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1. Introduction

The domain Ω is an open bounded set from the space Rn. The Sobolev space H1(Ω) is
defined as the completion of the set of functions from the space C∞(Ω) by the norm√∫

Ω(u2 + |∇u|2)dx. The space
◦
H1 (Ω) is the set of functions from the space H1(Ω), with

zero trace on ∂Ω.
Let ε = 1/N , N ∈ N, be a small positive parameter. Consider the set Γε ⊂ ∂Ω which

depends on the parameter ε. The space H1(Ω,Γε) is the set of functions from H1(Ω),
vanishing on Γε.

The following estimate is known as Friedrich’s inequality for functions u∈
◦
H1 (Ω):

∫

Ω
u2dx ≤ K0

∫

Ω
|∇u|2dx, (1.1)

where the constant K0 depends on the domain Ω only and does not depend on the func-
tion u.

Inequality (1.1) is very important for several applications and it may be regarded as a
special case of multidimensional Hardy-type inequalities. Such inequalities has attracted
a lot of interest in particular during the last years; see, for example, the books [1–3] and
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the references given therein. We pronounce that not so much is known concerning the
best constants in multidimensional Hardy-type inequalities and the aim of this paper is
to study the asymptotic behavior of the constant in [4] for functions vanishing on a part
of the boundary with microinhomogeneous structure. In particular, such result are useful
in homogenization theory and in fact this was our original interest in the subject.

The paper is organized as follows. In Section 2, we present and discuss our main re-
sults. In Section 3, these results are proved via some auxiliary results, which are of inde-
pendent interest. In Section 4, we consider partial cases, where it is possible to give the
asymptotic expansion for the constant with respect to ε.

2. The main results

It is well known (see, e.g., [5]) that the Friedrich’s inequality (1.1) is valid for functions
u∈H1(Ω,Γε) and K0 =O(1/capΓε), where we denote by cap F the capacity of F ⊂Rn in
Rn:

cap F = inf
{∫

Rn

∣∣∇ϕ∣∣2
dx : ϕ∈ C∞0

(
Rn
)
, ϕ≥ 1 on F

}
. (2.1)

Remark 2.1. Friedrich’s inequality, when the functions vanishes on a part of the boundary
is sometimes called “Poincaré’s inequality,” but we prefer to say “Friedrich’s” or
“Friedrich’s type inequality” keeping the name “Poincaré’s inequality” for the following
(see, e.g., [6]):

∫

Ω
u2dx ≤

(∫

Ω
udx

)2

+
∫

Ω

∣∣∇u∣∣2
dx, ∀u∈

◦
H1 (Ω). (2.2)

Further, it will be shown later on that K0 is uniformly bounded under special assump-
tions on Γε in the case when mesΓε→0 as ε→0.

Consider now the domain Ω⊂R2 with smooth boundary of the length 1 such that

∂Ω= Γε1∪Γε2, Γε1 =
⋃

i

(
Γε1i
)
, Γε2 =

⋃

i

(
Γε2i
)
, Γε1i∩Γε2 j =∅,

mesΓε1i = εδ(ε), mes
(
Γε1i∪Γε2i

)= δ(ε), δ(ε)= o
(

1
| lnε|

)
as ε −→ 0,

(2.3)

where Γε1i and Γε2i are alternating (see Figure 2.1).

Here Γε = Γε1. Our first main result reads as follows.

Theorem 2.2. Suppose n= 2. For u∈H1(Ω,Γε1), the following Friedrich’s inequality holds
true:

∫

Ω
u2dx ≤ Kε

∫

Ω

∣∣∇u∣∣2
dx, Kε = K0 +ϕ(ε), (2.4)

where K0 is a constant in Friedrich’s inequality (1.1) for functions u ∈
◦
H1 (Ω), and

ϕ(ε)∼(| lnε|)−1/2 + (δ(ε)| lnε|)1/2 as ε→0.
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δ

εδ

Figure 2.1. Plane domain.

