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For the differential system u
′
1(t)= p(t)u2(τ(t)), u

′
2(t)= q(t)u1(σ(t)), t ∈ [0,+∞), where

p,q ∈ Lloc(R+;R+), τ,σ ∈ C(R+;R+), lim t→+∞τ(t) = lim t→+∞σ(t) = +∞, we get neces-
sary and sufficient conditions that this system does not have solutions satisfying the con-
dition u1(t)u2(t) < 0 for t ∈ [t0,+∞). Note one of our results obtained for this system
with constant coefficients and delays (p(t)≡ p,q(t)≡ q,τ(t)= t−Δ,σ(t)= t− δ, where
δ,Δ ∈ R and Δ+ δ > 0). The inequality (δ +Δ)

√
pq > 2/e is necessary and sufficient for

nonexistence of solutions satisfying this condition.

Copyright © 2007 A. Domoshnitsky and R. Koplatadze. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The equation u′′(t)= pu(t), t ∈ [0,+∞) with positive constant coefficient p, has two lin-
early independent solutions u1 = e

√
pt and u2 = e−

√
pt. The second solution satisfies the

property u(t)u′(t) < 0 for t ∈ [0,+∞) and it is the Kneser-type solution. The ordinary
differential equation with variable coefficient u′′(t)= p(t)u(t), p(t)≥ 0, t ∈ [0,+∞), pre-
serves the solutions of the Kneser-type. The differential equation with deviating argument

u′′(t)= p(t)u
(
τ(t)

)
, p(t)≥ 0, t ∈ [0,+∞), (1.1)

where u(ξ)= ϕ(ξ), for ξ < 0, generally speaking, does not inherit this property. The prob-
lems of existence/nonexistence of the Kneser-type solutions were studied in [1–4]. As-
sertions on existence of bounded solutions, their uniqueness, and oscillation were ob-
tained in the monograph by Ladde et al. (see [5, pages 130–139]). Several possible types
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of the solution’s behavior of this equation can be the following:
(a) |x(t)| →∞ for t→∞;
(b) x(t) oscillates;
(c) x(t)→ 0, x′(t)→ 0 for t→∞.

Existence and uniqueness of solutions of these types were obtained in [4, 6, 7]. Note
that in the case of delay differential equations (τ(t)≤ t) with the zero initial function ϕ,
the space of solutions is two-dimensional. In this case it was proven in [8] that existence
of the Kneser-type solution was equivalent to nonvanishing of the WronskianW(t) of the
fundamental system and positivity of Green’s function of the one point problem

u′′(t)= p(t)u
(
τ(t)

)
+ f (t), p(t)≥ 0, t ∈ [0,ω], x(ω)= 0, x′(ω)= 0, (1.2)

where x(ξ) = 0 for ξ < 0 and ω can be each positive real number. A generalization of
this result to nth-order equations became a basis for study of nonoscillation and differ-
ential inequalities for nth-order functional differential equations [9, 10]. If W(t) 
= 0 for
t ∈ [0,+∞), then the Sturm separation theorem (between two zeros of each nontrivial
solution there is one and only one zero of other solution) is fulfilled for the second-order
delay equation. Properties of the Wronskian and their corollaries were discussed in the
recent paper [11].

Consider the differential system

u′1(t)= p(t)u2
(
σ(t)

)
,

u′2(t)= q(t)u1
(
τ(t)

)
,

(1.3)

where p,q :R+ →R+ are locally summable functions, τ :R+ → R+ is a continuous func-
tion, and σ : R+ → R+ is a continuously differentiable function. Throughout this paper
we will assume that σ ′(t) ≥ 0 and τ(σ(t) ≤ t for t ∈ [0,+∞) and τ is a nondecreasing
function.

In the present paper, necessary and sufficient conditions for nonexistence of solutions
satisfying the condition

u1(t)u2(t) < 0, for t ≥ t0, (1.4)

are established for the system (1.3). In the recent paper by Kiguradze and Partsvania [12]
the existence of the Kneser-type solution was proven in the case of advanced argument
(σ(t)≥ t, τ(t)≥ t).

It is clear that equation u′′(t)= p(t)u(τ(t)) can be represented in the form of system
(1.3), where q = 1, and the property (1.4) is the analog of the inequality u(t)u′(t) < 0 for
t ∈ [0,+∞), for this scalar equation.

In [8], it was obtained that the inequality
√
p∗δ∗≤2/e, where p∗=vraisupt∈[0,+∞) p(t),

δ∗ = vraisupt∈[0,+∞) t − τ(t), implied the existence of the Kneser-type solution for the
noted above scalar homogeneous equation of the second order. Note one of our results
obtained for the system (1.3) with constant coefficients and delays (p(t) ≡ p, q(t) ≡ q,
τ(t) = t−Δ, σ(t) = t− δ, where p,q ∈ (0,+∞), δ,Δ ∈ R and Δ+ δ > 0). The condition
(δ +Δ)

√
pq > 2/e is necessary and sufficient for nonexistence of solutions satisfying the
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condition (1.4). It is clear that the inequality
√
pδ > 2/e is necessary and sufficient for

nonexistence of solutions satisfying the inequality u(t)u′(t) < 0 for t ∈ [0,+∞) for the
scalar second-order equation u′′(t)= pu(t− δ) with constant coefficients p and δ.

Definition 1.1. Let t0 ∈ R+ and t∗ =min(inf t≥t0 τ(t); inf t≥t0 σ(t)
)
. A continuous vector

function (u1,u2) defined on [t∗,+∞) is said to be solution of system (1.3) in [t0,+∞) if it
is absolutely continuous on each finite segment contained in [t0,+∞) and satisfies (1.3)
almost everywhere on [t0,+∞).

From this point on we assume that

h(t,s)=
∫ t

s
p(s)ds, h(t,s)−→ +∞ as t −→ +∞. (1.5)

2. Some auxiliary lemmas

Lemma 2.1. Let t0 ∈R+ and (u1,u2) be a solution of the problem (1.3), (1.4). Then

vk(t)
∣
∣u1

(
τ
(
σ(t)

))∣∣≤ ρk(t) for t ≥ η(t0
)

(k = 0,1), (2.1)

where η(t)=min{s : τ(σ(s))≥ t},

ρk(t)= (1− k)
∣
∣u1(t)

∣
∣+ |u2

(
σ(t)

)∣∣h1−k(t,0) (k = 0,1), (2.2k)

vk(t)=max
{
wk
(
t,s,s1

)
: s1 ∈

[
t,η(t)

]
, s∈ [τ(σ(t)

)
, t
]}

, (2.3k)

wk
(
t,s,s1

)= hk−1(s,0)h
(
s,τ
(
σ
(
s1
)))
∫ t

s
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξ

×
∫ s1

t
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξ (k = 0,1).

