z)

∣
∣

|y− z|n dμ(z)dμ(y)

+
[
μ
(
2Qj

)]1/2
[∫

2Qj

∣
∣Sk
(
aj
)
(y)
∣
∣2
dμ(y)

]1/2
}

dμ(x)

� l(R)
2∑

j=1

∣
∣λj

∣
∣

∞∑

m=3

μ
(
2m+1R

)

[
l
(
2mR

)]n+1

{Nj−1∑

i=1

∫

2i+1Qj\2iQj

∫

Qj

∥
∥aj

∥
∥
L∞(μ)

|y− z|n dμ(z)dμ(y)

+
[
μ
(
2Qj

)]1/2
[∫

Qj

∣
∣aj(y)

∣
∣2
dμ(y)

]1/2
}

�
2∑

j=1

∣
∣λj

∣
∣
∥
∥aj

∥
∥
L∞(μ)

{Nj−1∑

i=1

μ
(
2i+1Qj

)

[
l
(
2iQj

)]n μ
(
Qj
)

+μ
(
2Qj

)
}

�
2∑

j=1

∣
∣λj

∣
∣
(1 + δ

(
2Qj ,2R

)

1 + δ
(
Qj ,R

) + 1
)

�
2∑

j=1

∣
∣λj

∣
∣.

(3.13)

To estimate II2, we write

II2 ≤
∞∑

m=3

∫

2m+1R\2mR
�Φ

(
Sk(b)χ2m+2R\2m−1R

)
(x)dμ(x)

+
∞∑

m=3

∫

2m+1R\2mR
sup
ϕ∼x

∫

2m+2R\2m−1R

∣
∣Sk(b)(y)

∣
∣ϕ
(
x0
)
dμ(y)dμ(x)

+
∞∑

m=3

∫

2m+1R\2mR
sup
ϕ∼x

∫

Rd\2m+2R

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)dμ(x)

+
∞∑

m=3

∫

2m+1R\2mR
sup
ϕ∼x

∫

2m−1R\2R

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)dμ(x)

≡ E1 +E2 +E3 +E4.

(3.14)
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Since �Φ is bounded from H1(μ) to L1(μ) (see [9, Lemma 3.1]) and bounded on L∞(μ),
then it is bounded on Lp(μ) for any p ∈ (1,∞) by an argument similar to the proof of [7,
Theorem 7.2]. The only difference is that in the current case, we do not need to invoke the
sharp operator �� in [7, equation (6.4)]. On the other hand, by (A-3) and (A-1), we have
supp(Sk(b))⊂∪y∈RQy,k−1, which together with k ≤Hx0

R and [8, Lemma 4.2 (c)] further
implies that supp(Sk(b)) ⊂ Qx0,k−2. These facts together with the Hölder inequality lead
to

E1 ≤
∞∑

m=3

{∫

2m+1R\2mR

[
�Φ

(
Sk(b)χ2m+2R\2m−1R

)
(x)
]2
dμ(x)

}1/2
[
μ
(
2m+1R

)]1/2

�
∞∑

m=3

{∫

(2m+2R\2m−1R)∩(Qx0,k−2)

[
Sk(b)(x)

]2
dμ(x)

}1/2
[
μ
(
2m+1R

)]1/2
.

(3.15)

Let m0 be the largest integer and m1 be the smallest integer satisfying

2m0R⊂ 2Qx0,k ⊂Qx0,k−2 ⊂ 2m1R. (3.16)

Then [8, Lemma 3.1] along with the facts that l(2m0R) ∼ l(2Qx0,k) and that l(2m1R) ∼

l(Qx0,k−2) yields

δ
(
2m0R,2m1R

)
� 1 + δ

(
2Qx0,k,Qx0,k−2

)
� 1. (3.17)

If m≥m1 + 1, then Qx0,k−2∩ (2m+2R \ 2m−1R)=∅, and if m≤m0− 2, then

(
Qx0,k−2 \ 2Qx0,k

)∩ (2m+2R \ 2m−1R
)=∅. (3.18)

It then follows that

E1 �
m1∑

m=3

{∫

(2m+2R\2m−1R)∩(2Qx0,k)

[
Sk(b)(x)

]2
dμ(x)

}1/2
[
μ
(
2m+1R

)]1/2

+
m1∑

m=m0−1

{∫

(2m+2R\2m−1R)∩(Qx0,k−2\2Qx0,k)

[
Sk(b)(x)

]2
dμ(x)

}1/2
[
μ
(
2m+1R

)]1/2
.

(3.19)
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Let us estimate the first term. By the vanishing moment of b together with (A-5), (A-1),
and R⊂Qx0,k for k ≤Hx0

R ,

∣
∣Sk(b)(x)

∣
∣≤

∫

R

∣
∣Sk(x,z)− Sk

(
x,x0

)∣∣
∣
∣b(z)

∣
∣dμ(z)

�
∫

R

∣
∣x0− z

∣
∣
∣
∣b(z)

∣
∣

l
(
Qx0,k

)[
l
(
Qx0,k

)
+
∣
∣x0− x

∣
∣]n dμ(z)

�
l(R)‖b‖L1(μ)

l
(
Qx0,k

)[
l
(
Qx0,k

)
+
∣
∣x0− x

∣
∣]n .