δ

εδ

Figure 2.2. Spatial domain.

For the case n ≥ 3, the geometrical constructions are similar. We assume that ∂Ω =
S∪Γ, S∩Γ=∅, Γ belongs to the hyperplane xn = 0, and Γ= Γε1∪Γε2, Γε1∩Γε2 =∅.

Denote by ω a bounded domain in the hyperplane xn = 0, which contains the origin.
Without loss of generality ω ∈�, where �={x̂ : −1/2 < xi < 1/2, i = 1, . . . ,n− 1}, x =
(x̂,xn). Let ωε be the domain {x̂ : x̂/ε ∈ ω}. Denote by Γ̃ the integer translations of ωε
on the hyperplane in xi direction, i = 1, . . . ,n− 1. Finally, Γε1 = {x : x/δ ∈ Γ̃} ∩ Γ, Γε2 =
Γ \ Γε1 (see Figure 2.2). In other words, Γε1 is a translations of vectors mδ(ε)ei (m∈ Z, i=
1, . . . ,n− 1) of a set diameter εδ(ε) contained in a ball of radius δ(ε). Here we assume that
δ(ε)= o(εn−2) as ε→0. Also we suppose that Γε = Γε1∪ S.

In this case our main result reads as follows.

Theorem 2.3. Suppose n≥ 3. For u∈H1(Ω,Γε1∪ S), the following Friedrich’s inequality is
valid:

∫

Ω
u2dx ≤ Kε

∫

Ω
|∇u|2dx, Kε = K0 +ϕ(ε), (2.5)

where K0 is a constant in Friedrich’s inequality (1.1) for functions u ∈
◦
H1 (Ω), and

ϕ(ε)∼εn/2−1 + (δ(ε)ε2−n)1/2 as ε→0.
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Thus the precise dependence of the constant in Friedrich’s inequality of the small pa-
rameter ε will be established. Hence, it is possible to construct the lower and the upper
bounds for Kε.

3. Proofs of the main results and some auxiliary results

In Sections 3.1 and 3.2 we discuss, present, and prove some auxiliary results, which are of
independent interest but also crucial for the proof of the main results in Section 3.3.

3.1. The relation between the constant in Friedrich’s inequality and the first eigenvalue
of a boundary value problem. Let Ω be some bounded domain with smooth bound-
ary ∂Ω, Γε ⊂ ∂Ω. Suppose that the function u belongs to H1(Ω). Consider the following
problem:

Δu=−λεu in Ω,

u= 0 on Γε,

∂u

∂ν
= 0 on ∂Ω \Γε.

(3.1)

Definition 3.1. The function u∈H1(Ω,Γε) is a solution of problem (3.1), if the following
integral identity is valid:

∫

Ω
∇u∇vdx = λε

∫

Ω
uvdx (3.2)

for all functions v ∈H1(Ω,Γε).

The operator of problem (3.1) is positive and selfadjoint (it follows directly from the
integral identity). According to the general theory (see, e.g., [7]), all eigenvalues of the
problem are real, positive, and satisfy

0≤ λ1
ε ≤ λ2

ε ≤ ··· , λkε −→∞ as k −→∞. (3.3)

Here we assume that the eigenvalues λkε are repeated according to their multiplicities.
Denote by με the following value:

με = inf
v∈H1(Ω,Γε)\{0}

∫
Ω |∇v|2dx∫

Ω v2dx
. (3.4)

We need the following lemma (see the analogous lemma in [4]).

Lemma 3.2. The number με is the first eigenvalue λ1
ε of the problem (3.1).

For the convenience of the reader we present the details of the proof.

Proof. It is sufficient to show that there exists such eigenfunction u1 of problem (3.1),
corresponding to the first eigenvalue λ1

ε , that it satisfies

με =
∫
Ω

∣∣∇u1
∣∣2
dx∫

Ω

(
u1
)2
dx

. (3.5)
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Let {v(k)} be a minimization sequence for (3.4), that is,

v(k) ∈H1(Ω,Γε
)
,

∥∥v(k)
∥∥2

L2(Ω) = 1,
∫

Ω

∣∣∇v(k)
∣∣2
dx −→ με, as k −→∞.