(2.4k)

Proof. Without loss of generality, we suppose that

u1(t) > 0, u2(t) < 0 for t ≥ t0. (2.5)

Because
∫ t

s
u′2
(
σ(ξ)

)
σ ′(ξ)h1−k(ξ,0)dξ

= h1−k(t,0)u2
(
σ(t)

)−h1−k(s,0)u2
(
σ(s)

)− (1− k)
∫ t

s
p(ξ)h−k(ξ,0)u2

(
σ(ξ)

)
dξ

= h1−k(t,0)u2
(
σ(t)

)−h1−k(s,0)u2
(
σ(s)

)
+ (1− k)

∫ t

s
h−k(ξ,0)

∣
∣u′1(ξ)

∣
∣dξ

≤ h1−k(s,0)
∣
∣u2

(
σ(s)

)∣∣+ (1− k)h−k(s,0)u1(s)− (1− k)h−k(s,0)u1(t)

= ρk(s)− (1− k)h−k(s,0)u1(t) (k = 0,1),
(2.6)
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therefore from equality

∫ t

s
u′2
(
σ(ξ)

)
σ ′(ξ)h1−k(ξ,0)dξ =

∫ t

s
q
(
σ(ξ)

)
h1−k(ξ,0)σ ′(ξ)u1

(
τ
(
σ(ξ)

))
dξ (k = 0,1),

(2.7)

we have

ρk(s)≥
∫ t

s
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)u1

(
τ
(
σ(ξ)

))
dξ for t ≥ s≥ η(t0

)
(k = 0,1), (2.8)

where the function ρk is given by equality (2.2k).
Let t ∈ [t0,+∞) and (s0,s∗)∈ ([τ(σ(t)), t]× [t,η(t)]) be a maximum point of the func-

tion w(t,·,·). Then by (2.8), we obtain

ρk
(
s0
)≥

∫ t

s0
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)u1

(
τ
(
σ(ξ)

))
dξ

≥ u1
(
τ
(
σ(t)

))
∫ t

s0
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξ,

ρk(t)≥
∫ s∗

t
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)u1

(
τ
(
σ(ξ)

))
dξ

≥ u1
(
τ
(
σ
(
s∗
)))
∫ s∗

t
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξ.

(2.9)

On the other hand, in view of the fact that the function |u2(t)| is nonincreasing, it
follows from the first equation of system (1.3) that

u1
(
τ
(
σ
(
s∗
)))= u1(s0) +

∫ s0

τ(σ(s∗))
p(ξ)

∣
∣u2

(
σ(ξ)

)∣∣dξ

≥ u1
(
s0
)

+
∣
∣u2

(
σ
(
s0
))∣∣h

(
s0,τ

(
σ
(
s∗
)))

≥ h(s0,τ
(
σ
(
s∗
)))

h−1(s0,0
)
u1
(
s0
)

+u2
(
σ
(
s0
))
h
(
s0,τ

(
σ
(
s′∗
)))

= h(s0,τ
(
σ
(
s∗
)))

hk−1(s0,0
)
ρk
(
s0
)

(k = 0,1).

(2.10)

Hence, by (2.9), we obtain

ρk(t)≥ u1
(
τ
(
σ
(
s∗
)))
∫ s∗

t
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξ

≥ h(s0,τ
(
σ
(
s0
)))

hk−1(s0,0
)
ρk
(
s0
)
∫ s∗

t
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξ

≥ h(s0,τ
(
σ
(
s0
)))

hk−1(s0,0
)
∫ s∗

t
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξ

×
∫ t

s0
h1−k(ξ,0)q

(
σ(ξ)

)
σ ′(ξ)dξu1

(
τ(σ(t)

)

= vk(t)u1
(
τ
(
σ(t)

))
.

(2.11)

Therefore, since t is arbitrary, the last inequality yields (2.1). �
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Lemma 2.2. Let t0 ∈R+ and (u1,u2) be a solution of problem (1.3), (1.4),

liminf
t→+∞

∫ t

τ(σ(t))
q
(
σ(s)

)
σ ′(s)ds > 0, (2.12)

sup
(
q
(
σ(t)

)
σ ′(t) : t ∈R+

)
< +∞, vrai inf

(
p(t) : t ∈R+

)
> 0. (2.13)

Then

limsup
t→+∞

∣
∣u1

(
τ(t)

)∣∣
∣
∣u2(t)

∣
∣ < +∞. (2.14)

Proof. By Lemma 2.1, it is sufficient to show that

liminf
t→+∞ v1(t) > 0, (2.15)

where the function v1 is defined by equalities (2.3k) and (2.4k), where k = 1. According to
(2.12), there exist c > 0 and t1 ∈ [t0,+∞) such that

∫ t

τ(σ(t))
q
(
σ(s)

)
σ ′(s)ds≥ c for t ≥ t1. (2.16)

Let t ∈ [t1,+∞). By (2.16), there exist t∗ ∈ (t,η(t)], t ∈ (t, t∗), and t ∈ (τ(σ(t∗)), t)
such that

∫ t

τ(σ(t∗))
q
(
σ(s)

)
σ ′(s)ds≥ c

4
,

∫ t

t
q
(
σ(s)

)
σ ′(s)ds≥ c

4
, (2.17)

∫ t

t
q
(
σ(s)

)
σ ′(s)ds≥ c

4
. (2.18)

According to (2.3k), where k = 1, and (2.18),

v1(t)≥
∫ t

t
q
(
σ(ξ)

)
σ ′(ξ)ds

∫ t

t
q
(
σ(ξ)

)
σ ′(ξ)dsh

(
t,τ
(
σ(t)

))≥ c2

16
h
(
t,τ
(
σ(t)

))
. (2.19)

By the first condition of (2.13) and (2.18)

t− τ(σ(t∗))≥ c

4M
, (2.20)

where M = vraisup(q(σ(t)σ ′(t) : t ∈ R+). Therefore by the second condition of (2.13),
we have

h
(
t,τ
(
σ(t)

))≥ r(t− τ(σ(t)
))≥ r(t− τ(σ(t∗)))≥ cr

4M
, (2.21)

where r = vrai inf(p(t) : t ∈R+) > 0.
Consequently, from (2.19), we obtain v1(t) ≥ c3r/64M2, for t ≥ t1, which proves the

inequality (2.15). �



6 Journal of Inequalities and Applications

Lemma 2.3. Let t0 ∈ R+ and (u1,u2) be a solution of the problem (1.3), (1.4), for some
k ∈ {0,1}

liminf
t→+∞

∫ t

τ(σ(t))
h1−k(s,0)q

(
σ(s)

)
σ ′(s)ds > 0, (2.22k)

vraisup
(
h2−k(t,0)q

(
σ(t)

)
σ ′(t) : t ∈R+

)
< +∞,

vrai inf
(
p(t) : t ∈R+

)
> 0.

(2.23k)

Then

limsup
t→+∞

hk
(
τ
(
σ(t)

)
,0
)∣∣u1

(
τ
(
σ(t)

))∣∣

ρk(t)
< +∞, (2.24k)

where functions h and ρk are defined by (1.5) and (2.2k), respectively.

