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1. Introduction

For any given P-matrix [1](see also [2–4]), M ∈Rn×n, Mathias and Pang [5] introduced
a quantity α(M) by

α(M)= min
‖x‖∞=1

max
1≤i≤n

xi(Mx)i. (1.1)

In terms of α(M), a bound for the solution of the linear complementarity problem
LCP(M,q) (see [2–4]) with a P-matrix M is established in [5]. Recently, Xiu and Zhang
[6] further gave some new properties of α(M) and introduced a new quantity β(M),
which is defined by

β(M)= max
‖x‖∞=1

max
1≤i≤n

xi(Mx)i. (1.2)
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Moreover, Xiu and Zhang [6] introduced a fundamental quantity α{A,B} associated with
a pair {A,B} having v-column P-property (see [2–4, 7]) by

α{A,B} = min
‖x‖∞=1

max
1≤i≤n

(Ax)i(Bx)i, (1.3)

where A,B ∈Rm×n. They developed some characteristic quantities of α{A,B}. By means
of these quantities, Xiu and Zhang [6] established global error bounds for the vertical and
horizontal linear complementarity problems.

Motivated by these works, in this paper, we introduce the concepts of P-type and M-
type functions and give several quantities for homogeneous P-type and M-type func-
tions. Furthermore, we give the concepts of P-property and M-property for a couple of
functions, and obtain some quantities for homogeneous continuous pair with P-property
and M-property, respectively. As an application, a bound of the solution to the homoge-
neous complementarity problem with a P-type function is obtained.

2. Characteristic quantities for P-Type and M-Type functions

Let T :Rn→Rn be a function. We say that T is positively homogeneous with degree θ > 0
if T(λx)= λθT(x) for all x ∈Rn and λ > 0. Define � by

�= {T|T :Rn −→Rn is continuous and positively homogeneous
}
. (2.1)

Given T ∈�, define

‖T‖ = max
‖x‖=1

∥
∥T(x)

∥
∥= sup

x �=0

∥
∥T(x)

∥
∥

‖x‖θ , (2.2)

where θ > 0 is the positively homogeneous degree of T and ‖ · ‖ is a norm on Rn.

Theorem 2.1. Let T ,S : Rn → Rn be two positively homogeneous functions with degrees θ
and ρ, respectively. Then the following conclusions hold:

(i) ‖T(x)‖ ≤ ‖T‖ · ‖x‖θ ;
(ii) if the inverse T−1 in � exists, then T−1 is positively homogeneous with degree 1/θ;

(iii) ‖T · S‖ ≤ ‖T‖ · ‖S‖θ .

Proof. (i) This follows directly from (2.2).
(ii) Since T−1 ∈�, we suppose the degree of T−1 is θ′. It follows that

(
T−1 ·T)(λx)= λx = T−1(λθT(x)

)= λθθ
′(
T−1 ·T)(x)= λθθ

′
x. (2.3)

Hence θ′ = 1/θ.
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(iii) It is easy to see that T · S is positively homogeneous with degree θρ. By (2.2),

‖T · S‖ = sup
x �=0

∥
∥T
(
S(x)

)∥∥

‖x‖θρ ≤ sup
x �=0

‖T‖ ·∥∥S(x)
∥
∥θ

‖x‖θρ

≤ sup
x �=0

‖T‖ · ‖S‖θ · ‖x‖θρ
‖x‖θρ = ‖T‖ · ‖S‖θ.

(2.4)

This completes the proof. �

Let T :Rn→Rn be a function. Recall that T is a P-function (see [3, 4]) if

max
1≤i≤n

(
xi− yi

)(
T(x)−T(y)

)
i > 0 (2.5)

for all x �= y.
We now introduce the concepts of M-type and P-type functions as follows.

Definition 2.2. Let T :Rn→Rn be a function. T is said to be
(i) M-type if

min
1≤i≤n

xi
(
T(x)

)
i > 0, ∀x �= 0; (2.6)

(ii) P-type if

max
1≤i≤n

xi
(
T(x)

)
i > 0, ∀x �= 0. (2.7)

Note that a P-functionT with T(0)= 0 is P-type and a function T :Rn→Rn is M-type
if T(0)= 0 and Ti :Rn→R is strictly monotone for each i, where Ti(x)= [T(x)]i.