(3.6)

It is obvious that the sequence {v(k)} is bounded in H1(Ω,Γε). Hence, according to the
Rellich theorem, there exists a subsequence of {v(k)}, converging weekly in H1(Ω,Γε) and
strongly in L2(Ω). For this subsequence, we keep the same notation {v(k)}. We have that

∥∥v(k)− v(l)
∥∥2

L2(Ω) < η as k, l > k0(η). (3.7)

Using the following formula:

∥∥∥∥
v(k) + v(l)

2

∥∥∥∥
2

L2(Ω)
= 1

2

∥∥v(k)
∥∥2

L2(Ω) +
1
2

∥∥v(l)
∥∥2

L2(Ω)−
∥∥∥∥
v(k)− v(l)

2

∥∥∥∥
2

L2(Ω)
, (3.8)

we obtain that

∥∥∥∥
v(k) + v(l)

2

∥∥∥∥
2

L2(Ω)
> 1− η

4
. (3.9)

From the definition of με we conclude that

∫

Ω
|∇v|2dx ≥ με‖v‖2

L2(Ω) (3.10)

for all function v ∈H1(Ω,Γε). Inequalities (3.9) and (3.10) give the following estimate:

∫

Ω

∣∣∣∣∇
(
v(k) + v(l)

2

)∣∣∣∣
2

dx > με

(
1− η

4

)
. (3.11)

If k, l > k0(η), it follows that

∫

Ω

∣∣∇v(k)
∣∣2
dx < με +η,

∫

Ω

∣∣∇v(l)
∣∣2
dx < με +η. (3.12)

Hence,

∫

Ω

∣∣∣∣∇
(
v(k)− v(l)

2

)∣∣∣∣
2

dx

= 1
2

∫

Ω

∣∣∇v(k)
∣∣2
dx+

1
2

∫

Ω

∣∣∇v(l)
∣∣2
dx−

∫

Ω

∣∣∣∣∇
(
v(k) + v(l)

2

)∣∣∣∣
2

dx

≤ με +η
2

+
με +η

2
−με

(
1− η

4

)
= η

(
1 +

με
4

)
−→ 0, η −→ 0.

(3.13)
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Finally, according to the Cauchy condition the sequence {v(k)} converges to some func-
tion v∗ ∈H1(Ω,Γε) in the space H1(Ω,Γε), and

∫

Ω

∣∣∇v∗∣∣2
dx = με,

∥∥v∗
∥∥2

L2(Ω) = 1. (3.14)

Assume that v ∈H1(Ω,Γε) is an arbitrary function. Denote

g(t)=
∫
Ω

∣∣∇(v∗ + tv
)∣∣2

dx∥∥v∗ + tv
∥∥2

L2(Ω)

. (3.15)

The function g(t) is continuously differentiable in some neighborhood of t = 0. This ratio
has the minimum, which is equal to με. Using the Fermat theorem, we obtain that

0= g′|t=0 =
2
∥∥v∗

∥∥2
L2(Ω)

∫
Ω

(∇v∗,∇v)dx− 2
∫
Ω v

∗vdx
∫
Ω

∣∣∇v∗∣∣2
dx

∥∥v∗
∥∥4

L2(Ω)

= 2
∫

Ω

(∇v∗,∇v)dx− 2με

∫

Ω
v∗vdx.