Proof. By Lemma 2.1, in order to prove inequality (2.24k), it is sufficient to show that

liminf
t→+∞ vk(t)h−k

(
τ
(
σ(t)

)
,0
)
> 0. (2.25)

By virtue of (2.22k), we can choose t1 ∈R+ and c > 0 such that

∫ t

τ(σ(t))
h1−k(ξ,0)q

(
σ(ξ)σ ′(ξ)dξ ≥ c for t ≥ t1. (2.26)

Let t ∈ [t1,+∞). According to (2.26),

∃t∗ ∈ (t,η(t)
)
, t ∈ (t, t∗), t ∈ (τ(σ(t∗

))
, t
)

(2.27)

such that

∫ t

τ(σ(t∗))
h1−k(s,0)q

(
σ(s)

)
σ ′(s)ds≥ c

4
,

∫ t

t
h1−k(s,0)q

(
σ(s)

)
σ ′(s)ds≥ c

4
, (2.28)

∫ t

t
h1−k(s,0)q

(
σ(s)

)
σ ′(s)ds≥ c

4
. (2.29)

In view (2.3k), (2.4k), (2.27), and (2.29), we have

vk(t)≥
∫ t

t
h1−k(s,0)q

(
σ(s)

)
σ ′(s)ds

∫ t

t
h1−k(s,0)q

(
σ(s)

)
σ ′(s)ds

×hk−1(t,0
)
h
(
t,τ
(
σ(t)

))≥ c2

16
hk−1(t,0

)
h
(
t,τ
(
σ(t)

))
.

(2.30)
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On the other hand by (1.5) and (2.27), taking into account that the function h(t,0) is
nondecreasing, we obtain

h
(
t,τ
(
σ(t)

))=
∫ t

τ(σ(t))
p(s)ds=

∫ t

τ(σ(t))
h(s,0)h−1(s,0)p(s)ds

≥ h(τ(σ(t)
)
,0
)

ln
h
(
t,0
)

h
(
τ
(
σ(t)

)
,0
) .

(2.31)

Therefore, from (2.30)

vk(t)h−k
(
τ
(
σ(t)

)
,0
)≥ c2

16
hk−1(t,0

)
h
(
τ
(
σ(t)

)
,0
)
h−k
(
τ
(
σ(t)

)
,0
)

× ln
h(t,0)

h(τ
(
σ(t)

)
,0
) ≥ c2

16
ln

h
(
t,0
)

h
(
τ
(
σ(t)

)
,0
) .

(2.32)

From the first condition of (2.29) by (2.23k), we have

c

4
≤
∫ t

τ(σ(t∗))
h2−k(s,0)q

(
σ(s)

)
σ ′(s)h−1(s,0)ds

≤ M

r

∫ t

τ(σ(t∗))

p(s)
h(s,0)

ds≤ M

r
ln

h
(
t,0
)

h
(
τ
(
σ(t)

)
,0
) ,

(2.33)

whereM = vraisup(h2−k(t,0)q(σ(t))σ ′(t) : t ∈R+), r = vrai inf(p(t) : t ∈R+). Therefore,
from (2.32)

vk(t)h−k
(
τ
(
σ(t)

)
,0
)≥ c2

16
r

M
. (2.34)

Hence, this implies (2.25) for arbitrary t. The lemma is proved. �

Lemma 2.4. Let t0 ∈R+, (u1,u2) be a solution of problem (1.3), (1.4), let (2.12), (2.13) be
fulfilled, and

limsup
t→+∞

1
h(t,0)

∫ t

0
q
(
σ(s)

)
σ ′(s)ds < +∞. (2.35)

Then, there exists λ > 0 such that

lim
t→+∞

∣
∣u1(t)

∣
∣eλh(t,0) = +∞. (2.36)

Proof. Since every condition of Lemma 2.2 is fulfilled, there exist t1 > t0 and M > 0 such
that

∣
∣u1

(
τ
(
σ(t)

))∣∣≤M∣∣u2
(
σ(t)

)∣∣ for t ≥ t1. (2.37)

From the second equation of the system (1.3), we have

u′2
(
σ(t)

)
σ ′(t)

∣
∣u2

(
σ(t)

)∣∣ = q(σ(t)
)
σ ′(t)

u1
(
τ
(
σ(t)

))

∣
∣u2

(
σ(t)

)∣∣ . (2.38)
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Integrating the equality from t1 to t, we obtain

∣
∣u2

(
σ(t)

)∣∣≥ ∣∣u2
(
σ
(
t1
))∣∣exp

(
−
∫ t

t1
q
(
σ(s)

)
σ ′(s)

∣
∣u1

(
τ(σ(t)

))∣∣
∣
∣u2

(
σ(t)

)∣∣ ds
)
. (2.39)

Therefore, according to (2.37)

∣
∣u2

(
σ(t)

)∣∣≥ ∣∣u2
(
σ
(
t1
))∣∣exp

(
−M

∫ t

t1
q
(
σ(s)

)
σ ′(s)ds

)
. (2.40)

By (2.35), we get

∣
∣u2

(
σ(t)

)∣∣≥ exp
(−Mγh(t,0)

)
for t ≥ t∗, (2.41)

where

γ > limsup
t→+∞

1
h(t,0)

∫ t

0
q
(
σ(s)

)
σ ′(s)ds, (2.42)

and t∗ sufficiently large. From (2.41) and by the first equation of the system (1.3) we get

∣
∣
∣
∣

∫ +∞

t
u′1(s)ds

∣
∣
∣
∣≥

∫ +∞

t
p(s)exp

(−Mγh(t,0)
)
ds. (2.43)

Hence, if we take into account the notation (1.5), we find

∣
∣u1(t)

∣
∣≥ 1

Mγ
exp

(−Mγh(t,0)
)

for t ≥ t∗. (2.44)

Consequently, if λ >Mγ, condition (2.36) is fulfilled. �

Lemma 2.5. Let t0 ∈R+, (u1,u2) be a solution of problem (1.3), (1.4), let conditions (2.22k),
(2.23k), where k = 0, and (2.35) be fulfilled, and

limsup
t→+∞

1
h(t,0)

∫ t

0
h−1(τ(σ(s)),0

)
q(σ(s))σ ′(s)ds < +∞. (2.45)

Then there exists λ > 0 such that (2.36) is fulfilled.

Lemma 2.5 can be proven analogously to Lemma 2.4.

Lemma 2.6. Let t0 ∈ R+, (u1,u2) be a solution of problem (1.3), (1.4), and let conditions
(2.22k), (2.23k), where k = 0, and

limsup
t→+∞

1
h(t,0)

∫ t

0
q
(
σ(s)

)
σ ′(s)h(s,0)ds < +∞ (2.46)

hold. Then there exists λ > 0 such that (2.36) is fulfilled.