For any given P-type and positively homogeneous function T with degree θ > 0, we
define α(T) and β(T) by

α(T)= min
‖x‖∞=1

max
1≤i≤n

xi
(
T(x)

)
i = inf

x �=0

max1≤i≤n xi
(
T(x)

)
i

‖x‖θ+1∞
, (2.8)

β(T)= max
‖x‖∞=1

max
1≤i≤n

xi(T(x))i = sup
x �=0

max1≤i≤n xi(T(x))i
‖x‖θ+1∞

, (2.9)

where ‖x‖∞ =max1≤i≤n{|xi|}. In addition, if T is M-type, we can further define α′(T)
and β′(T) by

α′(T)= max
‖x‖∞=1

min
1≤i≤n

xi(T(x))i = sup
x �=0

min1≤i≤n xi
(
T(x)

)
i

‖x‖θ+1∞
, (2.10)

β′(T)= min
‖x‖∞=1

min
1≤i≤n

xi
(
T(x)

)
i = inf

x �=0

min1≤i≤n xi(T(x))i
‖x‖θ+1∞

. (2.11)

Obviously, α(T), β(T), α′(T), and β′(T) are well defined, finite, and positive.
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Remarks 2.3. The definitions of α(T), β(T) associated with a P-type positively homoge-
neous function T generalize the definitions of α(M), β(M) associated with a P-matrix in
[5, 6], respectively.

By (2.8)–(2.11), we can obtain the following proposition.

Proposition 2.4. Let T : Rn → Rn be a positively homogeneous function with degree θ.
Then the following conclusions hold:

(i) if T is P-type, then

α(T)‖x‖θ+1
∞ ≤ max

1≤i≤n
xi
(
T(x)

)
i ≤ β(T)‖x‖θ+1

∞ ; (2.12)

(ii) if T is M-type, then

β′(T)‖x‖θ+1
∞ ≤ min

1≤i≤n
xi
(
T(x)

)
i ≤ α′(T)‖x‖θ+1

∞ , (2.13)

β′(T)≤ α′(T)≤ α(T)≤ β(T). (2.14)

Theorem 2.5. Let T : Rn → Rn be a P-type and positively homogeneous function with de-
gree θ and have inverse T−1 in �. Then the following conclusions hold:

(a) β(T)≤ ‖T‖∞;
(b) α(T)≤ 1/‖T−1‖θ∞;
(c) 1/‖T−1‖θ+1∞ ≤ β(T)/β(T−1), α(T)/α(T−1)≤ ‖T‖1+1/θ∞ .

Proof. For any nonzero x ∈Rn, we know

xi
(
T(x)

)
i ≤ ‖x‖∞ ·‖T(x)‖∞ ≤ ‖T‖∞ ·‖x‖θ+1

∞ , i= 1,2, . . . ,n. (2.15)

By (2.9), we obtain β(T)≤ ‖T‖∞. Hence (a) is true.
From (2.2) and Theorem 2.1,

∥
∥T−1

∥
∥∞ = sup

x �=0

∥
∥T−1(x)

∥
∥∞

‖x‖1/θ∞
= sup

y �=0

‖y‖∞
∥
∥T(y)

∥
∥1/θ
∞
= sup

y �=0

(‖y‖1+θ∞
)1/θ

(∥∥T(y)
∥
∥∞ ·‖y‖∞

)1/θ . (2.16)

Since ‖T(y)‖∞ ·‖y‖∞ ≥max1≤i≤n yi(T(y))i, we have

∥
∥T−1

∥
∥∞ ≤ sup

y �=0

[ ‖y‖1+θ∞
max1≤i≤n yi

(
T(y)

)
i

]1/θ

=
[

sup
y �=0

‖y‖1+θ∞
max1≤i≤n yi

(
T(y)

)
i

]1/θ

=
[

1
α(T)

]1/θ
(2.17)

and so

α(T)≤ 1
∥
∥T−1

∥
∥θ∞

. (2.18)

Hence (b) is true.
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From (2.8), (2.9), and Theorem 2.1, we know

β
(
T−1)= sup

x �=0

max1≤i≤n xi
(
T−1(x)