(3.16)

Thus, we have proved that
∫

Ω

(∇v∗,∇v)dx = με
∫

Ω
v∗vdx (3.17)

for v ∈H1(Ω,Γε), that is, v∗ satisfies the integral identity (3.1). This means that we have
found a function v∗ such that

∫
Ω

∣∣∇v∗∣∣2
dx∫

Ω

(
v∗
)2
dx

= inf
v∈H1(Ω,Γε)\{0}

∫
Ω

∣∣∇v∣∣2
dx∫

Ω v2dx
= με. (3.18)

Keeping in mind that u1 = v∗ we conclude that με = λ1
ε . The proof is complete. �

Lemma 3.3. The following Friedrich inequality holds true:
∫

Ω
U2dx ≤ Kε

∫

Ω
|∇U|2dx, U ∈H1(Ω,Γε

)
, (3.19)

where Kε = 1/λ1
ε .

Proof. From Lemma 3.2 we get that

λ1
ε ≤

∫
Ω

∣∣∇U∣∣2
dx∫

ΩU2dx
for any U ∈H1(Ω,Γε

)
. (3.20)

Using this estimate, we deduce that
∫

Ω
U2dx ≤ 1

λ1
ε

∫

Ω
|∇U|2dx. (3.21)

Denoting by Kε the value 1/λ1
ε , we conclude the statement of our lemma. �

In the following section we will estimate λ1
ε .
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3.2. Auxiliary boundary value problems. Assume that f ∈ L2(Ω) and consider the fol-
lowing boundary value problems:

−Δuε = f in Ω,

uε = 0 on Γε,

∂uε
∂ν

= 0 on Γε2,

(3.22)

−Δu0 = f in Ω,

u0 = 0 on ∂Ω.
(3.23)

Note that for n= 2 we assume that Γε = Γε1 and for n≥ 3 we assume that Γε = Γε1∪ S.
Problem (3.23) is the homogenized (limit as ε→0) problem for problem (3.22) (a proof
of this fact can be found in [4, 8], see also [6]).

Consider now the respective spectral problems:

−Δukε = λkεukε in Ω,

ukε = 0 on Γε,

∂ukε
∂ν

= 0 on Γε2,

−Δuk0 = λk0uk0 in Ω,

uk0 = 0 on ∂Ω.

(3.24)

Next, let us estimate the difference |1/λkε − 1/λk0|. We will use the method introduced
by Oleı̆nik et al. (see [9, 10]).

Let Hε, H0 be separable Hilbert spaces with the inner products (uε,vε)Hε
and (u,v)H0

,
and the norms ‖uε‖Hε and ‖u‖H0 , respectively; assume that ε is a small parameter, Aε ∈
�(Hε), A0 ∈�(H0) are linear continuous operators and ImA0 ⊂ V ⊂H0, where V is a
linear subspace of H0.

(C1) There exist linear continuous operators Rε : Hε→H0 such that for all f ∈ V we
have (Rε f ,Rε f )Hε

→c( f , f )H0
as ε→0, where c = const > 0 does not depend on f .

(C2) The operatorsAε,A0 are positive, compact and selfadjoint inHε,H0, respectively,
and supε‖Aε‖�(Hε) < +∞.

(C3) For all f ∈V we have ‖AεRε f −RεA0 f ‖Hε→0 as ε→0.
(C4) The sequence of operatorsAε is uniformly compact in the following sense: if a se-

quence f ε ∈Hε is such that supε‖ f ε‖�(Hε) < +∞, then there exist a subsequence
f ε

′
and a vector w0 ∈V such that ‖Aε′ f ε′ −Rε′w0‖Hε′→0 as ε′→0.

Assume that the spectral problems for the operators Aε, A0 are

Aεukε = μkεukε , k = 1,2, . . . , μ1
ε ≥ μ2

ε ≥ ··· > 0,
(
ulε,u

m
ε

)= δlm,

A0u
k
0 = μk0uk0, k = 1,2, . . . , μ1

0 ≥ μ2
0 ≥ ··· > 0,

(
ul0,um0

)= δlm,
(3.25)
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where δlm is the Kronecker symbol and the eigenvalues μkε , μk0 are repeated according to
their multiplicities.

The following theorem holds true (see [9]).