(3.20)

For any x ∈ 2m+2R \ 2m−1R with m≥ 3, if x ∈ 2Qx0,k, then |x− x0|� l(Qx0,k). This obser-
vation together with (3.20) implies that

{∫

(2m+2R\2m−1R)∩2Qx0,k

[
Sk(b)(x)

]2
dμ(x)

}1/2

� l(R)‖b‖L1(μ)

{∫

2m+2R\2m−1R

1
∣
∣x0− x

∣
∣2(n+1) dμ(x)

}1/2

� l(R)‖b‖L1(μ)

[
μ
(
2m+2R

)]1/2

[
l
(
2mR

)]n+1 .

(3.21)

Moreover, another application of (3.20) leads to that

{∫

(2m+2R\2m−1R)∩
(
Qx0,k−2\2Qx0,k

)
[
Sk(b)(x)

]2
dμ(x)

}1/2

� ‖b‖L1(μ)

{∫

2m+2R\2m−1R

1
∣
∣x0− x

∣
∣2n dμ(x)

}1/2

� ‖b‖L1(μ)

[
μ
(
2m+2R

)]1/2

[
l
(
2mR

)]n .

(3.22)

Combining these estimates above, by (1.1), we obtain that

E1 � ‖b‖L1(μ)

{ m1∑

m=3

l(R)μ
(
2m+2R

)

[
l
(
2mR

)]n+1 +
m1∑

m=m0−1

μ
(
2m+2R

)

[
l
(
2mR

)]n

}

�
[
1 + δ

(
2Qx0,k,Qx0,k−2

)]‖b‖L1(μ) �
2∑

j=1

∣
∣λj

∣
∣,

(3.23)

where in the last-to-second inequality, we use the following fact that for any cube R,

m1∑

m=m0−1

μ
(
2m+1R

)

[
l
(
2mR

)]n ∼ 1 + δ
(
2m0R,2m1R

)
. (3.24)
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Similarly, it follows from (3.17), (3.20), (3.24), (1.1), and supϕ∼x ϕ(x0) ≤ 1/|x− x0|n
that

E2 �
m1∑

m=3

∫

2m+1R\2mR
sup
ϕ∼x

ϕ
(
x0
)
∫

2m+2R\2m−1R

l(R)‖b‖L1(μ)

l
(
Qx0,k

)∣∣x0− y
∣
∣n dμ(y)dμ(x)

� ‖b‖L1(μ)

{ m1∑

m=3

∫

2m+1R\2mR

l(R)
∣
∣x0− x

∣
∣n

∫

(2m+2R\2m−1R)∩2Qx0,k

1
∣
∣x0− y

∣
∣n+1 dμ(y)dμ(x)

+
m1∑

m=m0−1

∫

2m+1R\2mR

1
∣
∣x0− x

∣
∣n

×
∫

(2m+2R\2m−1R)∩
(
Qx0,k−2\2Qx0,k

)
1

∣
∣x0− y

∣
∣n dμ(y)dμ(x)

}

� ‖b‖L1(μ)

{ m1∑

m=3

l(R)μ
(
2m+2R

)

[
l
(
2mR

)]n+1 +
m1∑

m=m0−1

μ
(
2m+1R

)

[
l
(
2mR

)]n δ
(
2Qx0,k,Qx0,k−2

)
}

�
2∑

j=1

∣
∣λj

∣
∣.

(3.25)

Now we estimate E3. Recalling that supp(Sk(b))⊂Qx0,k−2 ⊂ 2m1R, we see

E3 =
m1−3∑

m=3

∫

2m+1R\2mR
sup
ϕ∼x

∫

Rd\2m+2R

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)dμ(x). (3.26)

For any m≤m1− 3, any x ∈ 2m+1R \ 2mR and y ∈ 2i+1R \ 2iR with i≥m+ 2, it is easy to
see that

∣
∣x0− x

∣
∣� 2ml(R), |y− x|� 2ml(R). (3.27)

Using (3.20) again, we have

sup
ϕ∼x

∫

Rd\2m+2R

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)

�
∞∑

i=m+2

∫

(2i+1R\2iR)∩Qx0,k−2

l(R)‖b‖L1(μ)

l
(
Qx0,k

)∣∣x0− y
∣
∣n

(
1

|y− x|n +
1

∣
∣x0− x

∣
∣n

)
dμ(y)

�
‖b‖L1(μ)
[
l
(
2mR

)]n

m1−3∑

i=m+2

∫

(2i+1R\2iR)∩Qx0,k−2

l(R)

l
(
Qx0,k

)∣∣x0− y
∣
∣n dμ(y)

�
‖b‖L1(μ)
[
l
(
2mR

)]n

m1−3∑

i=m+2

{∫

(2i+1R\2iR)∩2Qx0,k

l(R)
∣
∣x0− y

∣
∣n+1 dμ(y).

+
∫

(2i+1R\2iR)∩(Qx0,k−2\2Qx0,k)

l(R)

l
(
Qx0,k

)∣∣x0− y
∣
∣n dμ(y)

}

.