Proof. According to Lemma 2.3, condition (2.24k), where k = 0, is valid, where function
ρ0 is given by equality (2.2k), where k = 0. Therefore, from of the second equation of the
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system (1.3), we have

−ρ
′
0(t)
ρ0(t)

= q(σ(t)
)
σ ′(t)h(t,0)

∣
∣u1

(
τ
(
σ(t)

))∣∣

ρ0(t)
≤Mq

(
σ(t)

)
σ ′(t)h(t,0) for t ≥ t∗,

(2.47)

where M > limsupt→+∞(|u1(τ(σ(t)))|/ρ0(t)) and t∗ is sufficiently large. Therefore, inte-
grating the last inequality from t∗ to t, we get

ρ0(t)≥ ρ0
(
t∗
)

exp
(
−M

∫ t

t∗
q
(
σ(s)

)
σ ′(s)h(s,0)ds

)
for t ≥ t∗. (2.48)

On the other hand, by (2.46), there exist r > 0 and t∗ > t∗ such that

∫ t

t∗
q
(
σ(s)

)
σ ′(s)h(s,0)ds≤ rh(t,0) for t ≥ t∗. (2.49)

Consequently, there exist r1 > 0 and t∗1 > t∗ such that

ρ0(t)≥ exp
(− r1h(t,0)

)
for t ≥ t∗1 . (2.50)

Hence for any γ > 0, we have

∣
∣u1(t)

∣
∣p(t)exp

(− γh(t,0)
)

+
∣
∣u2

(
σ(t)

)∣∣p(t)h(t,0)exp
(− γh(t,0)

)

≥ exp
(− (r1 + γ

)
h(t,0)

)
p(t) for t ≥ t∗1 .

(2.51)

Therefore, by the first equation of the system (1.3)

∫ +∞

t

∣
∣u1(s)

∣
∣p(s)exp

(− γh(s,0)
)
ds+

∫ +∞

t

∣
∣u′1(s)

∣
∣h(s,0)exp

(− γh(s,0)
)
ds

≥ 1
r1 + γ

exp
(− (r1 + γ

)
h(t,0)

)
for t ≥ t∗1 .

(2.52)

Because, for large t, h(t,0)exp(−(γ/2)h(t,0))≤ 1, from the last inequality, we have

∫ +∞

t

∣
∣u1(s)

∣
∣p(s)exp

(
− γ

2
h(s,0)

)
ds+

∫ +∞

t

∣
∣u′1(s)

∣
∣exp

(
− γ

2
h(s,0)

)
ds

≥ 1
r1 + γ

exp
(− (r1 + γ

)
h(t,0)

)
for t ≥ t∗2 ,

(2.53)

where t∗2 > t∗1 —sufficiently large. Hence, taking into account that functions |u1(t)| and
exp(−(γ/2)h(t,0)) are nonincreasing, we get

(
1 +

2
γ

)
exp

(
− γ

2
h(t,0)

)∣
∣u1(t)

∣
∣≥ 1

γ+ r1
exp

(− (r1 + γ
)
h(t,0)

)
for t ≥ t∗1 . (2.54)



10 Journal of Inequalities and Applications

Consequently

∣
∣u1(t)

∣
∣≥ γ

(
γ+ r1

)
(2 + γ)

exp
(
−
(
r1 +

γ

2

)
h(t,0)

)
for t ≥ t∗2 . (2.55)

Hence, it is obvious that, if λ > r1 + γ/2, then condition (2.36) holds. �

Lemmas 2.7–2.12 can be proved analogously to Lemmas 2.4–2.6.

Lemma 2.7. Let t0 ∈ R+, (u1,u2) be a solution of the problem (1.3), (1.4), let conditions
(2.12), (2.13) be fulfilled, and

limsup
t→+∞

1
lnh(t,0)

∫ t

0
q
(
σ(s)

)
σ ′(s)ds < +∞. (2.56)

Then there exists λ > 0 such that

lim
t→+∞

∣
∣u1(t)

∣
∣(h(t,0)

)λ = +∞. (2.57)

Lemma 2.8. Let t0 ∈ R+, (u1,u2) be a solution of the problem (1.3), (1.4), let conditions
(2.22k), (2.23k), where k = 1, be fulfilled, and

limsup
t→+∞

1
lnh(t,0)

∫ t

0
h−1(τ

(
σ(s)

)
,0
)
q
(
σ(s)

)
σ ′(s)ds < +∞. (2.58)

Then there exists λ > 0 such that (2.57) holds.

Lemma 2.9. Let t0 ∈R+, (u1,u2) be a solution of the problem (1.3), (1.4), and let conditions
(2.22k), (2.23k), where k = 0, and

limsup
t→+∞

1
lnh(t,0)

∫ t

0
q
(
σ(s)

)
σ ′(s)h(s,0)ds < +∞ (2.59)

be fulfilled. Then there exists λ > 0 such that (2.57) holds.

Lemma 2.10. Let t0 ∈ R+, (u1,u2) be a solution of the problem (1.3), (1.4), let conditions
(2.12), (2.13) be fulfilled, and

limsup
t→+∞

1
ln
(

lnh(t,0)
)
∫ t

0
q
(
σ(s)

)
σ ′(s)ds < +∞. (2.60)

Then there exists λ > 0 such that

lim
t→+∞

∣
∣u1(t)

∣
∣( lnh(t,0)

)λ = +∞. (2.61)

Lemma 2.11. Let t0 ∈ R+, (u1,u2) be a solution of the problem (1.3), (1.4), let conditions
(2.22k), (2.23k), where k = 1, be fulfilled, and

limsup
t→+∞

1
ln
(

lnh(t,0)
)
∫ t

0
h−1(τ

(
σ(t)

)
,0
)
q
(
σ(s)

)
σ ′(s)ds < +∞. (2.62)

Then there exists λ > 0 such that (2.61) holds.
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Lemma 2.12. Let t0 ∈ R+, (u1,u2) be a solution of the problem (1.3), (1.4), and let condi-
tions (2.22k), (2.23k), where k = 0, and

limsup
t→+∞

1
ln
(

lnh(t,0)
)
∫ t

0
q
(
σ(s)

)
σ ′(s)h(s,0)ds < +∞ (2.63)

be fulfilled. Then there exists λ > 0 such that (2.61) holds.

3. Basic lemmas

Lemma 3.1. Let t0 ∈ R+, ϕ,ψ ∈ C([t0,+∞),(0,+∞)), let ψ be a nonincreasing function,
and

lim
t→+∞ϕ(t)= +∞, (3.1)

liminf
t→+∞ ψ(t)ϕ̃(t)= 0, (3.2)

where ϕ̃(t) = inf{ϕ(s) : s ≥ t ≥ t0}. Then there exists a sequence {tk} such that tk ↑ +∞ as
k ↑ +∞ and

ϕ̃
(
tk
)= ϕ(tk

)
, ψ(t)ϕ̃(t)≥ ψ(tk

)
ϕ̃
(
tk
)

for t0 ≤ t ≤ tk (k = 1,2, . . .). (3.3)

Proof. Let t ∈ [t0,+∞). Define the sets Ei (i= 1,2) by

t ∈ E1 ⇐⇒ ϕ̃(t)= ϕ(t), t ∈ E2 ⇐⇒ ϕ̃(s)ψ(s)≥ ϕ̃(t)ψ(t), for s∈ [t0, t
]
. (3.4)

It is clear that, by (3.1) and (3.2), supEi = +∞ (i= 1,2). We show that

supE1∩E2 = +∞. (3.5)

Indeed, if we assume that t∗ ∈ E2 and t∗ 
∈ E1, by (3.1) there exists t∗ > t∗ such that ϕ̃(t)=
ϕ̃(t∗) for t ∈ [t∗, t∗] and ϕ̃(t∗) = ϕ(t∗). On the other hand, since ψ is a nonincreasing
function, we have ψ(t)ϕ̃(t) ≥ ψ(t∗)ϕ̃(t∗) for t ∈ [t0, t∗]. Therefore t∗ ∈ E1 ∩ E2. By the
above reasoning we easily ascertain that (3.5) is fulfilled. Thus there exists a sequence of
points {tk} such that tk ↑ +∞ for k ↑ +∞ and (3.3) holds. �

Remark 3.2. Lemma 3.1 was first proven in [4].