Theorem 3.4 (Oleı̆nik et al. [9, 10]). Suppose that the conditions (C1)–(C4) are valid.
Then μkε converges to μk0 as ε→0, and the following estimate takes place:

∣∣μkε −μk0
∣∣≤ c−1/2 sup

f∈N(μk0,A0),‖ f ‖H0=1

∥∥AεRε f −RεA0 f
∥∥
Hε

, (3.26)

where N(μk0, A0) = {u ∈ H0, A0u = μk0u}. Assume also that k ≥ 1, s ≥ 1, are the integer
numbers, μk0 = ··· = μk+s−1

0 and the multiplicity of μk0 is equal to s. Then there exist lin-
ear combinations Uε of the eigenfunctions ukε , . . . ,uk+s−1

ε to problem (3.22) such that for all
w ∈N(μk0, A0) we get ‖Uε−Rεw‖Hε→0 as ε→0.

To use the method of Oleı̆nik et al. [9, 10], we define the spaces Hε and H0 and the
operators Aε, A0, and Rε in an appropriate way.

Assume that Hε =H0 = V = L2(Ω), and Rε is the identity operator. The operators Aε,
A0 are defined in the following way: Aε f = uε, A0 f = u0, where uε, u0 are the solutions to
problems (3.22) and (3.23), respectively. Let us verify the conditions (C1)–(C4).

The condition (C1) is fulfilled automatically because Rε is the identity operator, c =
1. Let us verify the selfadjointness of the operator Aε. Define Aε f = uε, Aεg = vε, f ,g ∈
L2(Ω). Because of the integral identity of problem (3.22) the following identities are valid:

∫

Ω
f vε dx =

∫

Ω
∇vε∇uε dx =

∫

Ω
guε dx. (3.27)

Hence,

(
Aε f ,g

)
L2(Ω) =

(
uε,g

)
L2(Ω) =

∫

Ω
uεg dx =

∫

Ω
∇vε∇uε dx

=
∫

Ω
f vε dx =

(
f ,vε

)
L2(Ω) =

(
f ,Aεg

)
L2(Ω).

(3.28)

The selfadjointness of the operator A0 can be proved in an analogous way.
It is easy to prove the positiveness of the operator Aε:

(
Aε f , f

)
L2(Ω) =

(
uε, f

)
L2(Ω) =

∫

Ω
uε f dx =

∫

Ω

∣∣∇uε
∣∣2
dx ≥ 0, (3.29)

and
∫
Ω |∇uε|2dx > 0 if f �=0. The positiveness of A0 may be proved in the same way.

Next, we prove that Aε, A0 are compact operators: let the sequence { fθ} be bounded
in L2(Ω). It is evident that the sequence {Aε fθ} = {uε,θ} is bounded in H1(Ω,Γε) and the

sequence {A0 fθ} = {u0,θ} is bounded in
◦
H1 (Ω). Note that {uε,θ} is bounded uniformly

on ε (for a proof see [4]). Because of compact embedding of the space H1(Ω) to L2(Ω),
we conclude that Aε and A0 are compact operators. Moreover,

∥∥Aε
∥∥

�(Hε)
≤ ∥∥uε

∥∥
H1(Ω,Γε)

<� < +∞ (3.30)
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and, consequently,

sup
ε

∥∥Aε
∥∥

�(Hε)
<� < +∞. (3.31)

Let us verify the condition (C3). The operator Rε is the identity operator and, thus, it is
sufficient to prove that for all f ∈ L2(Ω) we have that ‖Aε f −A0 f ‖L2(Ω)→0 as ε→0, that is,
‖uε−u0‖L2(Ω)→0 as ε→0. It is enough to prove that uε⇀ u0 inH1(Ω). (The week conver-
gence in H1(Ω) gives the strong convergence in L2(Ω).) The sequence uε is uniformly
bounded in H1(Ω). Consequently, there exists a subsequence uε′ , such that uε′ ⇀ u∗
in H1(Ω). Further we will set that uε is the same subsequence. Let us show that

u∗ ≡ u0, that is, for all v ∈
◦
H1 (Ω),

∫

Ω
f vdx =

∫

Ω
∇u∗∇vdx. (3.32)