(3.28)
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Therefore, from (3.17), (3.20), (3.24), and (1.1), it follows that

E3 � ‖b‖L1(μ)

{m1−3∑

m=3

μ
(
2m+1R

)

[
l
(
2mR

)]n

m1−3∑

i=m+2

∫

(2i+1R\2iR)∩2Qx0,k

l(R)
∣
∣x0− y

∣
∣n+1 dμ(y)

+
m1−3∑

m=m0−1

μ
(
2m+1R

)

[
l
(
2mR

)]n

m1−3∑

i=m+2

∫

(2i+1R\2iR)∩(Qx0,k−2\2Qx0,k)

1
∣
∣x0− y

∣
∣n dμ(y)

+
m0−2∑

m=3

μ
(
2m+1R

)

[
l
(
2mR

)]n

m1−3∑

i=m+2

∫

(2i+1R\2iR)∩(Qx0,k−2\2Qx0,k)

l(R)

l
(
Qx0,k

)∣∣x0− y
∣
∣n dμ(y)

}

� ‖b‖L1(μ)

{m1−3∑

m=3

m1−3∑

i=m+2

μ
(
2i+1R

)
l(R)

[
l
(
2iR
)]n+1 +

m1−3∑

m=m0−1

μ
(
2m+1R

)

[
l
(
2mR

)]n

m1−3∑

i=m0+1

μ
(
2i+1R

)

[
l
(
2iR
)]n

+
m0−2∑

m=3

m0∑

i=m+2

μ
(
2i+1R

)
l(R)

[
l
(
2iR
)]n+1 +

m0−2∑

m=3

m1−3∑

i=m0

μ
(
2i+1R

)

[
l
(
2iR
)]n

l(R)
l
(
2mR

)

}

� ‖b‖L1(μ)
[
1 + δ

(
2Qx0,k,Qx0,k−2

)]2 �
2∑

j=1

∣
∣λj

∣
∣,

(3.29)

where in the third-to-last inequality, we used the facts that if i≤m0, then l(2iR)≤ l(Qx0,k)
and that if m≤m0− 2, then l(2mR)≤ l(Qx0,k).

Now we estimate E4. Notice that ifm≤m0 + 1, then (2m−1R \ 2R)∩ (Qx0,k−2 \ 2Qx0,k)=
∅. Therefore, by supp(Sk(b))⊂Qx0,k−2, we have

E4 ≤
∞∑

m=3

∫

2m+1R\2mR
sup
ϕ∼x

∫

(2m−1R\2R)∩2Qx0,k

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)dμ(x)

+
m1−1∑

m=m0+2

∫

2m+1R\2mR
sup
ϕ∼x

∫

(2m−1R\2R)∩(Qx0,k−2\2Qx0,k)
···

+
∞∑

m=m1

∫

2m+1R\2mR
sup
ϕ∼x

∫

(2m−1R\2R)∩(Qx0,k−2\2Qx0,k)
··· ≡ J1 + J2 + J3.

(3.30)

Observing that (3.12) holds for any y ∈ 2m−1R \ 2R and x ∈ 2m+1R \ 2mR with m≥ 3, by
(3.12), (3.20), and (1.1), we see that

sup
ϕ∼x

∫

(2m−1R\2R)∩2Qx0,k

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)

�
∫

(2m−1R\2R)∩2Qx0,k

∣
∣Sk(b)(y)

∣
∣ l

(
Qx0,k

)

∣
∣x0− x

∣
∣n+1 dμ(y)

�
l(R)‖b‖L1(μ)
∣
∣x0− x

∣
∣n+1

∫

(2m−1R\2R)∩2Qx0,k

1
[
l
(
Qx0,k

)
+
∣
∣x0− y

∣
∣]n dμ(y) �

l(R)‖b‖L1(μ)
∣
∣x0− x

∣
∣n+1 .

(3.31)
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From this fact and (1.1), it follows that

J1 � ‖b‖L1(μ)l(R)
∞∑

m=3

∫

2m+1R\2mR

1
∣
∣x0− x

∣
∣n+1 dμ(x) �

2∑

j=1

∣
∣λj

∣
∣. (3.32)

On the other hand, since (3.27) holds for any x ∈ 2m+1R \ 2mR and y ∈ 2m−1R \ 2R
with m≥ 3, by (3.17), (3.20), and (3.24) together with Definition 2.7 (ii),

J2 �
m1−1∑

m=m0+2

∫

2m+1R\2mR

∫

(2m−1R\2R)∩(Qx0,k−2\2Qx0,k)

‖b‖L1(μ)l(R)

l
(
Qx0,k

)∣∣x0− y
∣
∣n

×
(

1
|y− x|n +

1
∣
∣x0− x

∣
∣n

)
dμ(y)dμ(x)

� ‖b‖L1(μ)

m1−1∑

m=m0+2

μ
(
2m+1R

)

[
l
(
2mR

)]n

∫

Qx0,k−2\2Qx0,k

1
∣
∣x0− y

∣
∣n dμ(y) �

2∑

j=1

∣
∣λj

∣
∣.

(3.33)

Finally, using (3.27), (3.12), (3.17), (3.20), (1.1), and the fact that for any y ∈Qx0,k−2,
|x0− y|� l(2m1R), we have

J3 �
∞∑

m=m1

∫

2m+1R\2mR

∫

Qx0,k−2\2Qx0,k

‖b‖L1(μ)
∣
∣x0− y

∣
∣n

l
(
2m1R

)

∣
∣x0− x

∣
∣n+1 dμ(y)dμ(x)

� ‖b‖L1(μ)

∞∑

m=m1

l
(
2m1R

)
μ
(
2m+1R

)

[
l
(
2mR

)]n+1 �
2∑

j=1

∣
∣λj

∣
∣.