Lemma 3.3. Let t0 ∈ R+, (u1,u2) be a solution of the problem (1.3), (1.4). Besides there
exists γ ∈ C([t0,+∞);R+) and 0 < r1 < r2 such that

γ(t) ↑ +∞ for t ↑ +∞, lim
t→+∞

(
γ(t)

)r2
∣
∣u1(t)

∣
∣= +∞, (3.6)

liminf
t→+∞

(
γ(t)

)r1
∣
∣u1(t)

∣
∣= 0, limsup

t→+∞

γ(t)
γ
(
σ
(
τ(t)

)) = c < +∞. (3.7)

Then

liminf
t→+∞

(
γ(t)

)r2

∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds≤ cr2−r1 . (3.8)
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Proof. Let (u1,u2) be a solution of the problem (1.3), (1.4). Without loss of generality,
assume that condition (2.5) is fulfilled. Then from system (1.3), we get

u1
(
τ
(
σ(t)

))≥
∫ +∞

τ(σ(t))
p(s)

∫ +∞

σ(s)
q(ξ)u1

(
τ(ξ)

)
dξ ds for t ≥ t1, (3.9)

where t1 > t0—sufficiently large.
Denote

ϕ̃(t)= inf
((
γ
(
τ(s)

))r2u1
(
τ(s)

)
: s≥ t),

ψ(t)= (γ(τ(t)
))r1−r2 .

(3.10)

According to (3.6) and (3.7), it is obvious that the functions ϕ̃ and ψ defined by (3.10)
satisfy the conditions of Lemma 3.1. Indeed, by (3.6) it is obvious that condition (3.1) is
fulfilled. On the other hand, since the functions γ and τ are nondecreasing, it is clear that
the function ψ is nonincreasing. By (3.10), we have

ϕ̃(t)ψ(t)≤ (γ(τ(t)
))r2

(
γ
(
τ(t)

))r1−r2u1
(
τ(t)

)= (γ(τ(t)
))r1u1

(
τ(t)

)
. (3.11)

Therefore, according to the first condition of (3.7), (3.2) holds. Consequently, functions
ϕ and ψ satisfied the condition of Lemma 3.1. Therefore there exists a sequence{tk} such
that tk ↑ +∞ as k ↑ +∞,

ϕ̃
(
σ
(
tk
))= ϕ(σ(tk

))
, (3.12)

(
γ
(
σ
(
tk
)))r1−r2 ϕ̃

(
σ
(
tk
))≤ (γ(σ(t)

))r1−r2 ϕ̃
(
σ(t)

)
for t∗ ≤ t ≤ tk (k = 1,2, . . .),

(3.13)

where t∗ > t1—sufficiently large. From (3.9), taking into account that ϕ̃(t) ≤
(γ(τ(t)))r2u1(τ(t)), we have

u1
(
τ
(
σ
(
tk
)))≥

∫ +∞

τ(σ(tk))
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2
(
γ
(
τ(ξ)

))r2u1
(
τ(ξ)

)
dξ ds

≥
∫ +∞

τ(σ(tk))
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2 ϕ̃(ξ)dξ ds.

(3.14)

Hence, since the functions σ and ϕ̃ are nondecreasing, we get

u1
(
τ
(
σ
(
tk
)))≥

∫ tk

τ(σ(tk))
ϕ̃
(
σ(s)

)
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds

+ ϕ̃
(
σ
(
tk
))
∫ +∞

tk
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds.

(3.15)
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Therefore, by (3.13)

u1
(
τ
(
σ
(
tk
)))≥ (γ(σ(tk

)))r1−r2 ϕ̃
(
σ
(
tk
))
∫ tk

τ(σ(tk))
p(s)

(
γ
(
σ(s)

))r2−r1

×
∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds

+ ϕ̃
(
σ
(
tk
))
∫ +∞

tk
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds.

(3.16)

On the other hand,

I(tk)=
∫ tk

τ(σ(tk))
p(s)

(
γ
(
σ(s)

))r2−r1

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds

=−(γ(σ(tk
)))r2−r1

∫ +∞

tk
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds

+
(
γ
(
σ
(
τ
(
σ
(
tk
)))))r2−r1

∫ +∞

τ(σ(tk))
p(ξ)

∫ +∞

σ(ξ)
q
(
ξ1
)(
γ
(
τ
(
ξ1
)))−r2dξ1dξ

+
(
r2− r1

)
∫ tk

τ(σ(tk))

(
γ
(
σ(ξ)

))r2−r1−1(
γ
(
σ(ξ)

))′
∫ +∞

s
p(ξ)

×
∫ +∞

σ(ξ)
q(ξ1)

(
γ
(
τ(ξ1

)))−r2dξ1dξ ds.

(3.17)

Since (γ(σ(t))′ ≥ 0, it follows from the last inequality that

I
(
tk
)≥−(γ(σ(tk

)))r2−r1

∫ +∞

tk
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds

+
(
γ
(
σ
(
τ
(
σ
(
tk
)))))r2−r1

∫ +∞

τ(σ(tk))
p(s)

∫ +∞

σ(s)
q(ξ1)

(
γ
(
τ
(
ξ1
)))−r2dξ1ds.

(3.18)

Therefore, from (3.16), we get

u1
(
τ
(
σ
(
tk
)))≥ (γ(σ(tk

)))r1−r2
(
γ
(
σ
(
τ
(
σ
(
tk
)))))r2−r1 ϕ̃

(
σ
(
tk
))

×
∫ +∞

τ(σ(tk))
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds.
(3.19)

Hence, by (3.12), we get

(
γ
(
τ
(
σ
(
tk
))))r2

∫ +∞

τ(σ(tk))
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds

≤
(

γ
(
σ
(
tk
))

γ
(
σ
(
τ
(
σ
(
tk
)))
)r2−r1

(k = 1,2, . . .).