The integral identity for problem (3.22) gives that

∫

Ω
f vdx =

∫

Ω
∇uε∇vdx. (3.33)

Because u∗ is a week limit of uε in H1(Ω), the following is valid:

∫

Ω
∇uε∇vdx −→

∫

Ω
∇u∗∇vdx when ε −→ 0∀v ∈H1(Ω), (3.34)

and this gives us the desired result, because the integrals
∫
Ω∇u∗∇vdx and

∫
Ω f vdx do

not depend on ε.
Let us verify the condition (C4). Consider the sequence { fε}, which is bounded in

L2(Ω). Then ‖Aε fε‖H1(Ω,Γε) = ‖uε‖H1(Ω,Γε) ≤ const, that is, the sequence {Aε fε} is compact
in L2(Ω) and, consequently, there exists a subsequence ε′such that

Aε′ fε′ −→w0 as ε′ −→ 0, where w0 ∈ L2(Ω). (3.35)

Hence, we have that ‖Aε′ fε′ −w0‖L2(Ω)→0 as ε′→0.
Thus, the conditions (C1)–(C4) are valid.
It is evident that λkε = 1/μkε , λk0 = 1/μk0. Using the estimate (3.26) we have

∣∣∣∣
1
λkε
− 1

λk0

∣∣∣∣≤ sup
f∈N(λk0,A0),‖ f ‖L2(Ω)=1

∥∥Aε f −A0 f
∥∥
H1(Ω,Γε)

= sup
f∈N(λk0,A0),‖ f ‖L2(Ω)=1

∥∥uε−u0
∥∥
H1(Ω,Γε)

,
(3.36)

where uε, u0 are the solutions of problems (3.22) and (3.23), respectively.
The following inequality was established in [4]:

∥∥uε−u0
∥∥
H1(Ω,Γε)

≤ K‖ f ‖L2(Ω)

((
με
)1/2

+
(
δ

με

)1/2)
, (3.37)
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where με = infu∈H1(Ω,Γε1)\{0}(
∫
Ω |∇u|2dx/

∫
Ωu

2dx) and the constant K depends only on
the domain Ω. Moreover, the following asymptotics was proved in [4] (the case n = 2)
and in [11] (the case n≥ 3) (see also [8, 12]):

με =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

| lnε| +O
(

1
| lnε|2

)
, if n= 2,

εn−2 σn
2
cω +O

(
εn−1

)
, if n > 2,

(3.38)

as ε→0.
Here σn is the area of the unit sphere in Rn, and cω > 0 is the capacity of the (n− 1)-

dimensional “disk” ω (see [13, 14]).
Define the following value:

ϕ(ε)≡ K
((
με
)1/2

+
(
δ

με

)1/2)
. (3.39)

Note that if n = 2, it implies that με∼1/| lnε| and δ = O(1/| lnε|). Consequently, we
have

δ

με
= o

(
1/| lnε|)| lnε|

π
= o(1) (3.40)

as ε→0.
In the same way, if n > 2 it yields that

δ

με
∼o(1) (3.41)

as ε→0.
Using this asymptotics, we deduce

ϕ(ε)= K
⎧⎪⎨
⎪⎩

(lnε)−1/2 +
(
δ(ε)| lnε|)1/2

+ o
(
(lnε)−1/2 +

(
δ(ε)| lnε|)1/2)

, if n= 2,

εn/2−1 +
(
δ(ε)εn−2

)1/2
+ o
(
εn/2−1 +

(
δ(ε)εn−2

)1/2)
, if n > 2,

(3.42)

as ε→0.
Finally, due to (3.36), (3.37), and (3.38) we get that

∣∣∣∣
1
λ1
ε
− 1
λ1

0

∣∣∣∣≤ ϕ(ε), (3.43)

where ϕ(ε) has the asymptotics (3.42).