(3.34)

Combining the estimates for J1, J2, and J3 completes the proof of Theorem 3.1 in case (1).
In case (2), we further consider the following two subcases. Subcase (i) k ≥ Hx0

R + 1
and for all y ∈ R∩ supp(μ), R �⊂Qy,k−1. In this subcase, it is easy to see that for any y ∈ R,
Qy,k−1 ⊂ 4R, which together with supp(Sk(b)) ⊂ ∪y∈RQy,k−1 implies that supp(Sk(b)) ⊂
4R. Let I and II be as in case (1). We also have ‖�Φ(Sk(b))‖L1(μ)≤ I+II and I �

∑2
j=1 |λj|.

On the other hand, since supp(Sk(b))⊂ 4R, similar to the estimate for II1 in case (1) with
2R replaced by 4R, we obtain

II ≤
∫

Rd\8R
sup
ϕ∼x

∫

4R

∣
∣Sk(b)(y)

∣
∣
∣
∣ϕ(y)−ϕ

(
x0
)∣∣dμ(y)dμ(x) �

2∑

j=1

∣
∣λj

∣
∣. (3.35)

Subcase (ii) k ≥Hx0
R + 1 and there exists some y0 ∈ R∩ supp(μ) such that R⊂Qy0,k−1.

In this subcase, by applying [8, Lemma 4.2], we see that supp(Sk(b)) ⊂ ∪y∈RQy,k−1 ⊂
Qy0,k−2 ⊂Qx0,k−3. Then

∥
∥�Φ

(
Sk(b)

)∥∥
L1(μ) =

∫

4Qx0,k−3

�Φ
(
Sk(b)

)
(x)dμ(x) +

∫

Rd\4Qx0,k−3

··· ≡ F1 +F2. (3.36)
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Arguing as in the estimate for II1 in case (1) with 2R replaced by Qx0,k−3 again, we have
F2 �

∑2
j=1 |λj|. On the other hand, by the fact that �Φ is sublinear, we obtain

F1 ≤
2∑

j=1

∣
∣λj

∣
∣
∫

2Qj

�Φ
(
Sk
(
aj
))

(x)dμ(x) +
2∑

j=1

∣
∣λj

∣
∣
∫

4Qx0,k−3\2Qj

··· ≡ L1 +L2. (3.37)

Since the argument of I1 in case (1) still works for L1, it suffices to show L2 �
∑2

j=1 |λj|.
However, because R ⊂ Qy0,k−1, we obtain that k ≤ H

y0

R + 1. This fact together with
Lemma 2.18(c) leads to that k ≤ Hx0

R + 2. Then by the assumption that Hx0
R + 1 ≤ k to-

gether with [8, Lemma 3.1] and Lemma 2.18(e) implies δ(R,Qx0,k−2) � 1 + δ(R,Qx0,H
x0
R

) +
δ(Qx0,H

x0
R

,Qx0,k−2) � 1. Moreover, another application of [8, Lemma 3.1] yields

δ
(
2Qj ,4Qx0,k−2

)≤ δ
(
Qj ,4Qx0,k−2

)

� 1 + δ
(
Qj ,R

)
+ δ
(
R,Qx0,k−2

)
+ δ
(
Qx0,k−2,4Qx0,k−2

)

� 1 + δ
(
Qj ,R

)
.

(3.38)

Therefore, arguing as in case (1), we have

L2 �
2∑

j=1

∣
∣λj

∣
∣δ
(
2Qj ,4Qx0,k−2

)

1 + δ
(
Qj ,R

) �
2∑

j=1

∣
∣λj

∣
∣, (3.39)

which completes the proof of Theorem 3.1. �

For any k ∈ Z, from Theorem 3.1, the linearity of Sk, the fact that (H1(μ))∗=RBMO(μ),
and a dual argument, it is easy to deduce the uniform boundedness of Sk in RBMO(μ).
We omit the details.

Corollary 3.2. For any k ∈ Z, let Sk be as in Section 2. Then there exists a constant C > 0
independent of k such that for all f ∈ RBMO(μ),

∥
∥Sk( f )

∥
∥

RBMO(μ) ≤ C‖ f ‖RBMO(μ). (3.40)

We now consider the uniform boundedness of Sk in RBLO(μ). To this end, we first
establish the following lemma, which is a version of [18, Lemma 3.1] for RBLO(μ).

Lemma 3.3. There exists a constant C > 0 such that for any two cubes Q ⊂ R and f ∈
RBLO(μ),

∫

R

∣
∣
∣ f (y)− ess inf y∈Q̃ f (y)

∣
∣
∣

[∣∣y− xQ
∣
∣+ l(Q)

]n dμ(y)≤ C
[
1 + δ(Q,R)

]2‖ f ‖RBLO(μ). (3.41)

Proof. The proof of this lemma can be conducted as that of [18, Lemma 3.1]. Alterna-
tively, since RBLO(μ)⊂ RBMO(μ), we can also deduce it from [18, Lemma 3.1] as below.
From Definition 2.13, it is easy to see that for any f ∈ RBLO(μ) and cube Q,

mQ̃( f )− ess inf
y∈Q̃

f (y)≤ ‖ f ‖RBLO(μ). (3.42)
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Therefore, an easy computation involving [18, Lemma 3.1] and (1.1) yields

∫

R

∣
∣
∣ f (y)− ess inf y∈Q̃ f (y)

∣
∣
∣

[∣∣y− xQ
∣
∣+ l(Q)

]n dμ(y)

≤
∫

R

∣
∣ f (y)−mQ̃( f )

∣
∣

[∣∣y− xQ
∣
∣+ l(Q)

]n dμ(y) +
∫

R

mQ̃( f )− ess inf y∈Q̃ f (y)
[∣∣y− xQ

∣
∣+ l(Q)