(3.20)
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According to the second condition of (3.7), for any ε > 0, there exists k0 ∈ N such that
γ(σ(tk))/γ(σ(τ(σ(tk))))≤ c+ ε for k ≥ k0. Therefore by (3.20), we get

(
γ
(
τ
(
σ
(
tk
))))r2

∫ +∞

τ(σ(tk))
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds≤ (c+ ε)r2−r1 , k = k0,k0 + 1, . . . ,

limsup
k→+∞

(
γ
(
τ
(
σ
(
tk
))))r2

∫ +∞

τ(σ(tk))
p(s)

∫ +∞

σ(s)
q(ξ)

(
γ
(
τ(ξ)

))−r2dξ ds≤ (c+ ε)r2−r1 .

(3.21)

On the other hand, in view of the arbitrariness of ε, the last inequality implies (3.8). This
proves the lemma. �

4. The necessary conditions of the existence of Kneser-type solutions

Let t0 ∈ R+. By Kt0 we denote the set of all solutions of the system (1.3) satisfying the
condition (1.4).

Remark 4.1. In the definition of the set Kt0 , we assume that if there is no solution satisfy-
ing (1.4), then Kt0 =∅.

Theorem 4.2. Let t0 ∈R+ and Kt0 
=∅. Assume that conditions (2.12), (2.13), and (2.35)
are fulfilled and

limsup
t→+∞

(
h(t,0)−h(σ(τ(t)),0)

)
< +∞. (4.1)

Then there exists λ∈R+ such that

limsup
ε→0+

(
liminf
t→+∞ exp

(
(λ+ ε)h(t,0)

)
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)exp

(− (λ+ ε)h
(
τ(ξ),0

))
dξ ds

)
≤ 1.

(4.2)

Proof. Since Kt0 
= ∅, we have that the problem (1.3), (1.4) has a solution (u1,u2). Ac-
cording to Lemma 2.4, there exist λ > 0 such that condition (2.36) is fulfilled. Denote by
Δ the set of all λ satisfying (2.36) and put λ0 = inf Δ. It is obvious that λ0 ≥ 0. Below
we will show that for λ = λ0 inequality (4.2) holds. By (2.36) for all ε > 0, the function
γ(t)= exp(h(t,0)) satisfies conditions (3.6) and first condition of (3.7), where r2 = λ0 + ε
and r1 = λ0− ε. On the other hand, by (4.1) it is clear that the second condition of (3.7)
is fulfilled. Therefore, according to Lemma 3.3, for any ε > 0, we get

liminf
t→+∞ exp

((
λ0 + ε

)
h(t,0)

)
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)exp

(− (λ0 + ε
)
h
(
τ(ξ),0

))
dξ ds≤ c2ε.

(4.3)

Proceeding to greatest lower bound in the last inequality, for ε→ 0+, we obtain inequality
(4.2), when λ= λ0. �

Theorems 4.3 and 4.4 can be proven analogously to Theorem 4.2 if we take into con-
sideration Lemmas 2.5 and 2.6, respectively.
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Theorem 4.3. Let t0 ∈ R+ and Kt0 
= ∅. Assume that conditions (2.22k), (2.23k), where
k = 1, (2.45), and (4.1) are fulfilled. Then there exists λ∈R+ which satisfies the inequality
(4.2).

Theorem 4.4. Let t0 ∈ R+ and Kt0 
= ∅. Assume that conditions (2.22k), (2.23k), where
k = 0, (2.46), and (4.1) are fulfilled. Then there exists λ∈R+ which satisfies the inequality
(4.2).

Theorem 4.5. Let t0 ∈R+ and Kt0 
=∅. Assume that conditions (2.12), (2.13), and (2.56)
are fulfilled and

limsup
t→+∞

h(t,0)
h
(
σ
(
τ(t),0

)) < +∞. (4.4)

Then there exists λ∈R+ such that

limsup
ε→0+

liminf
t→+∞

(
h(t,0)

)λ+ε
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)

(
h
(
τ(ξ),0

))−(λ+ε)
dξ ds≤ 1. (4.5)

Theorem 4.5 can be proven analogously to Theorem 4.2 if we take into consideration
the condition (4.4) and Lemma 2.7.

Theorem 4.6. Let t0 ∈ R+ and Kt0 
= ∅. Assume that conditions (2.22k), (2.23k), where
k = 1, (2.58), and (4.4) are fulfilled. Then there exists λ∈R+ which satisfies the inequality
(4.5).

Theorem 4.7. Let t0 ∈ R+ and Kt0 
= ∅. Assume that conditions (2.22k), (2.23k), where
k = 0, (2.59), and (4.4) are fulfilled. Then there exists λ∈R+ which satisfies the inequality
(4.5).

By Lemma 2.10, similarly to Theorem 4.5, one can prove the following theorem.

Theorem 4.8. Let t0 ∈R+ and Kt0 
=∅. Assume that conditions (2.12), (2.13), and (2.60)
are fulfilled and

limsup
t→+∞

lnh(t,0)
ln
(
h
(
σ
(
τ(t)

)
,0
)) < +∞. (4.6)

Then there exists λ∈R+ such that

limsup
ε→0+

(
liminf
t→+∞

(
lnh(t,0)

)
)λ+ε ∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)

(
ln
(
h
(
τ(ξ),0

)))−(λ+ε)
dξ ds≤ 1.

(4.7)

Theorem 4.9. Let t0 ∈ R+ and Kt0 
= ∅. Assume that conditions (2.22k), (2.23k), where
k = 1, (2.62), and (4.6) are fulfilled. Then there exists λ∈R+ which satisfies the inequality
(4.7).

This theorem is proven analogously to Theorem 4.8 if we replace Lemma 2.10 by
Lemma 2.11.
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Theorem 4.10. Let t0 ∈R+ and Kt0 
=∅. Besides conditions (2.22k), (2.23k), where k = 0,
(2.63), and (4.6) are fulfilled. Then there exists λ∈R+ such that the inequality (4.7) holds.

This theorem is proven analogously to Theorem 4.8 if we replace Lemma 2.10 by
Lemma 2.12.

5. The sufficient conditions for the problem (1.3), (1.4) has no solution

In this section, we will produce the sufficient conditions under which for any t0 ∈R+, we
have Kt0 =∅.

Theorem 5.1. Let conditions (2.12), (2.13), (2.35), and (4.1) be fulfilled. Assume that for
any λ∈R+

limsup
ε→0+

(
liminf
t→+∞ exp

(
(λ+ ε)h(t,0)

)
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)exp

(− (λ+ ε)h
(
τ(ξ),0

))
)
dξ ds > 1.

(5.1)

Then Kt0 =∅ for any t0 ∈R+.

Proof. Suppose not. Let there exist t0 ∈ R+ such that Kt0 
= ∅. Then there exists a so-
lution (u1,u2) of the problem (1.3), (1.4). On the other hand, since the conditions of
Theorem 4.2 are fulfilled, there exists λ0 ∈ R+, such that when λ = λ0, inequality (4.2)
holds. But this inequality contradicts (5.1). The obtained contradiction proves the theo-
rem. �

Taking into account Theorems 4.3 and 4.4, we can easily ascertain the validity of the
following theorems (Theorems 5.2 and 5.3).

Theorem 5.2. Let conditions (2.22k), (2.23k), where k = 1, (2.45), and (4.1) be fulfilled.
Assume that for any λ∈R+ (5.1) holds. Then Kt0 =∅ for any t0 ∈R+.