3.3. Proofs of the main results.

Proof of Theorem 2.2. Actually, because of estimate (3.19), Friedrich’s inequality
∫

Ω
u2dx ≤ 1

λ1
ε

∫

Ω
|∇u|2dx, u∈H1(Ω,Γε

)
(3.44)
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is valid. The estimate (3.43) implies that

1
λ1
ε
≤ 1
λ1

0
+ϕ(ε). (3.45)

By rewriting inequality (3.44), using the established relations between λ1
ε and λ1

0 we
find that

∫

Ω
u2dx ≤ 1

λ1
ε

∫

Ω
|∇u|2dx ≤

(
1
λ1

0
+ϕ(ε)

)∫

Ω
|∇u|2dx. (3.46)

According to our notations, 1/λ1
0 = K0. Thus, for u ∈H1(Ω,Γε), the following Friedrich

inequality holds true:
∫

Ω
u2dx ≤ Kε

∫

Ω
|∇u|2dx, Kε = K0 +ϕ(ε), (3.47)

where ϕ(ε)∼(| lnε|)−1/2 + (δ(ε)| lnε|)1/2 as ε→0, if n = 2. Hence, the proof is complete.
�

Proof of Theorem 2.3. The proof is completely analogous to that of Theorem 2.2: using
inequalities (3.19), (3.42), and (3.43), we obtain the asymptotics of the constantKε, hence
we leave out the details. Note only that in this case ϕ(ε)∼εn/2−1 + (δ(ε)εn−2)1/2 as ε→0.

�

4. Special cases

In this section, we consider domains with special geometry.
Let ∂G be the boundary of the unit disk G centered at the origin. Assume that ωε =

{(r,θ) : r = 1, −δ(ε)(π/2) < θ < δ(ε)(π/2)} is the arc, where (r,θ) are the polar coordi-
nates. Suppose also that ηε = (−εδ,εδ). Denote γε = ∂G \ Γε, where Γε is the union of the
sets obtained from ηε by rotation about the origin through the angle επ and its multi-
ples. For simplicity we assume here that ε = 2/N , N ∈N. Let � be an arbitrary conformal
mapping of a disk with radius exceeding 1, let Ω be the image of the unit disk G and let
Γε1 =�(Γε), Γε2 =�(γε).

For this domain we have the following theorem (see [15–17]).

Theorem 4.1. Suppose that n= 2, the domain Ω is the image of the unit diskG as defined at
the beginning of the section and δ lnε→0 as ε→0. For u∈H1(Ω,Γε1), the following Friedrich
inequality holds true:

∫

Ω
u2dx ≤ Kε

∫

Ω
|∇u|2dx, Kε = K0 +ϕ(ε), (4.1)

where K0 is a constant in Friedrich’s inequality (1.1) for functions u ∈
◦
H1 (Ω), and ϕ(ε) =

δ lnsinε
∫
∂Ω (∂ψ0/∂ν)2|�′|ds+ o(δ) as ε→0, where ψ0 is the first normalized in L2(Ω) eigen-

function of the problem

−Δψ0 = K0ψ0, x ∈Ω; ψ0 = 0, x ∈ ∂Ω, (4.2)

and �=�−1.
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If the mapping � is identical, then the following statement takes place (see [15–18]).

Theorem 4.2. Suppose that n= 2, the domain Ω is the unit disk and δ lnε→0 as ε→0. For
u∈H1(Ω,Γε1), the following Friedrich inequality holds true:

∫

Ω
u2dx ≤ Kε

∫

Ω
|∇u|2dx,

Kε = K0
(
1 + 2δ lnsinε+ 2δ2(lnsinε)2 + o

(
δ2
)) (4.3)

as ε→0, where K0 is a constant in Friedrich’s inequality (1.1) for functions u∈
◦
H1 (Ω).

Note that nonperiodic geometry are considered in [19]. In the paper the author con-
structed and verified the asymptotic expansions of eigenvalues. Keeping in mind these
results it is possible to obtain sharp bounds for the constant in Friedrich’s inequality.
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