]n dμ(y)

� [1 + δ(Q,R)
]2‖ f ‖RBLO(μ),

(3.43)

which completes the proof of Lemma 3.3. �

Theorem 3.4. For any k ∈ Z, let Sk be as in Section 2. Then Sk is uniformly bounded on
RBLO(μ), namely, there exists a nonnegative constant C independent of k such that for all
f ∈ RBLO(μ),

∥
∥Sk( f )

∥
∥

RBLO(μ) ≤ C‖ f ‖RBLO(μ). (3.44)

Proof. Without loss of generality, we may assume that ‖ f ‖RBLO(μ) = 1. We only need to
consider the case that Rd is not an initial cube, since if Rd is an initial cube, then for
any k ∈ N, the argument is similar; and for any k ≤ 0, Sk = 0, and Theorem 3.4 holds
automatically in this case. To this end, it suffices to show that for any doubling Q,

1
μ(Q)

∫

Q

[
Sk( f )(x)− ess inf

Q
Sk( f )(y)

]
dμ(x) � 1, (3.45)

and for any two doubling cubes Q ⊂ R,

mQ
(
Sk( f )

)−mR
(
Sk( f )

)
� 1 + δ(Q,R). (3.46)

To show (3.45), let us consider the following two cases:
(i) there exists some x0 ∈Q∩ supp(μ) such that Q ⊂Qx0,k−2;

(ii) for any x ∈Q∩ supp(μ), Q �⊂Qx,k−2.
In case (i), for each x ∈Q,

Sk( f )(x)− ess inf
Q

Sk( f )(y)=
[
Sk( f )(x)− ess inf

Qx,k

f (y)
]

+
[

ess inf
Qx,k

f (y)− ess inf
Q

Sk( f )(y)
]

≡ I1 + I2.
(3.47)

It then follows from (A-3), (A-4), and Lemma 3.3 that

I1 �
∫

Qx,k−1

∣
∣
∣ f (y)− ess infQx,k f (y)

∣
∣
∣

[|x− y|+ l
(
Qx,k

)
]n

dμ(y) � 1. (3.48)

On the other hand, in this case, for any x, y ∈Q∩ supp(μ), we have that Qx,k and Qy,k are
contained in Qx,k−4 by [8, Lemma 4.2], which together with (2.13) and [8, Lemma 3.1]
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further yields

∣
∣
∣ess inf

Qx,k

f (y)− ess inf
Qy,k

f (y)
∣
∣
∣

≤
∣
∣
∣ess inf

Qx,k

f (y)− ess inf
Qx,k−4

f (y)
∣
∣
∣+

∣
∣
∣ess inf

Qx,k−4

f (y)− ess inf
Qy,k

f (y)
∣
∣
∣

� 1 + δ
(
Qx,k,Qx,k−4

)
+ δ
(
Qy,k,Qx,k−4

)

� 1 + δ
(
Qy,k,Qy,k−3

)
+ δ
(
Qy,k−3,Qx,k−4

)

� 1 + δ
(
Qy,k−3,Qy,k−5

)
� 1.

(3.49)

By this observation, (A-2) through (A-4) and Lemma 3.3, similar to the proof of (3.48),
we see that for any y ∈Q∩ supp(μ),

Sk( f )(y)− ess inf
Qx,k

f (z)

≤
∫

Qy,k−1

Sk(y,w)
∣
∣
∣ f (w)− ess inf

Qx,k

f (z)
∣
∣
∣dμ(w)

≤
∫

Qy,k−1

Sk(y,w)
∣
∣
∣ f (w)− ess inf

Qy,k

f (z)
∣
∣
∣dμ(w) +

∣
∣
∣ess inf

Qx,k

f (z)− ess inf
Qy,k

f (z)
∣
∣
∣� 1.

(3.50)

Taking the infimum over all doubling cubes containing y, we have I2 � 1, which com-
pletes the proof of case (i).

In case (ii), it easy to see that for any y ∈ Q∩ supp(μ), k ≥H
y
Q + 3. Then by Lemma

2.18(b), for any y ∈Q∩ supp(μ), Qy,k−1 ⊂ (7/5)Q. Therefore, for any x, y ∈Q,

Sk( f )(x)− Sk( f )(y)≤
[
Sk( f )(x)− ess inf

˜(7/5)Q

f (y)
]

+
[

ess inf
Qy,k

f (y)− Sk( f )(y)
]
≡ J1 + J2.

(3.51)

From the Tonelli theorem, (A-1), (A-2), (2.12), and the doubling property of Q, it follows
that

1
μ(Q)

∫

Q
J1dμ(x)≤ 1

μ(Q)

∫

(7/5)Q

∣
∣
∣
∣ f (w)− ess inf

˜(7/5)Q

f (y)
∣
∣
∣
∣dμ(w) � 1. (3.52)

On the other hand, (3.48) implies that J2 � 1, which verifies (3.45).
Now we estimate (3.46). As in the proof of (3.45), we consider the following three

cases:
(i) there exists some x0 ∈Q∩ supp(μ) such that R⊂Qx0,k−2;

(ii) for any x ∈Q∩ supp(μ), Q �⊂Qx,k−2;
(iii) for any x ∈ Q∩ supp(μ), R �⊂ Qx,k−2, and there exists some x0 ∈ Q∩ supp(μ)

such that Q ⊂Qx0,k−2.
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In case (i), (3.49) together with (3.48) leads to

mQ
(
Sk( f )

)−mR
(
Sk( f )

)

= 1
μ(Q)

1
μ(R)

∫

Q

∫

R

[
Sk( f )(x)− Sk( f )(y)

]
dμ(x)dμ(y)

≤ 1
μ(Q)

1
μ(R)

∫

Q

∫

R

{∣
∣
∣Sk( f )(x)− ess inf

z∈Qx,k

f (z)
∣
∣
∣+

∣
∣
∣ess inf

z∈Qx,k

f (z)− ess inf
z∈Qy,k

f (z)
∣
∣
∣

+
∣
∣
∣Sk( f )(y)− ess inf

z∈Qy,k

f (z)
∣
∣
∣
}
dμ(x)dμ(y) � 1.