Theorem 5.3. Let conditions (2.22k), (2.23k), where k = 0, (2.46), and (4.1) be fulfilled.
Assume that for any λ∈R+ (5.1) holds. Then Kt0 =∅ for any t0 ∈R+.

Corollary 5.4. Let conditions (2.12), (2.13), (4.1), and (2.35) be fulfilled. Assume there
exist t1 ∈R+ such that

inf
(
λ−2ap(λ)aq(λ) : λ > 0

)
> 1, (5.2)

where

ap(λ)= inf
(
eλ(h(t,0)−h(σ(t),0)) : t ≥ t1

)
,

aq(λ)= inf
(
q(t)
p(t)

eλ(h(t,0)−h(τ(t),0)) : t ≥ t1
)
.

(5.3)

Then Kt0 =∅ for any t0 ∈R+.



A. Domoshnitsky and R. Koplatadze 17

Proof. It is sufficient to show that for any λ∈R+ inequality (5.1) is satisfied. By (5.2), we
have that for any λ∈ (0,+∞), there exist ε0 > 0 such that

λ−2ap(λ)aq(λ)≥ 1 + ε0 for λ∈ (0,+∞). (5.4)

Let λ∈R+ and let ε be an arbitrary positive number. Then by (1.5), (5.3), and (5.4), we
have that for any ε > 0

exp
(
(λ+ ε)h(t,0)

)
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)exp

(− (λ+ ε)h
(
τ(ξ),0

))
dξ ds

≥ exp
(
(λ+ ε)h(t,0)

)
aq(λ+ ε)

∫ +∞

t
p(s)

∫ +∞

σ(s)
p(ξ)exp

(− (λ+ ε)h(ξ,0)
)
dξ ds

≥ aq(λ+ ε)ap(λ+ ε)

λ+ ε
exp

(
(λ+ ε)h(t,0)

)
∫ +∞

t
p(s)exp

(− (λ+ ε)h(s,0)
)
ds

= aq(λ+ ε)ap(λ+ ε)

(λ+ ε)2
≥ 1 + ε0 for t ≥ t∗1 ,

(5.5)

where t∗1 > t1—sufficiently large. Consequently, from the last inequality (5.1) follows. �

Corollary 5.5. Let conditions (2.12), (2.13), (2.35), and (4.1) be fulfilled. Assume that

σ(t)≤ t, τ(t)≤ t for t ∈R+,

inf
((
h(t,0)−h(σ(t),0

))
: t ≥ t1

)
inf
(
q(t)
p(t)

(
h(t,0)−h(τ(t),0

))
: t ≥ t1

)
>

1
e2
.

(5.6)

Then Kt0 =∅ for any t0 ∈R+.

Proof. If we apply the inequality ex ≥ ex, it will be clear that (5.1) follows from (5.6). �

Theorem 5.6. Let p(t) ≡ p, q(t) ≡ q, τ(t) = t − Δ, σ(t) = t − δ, where p,q ∈ (0,+∞),
δ,Δ∈R, and Δ+ δ > 0. Then the condition

(δ +Δ)
√
pq >

2
e

(5.7)

is necessary and sufficient for Kt0 =∅ for any t0 ∈R+.

Proof. Sufficiency. By (5.7) it is obvious that condition (5.2) is satisfied. Therefore suffi-
ciency follows from Corollary 5.4.

Necessity. Let for any t0 ∈R+, Kt0 =∅ and

(δ +Δ)
√
pq ≤ 2

e
. (5.8)

Then it is obvious that the equation

qeλp(δ+Δ) = pλ2 (5.9)
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has a solution λ= λ0 > 0. Therefore the system

c1λ0 + c2e
λ0 pΔ = 0, c1qe

λ0pδ + c2pλ0 = 0 (5.10)

has a solution c1 and c2, such that c1c2 < 0. It is clear that vector function (c1e−λ0t,c2e−λ0t)
is a solution of the problem (1.3)-(1.4). But this contradicts the fact that Kt0 =∅. �

Remark 5.7. If the function τ satisfies condition (4.1), then the strong inequality (5.1)
cannot be changed by nonstrong one. Otherwise, the problem (1.3), (1.4) has a solution
as the proof of necessity in Theorem 5.6 demonstrates: actually in this case the left-hand
side of (5.1) is one.

Theorem 5.8. Let conditions (2.12), (2.13), (2.56), and (4.4) be fulfilled. Assume that for
any λ∈R+

limsup
ε→0+

liminf
t→ +∞

(
h(t,0)

)λ+ε
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)

(
h
(
τ(ξ),0

))−(λ+ε)
dξ ds > 1. (5.11)

Then Kt0 =∅ for any t0 ∈R+.

Taking into account Theorem 4.5, we can prove the following assertion analogously to
Theorem 4.2.

Theorem 5.9. Let conditions (2.22k), (2.23k), where k = 0, (2.59), and (4.4) be fulfilled
and for any λ∈R+ let inequality (5.11) be satisfied. Then Kt0 =∅ for any t0 ∈R+.

By Theorem 4.6, we can easily ascertain the validity of the following assertion.

Theorem 5.10. Let conditions (2.22k), (2.23k), where k = 1, (2.58), and (4.4) be fulfilled
and for any λ∈R+ let inequality (5.11) be satisfied. Then Kt0 =∅ for any t0 ∈R+.

Corollary 5.11. Let conditions (2.12), (2.13), (2.56), and (4.4) be satisfied. Assume there
exist t1 ∈R+ such that

inf
(

1
λ(λ+ 1)

ap(λ)aq(λ) : λ > 0
)
> 1, (5.12)

where

ap(λ)= inf
((

h(t,0)
h(σ(t),0)

)1+λ

: t ≥ t1
)

,

aq(λ)= inf
(
q(t)
p(t)

h2(t,0)
( h(t,0)
h
(
τ(t),0

)
)λ

: t ≥ t1
)
.

(5.13)

Then Kt0 =∅ for any t0 ∈R+.
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Proof. Let us demonstrate that for any λ ∈ (0,+∞) inequalities (5.12) and (5.13) imply
(5.11). Indeed, for any λ∈R+ and ε > 0, we have

(
h(t,0)

)λ+ε
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)

(
h
(
τ(ξ),0

))−(λ+ε)
dξ ds

≥ aq(λ+ ε)
(
h(t,0)

)λ+ε
∫ +∞

t
p(s)

∫ +∞

σ(s)
p(ξ)

(
h(ξ,0)

)−2−λ−ε
dξ ds

= aq(λ+ ε)

1 + λ+ ε

(
h(t,0)

)λ+ε
∫ +∞

t
p(s)

(
h
(
σ(s),0

))−1−λ−ε
ds

≥ aq(λ+ ε)ap(λ+ ε)

1 + λ+ ε

(
h(t,0)

)λ+ε
∫ +∞

t
p(s)

(
h(s,0)

)−1−λ−ε
ds

= aq(λ+ ε)ap(λ+ ε)

(1 + λ+ ε)(λ+ ε)

≥ 1 + ε0,

(5.14)

where ε0 > 0, which proves the corollary. �

Theorem 5.12. Let p(t) ≡ p, q(t)= q/t2, σ(t) = αt, and τ(t) = βt, where p,q ∈ (0,+∞),
α,β ∈ (0,+∞) and αβ < 1. Then the condition

inf
(

1
λ(1 + λ)

α−λ−1β−λ : λ∈ (0,+∞)
)
>

1
pq

(5.15)

is necessary and sufficient for Kt0 =∅ for any t0 ∈R+.