(3.53)

In case (ii), Lemma 2.18(b) implies that for any x ∈ Q∩ supp(μ), Qx,k−1 ⊂ 7
5Q. By [8,

Lemma 3.1] and Remark 2.14,

∣
∣
∣
∣ ess inf
z∈˜(7/5)Q

f (z)− ess inf
z∈˜(7/5)R

f (z)
∣
∣
∣
∣≤

∣
∣
∣
∣ ess inf
z∈˜(7/5)Q

f (z)− ess inf
z∈Q

f (z)
∣
∣
∣
∣+

∣
∣
∣
∣ess inf

z∈Q
f (z)− ess inf

z∈˜(7/5)R

f (z)
∣
∣
∣
∣

� 1 + δ(Q,R).
(3.54)

This fact and the Tonelli theorem yield

mQ
(
Sk( f )

)−mR
(
Sk( f )

)

≤ 1
μ(Q)

1
μ(R)

∫

Q

∫

R

∣
∣Sk( f )(x)− Sk( f )(y)

∣
∣dμ(x)dμ(y)

≤ 1
μ(Q)

1
μ(R)

∫

Q

∫

R

{∣∣
∣
∣Sk( f )(x)− ess inf

z∈˜(7/5)Q

f (z)
∣
∣
∣
∣+

∣
∣
∣
∣ ess inf
z∈˜(7/5)Q

f (z)− ess inf
z∈˜(7/5)R

f (z)
∣
∣
∣
∣

+
∣
∣
∣
∣Sk( f )(y)− ess inf

z∈˜(7/5)R

f (z)
∣
∣
∣
∣

}
dμ(x)dμ(y) � 1 + δ(Q,R).

(3.55)

Finally, in case (iii), by [8, Lemma 3.1(e)] and the fact that for any x ∈ Q∩ supp(μ),
Qx,k−1 ⊂ (7/5)R, and Qx0,k−2 ⊂Qx,k−3, we have that for any x ∈Q∩ supp(μ),

∣
∣
∣
∣ess inf

z∈Qx,k

f (z)− ess inf
z∈˜(7/5)R

f (z)
∣
∣
∣
∣≤ 1 + δ

(
Qx,k,

7̃
5
R
)

� 1 + δ
(
Qx,k,Qx0,k−2

)
+ δ
(
Qx0,k−2,

7̃
5
R
)

� 1 + δ
(
Qx,k,Qx,k−3

)
+ δ
(
Q,

7̃
5
R
)

� 1 + δ(Q,R).

(3.56)
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From this, the Tonelli theorem, and (3.48), we deduce that

mQ
(
Sk( f )

)−mR
(
Sk( f )

)

≤ 1
μ(Q)

1
μ(R)

∫

Q

∫

R

{∣∣
∣
∣Sk( f )(x)− ess inf

z∈Qx,k

f (z)
∣
∣
∣
∣+

∣
∣
∣
∣ess inf

z∈Qx,k

f (z)− ess inf
z∈˜(7/5)R

f (z)
∣
∣
∣
∣

+
∣
∣
∣
∣ess inf
z∈˜(7/5)R

f (z)− Sk( f )(y)
∣
∣
∣
∣

}
dμ(x)dμ(y) � 1 + δ(Q,R),

(3.57)

which completes the proof of Theorem 3.4. �

4. Maximal operators in H1(μ) and h1,∞
atb (μ)

In this section, let S = {Sk}k∈Z be an approximation of the identity as in Section 2. We
then consider the following maximal operators: for any locally integrable function f ,
define

�̇S( f )(x)≡ sup
k∈Z

∣
∣Sk( f )(x)

∣
∣,

�S( f )(x)≡ sup
k∈N

∣
∣Sk( f )(x)

∣
∣.

(4.1)

Obviously, �S( f )(x)≤ �̇S( f )(x) for all x ∈Rd, which together with [8, Remark 8.1]
further implies the following lemma.

Lemma 4.1. Let p ∈ (1,∞]. Then there exists a constant Cp > 0 such that for all f ∈ Lp(μ),

∥
∥�S( f )

∥
∥
Lp(μ) ≤

∥
∥�̇S( f )

∥
∥
Lp(μ) ≤ Cp‖ f ‖Lp(μ) (4.2)

and there exists a constant C > 0 such that for all f ∈ L1(μ) and all λ > 0,

μ
({
x ∈Rd : �S( f )(x) > λ

})≤ μ
({
x ∈Rd : �̇S( f )(x) > λ

})≤ C

λ
‖ f ‖L1(μ). (4.3)

The following result further shows that �̇S is bounded from H1(μ) to L1(μ).

Theorem 4.2. There exists a nonnegative constant C such that for all f ∈H1(μ),

∥
∥�̇S( f )

∥
∥
L1(μ) ≤ C‖ f ‖H1(μ). (4.4)

Proof. Let b = λ1a1 + λ2a2 be any ∞-atomic block as in Definition 2.9. By the Fatou
lemma, to prove Theorem 4.2, it suffices to show that

∥
∥�̇S(b)

∥
∥
L1(μ) �

∣
∣λ1
∣
∣+

∣
∣λ2
∣
∣. (4.5)
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Since �̇S is sublinear, we write

∫

Rd
�̇S(b)(x)dμ(x)

=
∫

4R
�̇S(b)(x)dμ(x) +

∫

Rd\4R
�̇S(b)(x)dμ(x)

≤
2∑

j=1

∣
∣λj

∣
∣
∫

2Qj

�̇S
(
aj
)
(x)dμ(x) +

2∑

j=1

∣
∣λj

∣
∣
∫

4R\2Qj

···+
∫

Rd\4R
�̇S(b)(x)dμ(x)

≡ I1 + I2 + I3.
(4.6)

Recall that �̇S is bounded on L2(μ) by Lemma 4.1. From the Hölder inequality and
(2.7), it then follows that

I1 ≤
2∑

j=1

∣
∣λj

∣
∣
{∫

2Qj

[
�̇S
(
aj
)
(x)
]2
dμ(x)

}1/2[
μ
(
2Qj

)]1/2

�
2∑

j=1

∣
∣λj

∣
∣
{∫

Qj

[
aj(x)

]2
dμ(x)

}1/2[
μ
(
2Qj

)]1/2

�
2∑

j=1

∣
∣λj

∣
∣
∥
∥aj

∥
∥
L∞(μ)μ

(
2Qj

)≤
2∑

j=1

∣
∣λj

∣
∣,

(4.7)

which is the desired result.
For j = 1,2, let xj be the center ofQj . Notice that for any x /∈ 2Qj and y ∈Qj , |x− y|∼

|x− xj|. From this fact, the Hölder inequality, (A-4) and (2.7), it follows that

�̇S
(
aj
)
(x) �

∫

Qj

∣
∣aj(y)

∣
∣

|x− y|n dμ(y) �
∥
∥aj

∥
∥
L∞(μ)μ

(
Qj
)

∣
∣x− xj

∣
∣n � 1

∣
∣x− xj

∣
∣n

1
1 + δ

(
Qj ,R

) . (4.8)

Therefore, by (3.9),

I2 �
2∑

j=1

∣
∣λj

∣
∣δ
(
2Qj ,4R

)

1 + δ
(
Qj ,R

) �
2∑

j=1

∣
∣λj

∣
∣. (4.9)

We now estimate I3. Fix any x0 ∈ R∩ supp(μ). It follows from Lemma 2.18(a) that
4R⊂Qx0,H

x0
R −1. We then write

I3 =
∫

Rd\Q
x0,H

x0
R −1

�̇S(b)(x)dμ(x) +
∫

Q
x0,H

x0
R −1

\4R
··· ≡ F1 +F2. (4.10)
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By Lemma 2.18(a) again, we see that Qx0,H
x0
R +1 ⊂ 4R. From this fact, (A-4), (2.7), and the

fact that for any x /∈ 4R and y ∈ R, |x− x0|∼ |x− y|, it follows that

F2 �
2∑

j=1

∣
∣λj

∣
∣
∫

Q
x0,H

x0
R −1

\4R
sup
k∈Z

∫

Qj

∣
∣aj(y)

∣
∣

∣
∣x− x0

∣
∣n dμ(y)dμ(x)

�
2∑

j=1

∣
∣λj

∣
∣
∫

Q
x0,H

x0
R −1

\Q
x0,H

x0
R +1

∥
∥aj

∥
∥
L∞(μ)μ

(
Qj
)

∣
∣x− x0

∣
∣n dμ(x)

�
2∑

j=1

∣
∣λj

∣
∣

H
x0
R∑

i=Hx0
R −1

δ
(
Qx0,i+1,Qx0,i

)
�

2∑

j=1

∣
∣λj

∣
∣.

(4.11)

By the vanishing moment of b, for any x ∈Rd \Qx0,H
x0
R −1 and any k ∈ Z,

∣
∣Sk(b)(x)

∣
∣≤

∫

R

∣
∣Sk(x, y)− Sk

(
x,x0

)∣∣
∣
∣b(y)

∣
∣dμ(y)

≤
2∑

j=1

∣
∣λj

∣
∣
∫

Qj

∣
∣Sk(x, y)− Sk

(
x,x0

)∣∣
∣
∣aj(y)

∣
∣dμ(y).

(4.12)

We claim that for any y ∈Qj , j = 1,2, for any integer i≥ 2 and k ≥Hx0
R − i+ 3,

supp
(
Sk(·, y)− Sk

(·,x0
))⊂Qx0,H

x0
R −i+1. (4.13)

In fact, by (A-3) and the fact that {Qx,k}k is decreasing in k, supp(Sk(·, y)− Sk(·,x0)) ⊂
(Qy,k−1∪Qx0,k−1)⊂ (Qy,H

x0
R −i+2∪Qx0,H

x0
R −i+2). Since i≥ 2, then y ∈Qj together with the

decreasing property of {Qx0,k}k in k implies that y ∈ Qx0,H
x0
R −i+2. From this fact and [8,

Lemma 4.2 (c)], it follows that Qy,H
x0
R −i+2 ⊂ Qx0,H

x0
R −i+1. Thus, the above claim (4.13)

holds.
Observe that Qj ⊂Qx0,k for k ≤Hx0

R − i+ 2, j = 1,2. Then (A-1) and (A-5) imply that
for any y ∈Qj ,

∣
∣Sk(x, y)− Sk

(
x,x0

)∣∣�
∣
∣x0− y

∣
∣

l
(
Qx0,k

)
1

[
l
(
Qx0,k

)
+
∣
∣x− x0

∣
∣]n ≤

l(R)
l
(
Qx0,H

x0
R −i+2

)
1

∣
∣x− x0

∣
∣n .