Proof. Sufficiency. It follows from Corollary 5.11.
Necessity. Let for any t0 ∈R+, Kt0 =∅ and

inf
(

1
λ(1 + λ)

α−1−λβ−λ : λ∈ (0,+∞)
)
≤ 1
pq
. (5.16)

Then it is obvious that the equation

pqα−1−λβ−λ = λ(1 + λ) (5.17)

has a solution λ= λ0 > 0. Therefore the system

c1λ0 + c2pα
−1−λ = 0, c1qβ

−λ + c2
(
1 + λ0

)= 0 (5.18)

has a solution c1 and c2, such that c1c2 < 0. On the other hand, it is obvious that the vector
function (c1t−λ0 ,c2t−λ0−1) is a solution of the problem (1.3), (1.4). But this contradicts the
fact that Kt0 =∅. �

We can prove Theorems 5.13–5.15 analogously to the proofs of Theorems 5.1–5.3.
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Theorem 5.13. Let conditions (2.12), (2.13), (2.60), and (4.6) be fulfilled and for any λ∈
R+

limsup
ε→0+

liminf
t→ +∞

(
lnh(t,0)

)λ+ε
∫ +∞

t
p(s)

∫ +∞

σ(s)
q(ξ)

(
lnh
(
τ(ξ),0

))−(λ+ε)
dξ ds > 1. (5.19)

Then Kt0 =∅ for any t0 ∈R+.

Theorem 5.14. Let conditions (2.22k), (2.23k), where k = 1, (2.62), and (4.6) be fulfilled
and for any λ∈ (0,+∞) let the inequality (5.19) hold. Then Kt0 =∅ for any t0 ∈R+.

Theorem 5.15. Let conditions (2.22k), (2.23k), where k = 0, (2.63), and (4.6) be fulfilled
and for any λ∈R+ let the inequality (5.19) hold. Then Kt0 =∅ for any t0 ∈R+.

Corollary 5.16. Let conditions (2.22k), (2.23k), where k = 0, (2.60), and (4.6) be fulfilled
and for any λ∈ (0,+∞) there exist ε0 > 0 such that

liminf
t→+∞

(
lnh(t,0)

)λ+1
h(t,0)

∫ +∞

σ(t)
q(ξ)

(
lnh
(
τ(ξ),0

))−λ
dξ ≥ (1 + ε0)λ. (5.20)

Then Kt0 =∅ for any t0 ∈R+.

Proof. It suffices to note that (5.20) implies (5.19). �

Corollary 5.17. Let conditions (2.22k), (2.23k), where k = 0, (2.60), and (4.6) be fulfilled
and there exist t1 ∈R+ such that

inf
{
aq(λ) · ap(λ)

λ
: λ > 0

}
> 1, (5.21)

limsup
t→+∞

h(t,0)
h(σ(t),0)

< +∞, (5.22)

where

aq(λ)= inf
{
q(t)h2(t,0) lnh(t,0)

p(t)

(
lnh(t,0)

lnh
(
τ(t),0

)
)λ

: t ≥ t1
}

, (5.23)

ap(λ)= inf
{

h(t,0)
h
(
σ(t),0

)
(

lnh(t,0)
lnh
(
σ(t),0

)
)λ+1

: t ≥ t1
}
. (5.24)

Then Kt0 =∅ for any t0 ∈R+.

Proof. It is sufficient to show that condition (5.20) is fulfilled. According to (5.21), there
exists ε0 > 0 such that

aq(λ)ap(λ)≥ λ(1 + ε0
)

for λ∈ (0,+∞). (5.25)
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Therefore in view of (5.23)

(
lnh(t,0)

)1+λ
h(t,0)

∫ +∞

σ(t)
q(ξ)

(
lnh
(
τ(s),0

))−λ
ds

≥ aq(λ)
(

lnh(t,0)
)1+λ

h(t,0)
∫ +∞

σ(t)
p(s)h−2(s,0)

(
lnh(s,0)

)−1−λ
ds

= aq(λ)
(

lnh(t,0)
)1+λ

h(t,0)
∫ +∞

σ(t)

[
−
(
h−1(s,0)

(
lnh(s,0)

)−λ−1
)′

− (1 + λ)h−2(s,0)
(

lnh(s,0)
)−λ−2

p(s)
]
ds.

(5.26)

On the other hand, according to (5.22), we have

(
lnh(t,0)

)1+λ
h(t,0)

∫ +∞

σ(t)
(h(s,0))−2( lnh(s,0)

)−λ−2
p(s)ds

≤
(

lnh(t,0)
lnh(σ(t),0)

)1+λ(
lnh
(
σ(t),0

))−1
h(t,0)

∫ +∞

σ(t)
h−2(s,0)p(s)ds

=
(

lnh(t,0)
lnh
(
σ(t),0

)
)1+λ h(t,0)

h(σ(t),0)

(
lnh
(
σ(t),0

))−1 −→ 0 for t −→ +∞.

(5.27)

Therefore, in view of (5.25) and (5.26), we have

liminf
t→+∞

(
lnh(t,0)

)1+λ
h(t,0)

∫ +∞

σ(t)
q(s)

(
lnh
(
τ(s),0

))−λ
ds≥ aq(λ) · ap(λ)≥ (1 + ε0)λ.

(5.28)

The condition (5.20) is fulfilled. This proves the corollary. �

Remark 5.18. The condition (5.21) ((5.19)) cannot be changed by the nonstrong inequal-
ity. Otherwise, Corollary 5.16 (Theorem 5.15) will not be true.

Example 5.19. Let β ∈ (0,1), p(t) = 1, σ(t) = t, τ(t) = tβ, q(t) = (1/e| lnβ|t2 ln t)(1 +
(1 + | lnβ|)/| lnβ| ln t). All the conditions of Corollary 5.17 are fulfilled except (5.21). Fur-
thermore we can easily show that

inf
{
aq(λ) · ap(λ)

λ
: λ > 0

}
= 1. (5.29)

And the vector-function ((ln t)1/ lnβ, (ln t)−1+1/ lnβ/t · lnβ) is the solution of (1.3) satisfying
the condition (1.4), while t0 is the sufficiently large number.



22 Journal of Inequalities and Applications

References

[1] T. A. Chanturiya, “Specific conditions for the oscillation of solutions of linear differential equa-
tions with retarded argument,” Ukrainskĭı Matematicheskĭı Zhurnal, vol. 38, no. 5, pp. 662–665,
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