(4.14)
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Therefore, from the fact that
∫
Rd b(y)dμ(y) = 0, (4.13), and the last inequality above, it

follows that

F1 =
∞∑

i=2

∫

Q
x0,H

x0
R −i\Qx0,H

x0
R −i+1

sup
k∈Z

∣
∣Sk(b)(x)

∣
∣dμ(x)

�
2∑

j=1

∣
∣λj

∣
∣
∞∑

i=2

∫

Q
x0,H

x0
R −i\Qx0,H

x0
R −i+1

sup
k≤Hx0

R −i+2

∫

Qj

∣
∣Sk(x, y)− Sk

(
x,x0

)∣∣

×∣∣aj(y)
∣
∣dμ(y)dμ(x)

�
2∑

j=1

∣
∣λj

∣
∣
∞∑

i=2

∫

Q
x0,H

x0
R −i\Qx0,H

x0
R −i+1

l(R)
l
(
Qx0,H

x0
R −i+2

)
1

∣
∣x− x0

∣
∣n dμ(x)

�
2∑

j=1

∣
∣λj

∣
∣
∞∑

i=2

l(R)
l
(
Qx0,H

x0
R −i+2

) �
2∑

j=1

∣
∣λj

∣
∣.

(4.15)

Therefore, I3 �
∑2

j=1 |λj|, which completes the proof of Theorem 4.2. �

We now establish the boundedness of �S from h1,∞
atb (μ) to L1(μ).

Theorem 4.3. There exists a nonnegative constant C such that for all f ∈ h1,∞
atb (μ),

∥
∥�S( f )

∥
∥
L1(μ) ≤ C‖ f ‖h1,∞

atb (μ). (4.16)

Proof. By the Fatou lemma, to prove Theorem 4.3, it suffices to show that for any ∞-
atomic block or∞-block b =∑2

j=1 λjaj as in Definition 2.16, we have

∥
∥�S(b)

∥
∥
L1(μ) �

2∑

j=1

∣
∣λj

∣
∣. (4.17)

If b is∞-atomic block as in Definition 2.16, then by the fact that �Sb(x)≤ �̇Sb(x) for
all x ∈Rd and (4.5), we see

∥
∥�S(b)

∥
∥
L1(μ) �

2∑

j=1

∣
∣λj

∣
∣. (4.18)
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Let b be an∞-block as in Definition 2.16. By Definition 2.16, there exists R∈� such that
supp(b)⊂ R. Write

∫

Rd
sup
k∈N

∣
∣Sk(b)(x)

∣
∣dμ(x)

≤
2∑

j=1

∣
∣λj

∣
∣
∫

2Qj

sup
k∈N

∣
∣Sk
(
aj
)
(x)
∣
∣dμ(x) +

2∑

j=1

∣
∣λj

∣
∣
∫

4R\2Qj

···+
2∑

j=1

∣
∣λj

∣
∣
∫

Rd\4R
···

≡ J1 + J2 + J3.
(4.19)

Since the argument of estimates for I1 and I2 in the proof of Theorem 4.2 also works in
the current situation, we then have that J1 + J2 �

∑2
j=1 |λj|.

To estimate J3, fix any x0 ∈ R∩ supp(μ). Notice that for any x ∈ Rd \ 4R and any y ∈
Qj , j = 1,2, |x− y|∼ |x− x0|. From this fact, Definition 2.16, and (A-4), it follows that
for j = 1, 2 and any x ∈Rd \ 4R,

sup
k∈N

∣
∣Sk
(
aj
)
(x)
∣
∣� sup

k∈N

∫

Qj

∣
∣aj(y)

∣
∣

|x− y|n dμ(y) �
∥
∥aj

∥
∥
L∞(μ)μ

(
Qj
)

∣
∣x− x0

∣
∣n � 1

∣
∣x− x0

∣
∣n . (4.20)

On the other hand, since R∈�, by Lemma 2.18(d), we obtain thatHx0
R ≤ 1. This observa-

tion together with [8, Lemma 4.2] in turn implies that for any k ∈N and y ∈ R∩ supp(μ),
Qy,k−1 ⊂Qy,H

x0
R −1 ⊂Qx0,H

x0
R −2. It then follows that supp(Sk(b))⊂Qx0,H

x0
R −2 for any k ∈N.

Moreover, Lemma 2.18(a) yields Qx0,H
x0
R +1 ⊂ 4R. Therefore, we obtain that

J3 ≤
2∑

j=1

∣
∣λj

∣
∣
∫

Rd\4R
sup
k∈N

∣
∣Sk
(
aj
)
(x)
∣
∣dμ(x)

�
2∑

j=1

∣
∣λj

∣
∣
∫

Q
x0,H

x0
R −2

\4R

1
∣
∣x− x0

∣
∣n dμ(x) �

2∑

j=1

∣
∣λj

∣
∣,

(4.21)

which completes the proof of Theorem 4.3. �
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