)
i

‖x‖1+1/θ∞
= sup

y �=0

max1≤i≤n yi
(
T(y)

)
i

∥
∥T(y)

∥
∥1+1/θ
∞

≥ sup
y �=0

max1≤i≤n yi
(
T(y)

)
i

‖T‖1+1/θ∞ ·‖y‖1+θ∞
= β(T)

‖T‖1+1/θ∞
,

α
(
T−1)= inf

x �=0

max1≤i≤n xi
(
T−1(x)

)
i

‖x‖1+1/θ∞
= inf

y �=0

max1≤i≤n yi
(
T(y)

)
i

∥
∥T(y)

∥
∥1+1/θ
∞

≥ inf
y �=0

max1≤i≤n yi
(
T(y)

)
i

‖T‖1+1/θ∞ ·‖y‖1+θ∞
= α(T)

‖T‖1+1/θ∞
,

(2.19)

which yields the second inequality in (c).
By the same arguments, we can prove

β(T)≥ β(T−1)
∥
∥T−1

∥
∥1+θ
∞

, α(T)≥ α
(
T−1

)

∥
∥T−1

∥
∥1+θ
∞

, (2.20)

which yields the first inequality in (c). This completes the proof. �

Similarly, we can obtain the following results.

Theorem 2.6. Let T : Rn → Rn be an M-type and positively homogeneous function with
degree θ and have inverse T−1 in �. Then

(i) β′(T)≤ 1/‖T−1‖θ∞;
(ii) 1/‖T−1‖θ+1∞ ≤ β′(T)/β′(T−1), α′(T)/α′(T−1)≤ ‖T‖1+1/θ∞ .

Theorem 2.7. Let T ,S : Rn → Rn be two positively homogeneous functions with the same
degree θ. Then the following conclusions hold:

(1) if both T and S are P-type, then β(T + S)≤ β(T) +β(S);
(2) if T is P-type and S is M-type, then α(T + S)≥ α(T), β(T + S)≥ β(T);
(3) if both T and S are M-type, then

β′(T + S)≥ β′(T) +β′(S), α′(T + S)≥max{α′(T),α′(S)},
β′(T + S)≥max{β′(T),β′(S)}. (2.21)

Proof. The facts directly follow from the definitions of α, β, α′, β′, and simple arguments.
�

Remarks 2.8. Theorems 2.5–2.7 generalize partly Theorems 2.1 and 2.5 of Xiu and Zhang
[6].

3. Extensions

In this section, we introduce the definitions of P-property and M-property for a pair
{T ,S} and generalize some results for a function T in Section 2 to a pair {T ,S}.
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Definition 3.1. Let T ,S :Rn→Rn be two functions. Say that {T ,S} has
(1) P-property if for any nonzero x ∈Rn,

max
1≤i≤n

(T(x))i(S(x))i > 0; (3.1)

(ii) M-property if for any nonzero x ∈Rn,

min
1≤i≤n

(T(x))i(S(x))i > 0. (3.2)

Let T ,S ∈� with positively homogeneous degrees θ and ρ, respectively, and {T ,S}
have P-property. Define α{T ,S} and β{T ,S} as follows:

α{T ,S} = min
‖x‖∞=1

max
1≤i≤n

(
T(x)

)
i(S(x))i = inf

x �=0

max1≤i≤n(T(x))i(S(x))i

‖x‖θ+ρ
∞

, (3.3)

β{T ,S} = max
‖x‖∞=1

max
1≤i≤n

(
T(x)

)
i

(
S(x)

)
i = sup

x �=0

max1≤i≤n(T(x))i(S(x))i

‖x‖θ+ρ
∞

. (3.4)

Remarks 3.2. The definitions of α{T ,S}, β{T ,S} associated with a positively homoge-
neous function pair {T ,S} having P-property generalize the definitions of α{M,N},
β{M,N} associated with a matrix pair having v-column P-property in [2, 6, 7].

In addition, if {T ,S} has M-property, we can define α′{T ,S} and β′{T ,S} by

α′{T ,S} = max
‖x‖∞=1

min
1≤i≤n

(
T(x)

)
i

(
S(x)

)
i = sup

x �=0

min1≤i≤n(T(x))i(S(x))i

‖x‖θ+ρ
∞

, (3.5)

β′{T ,S} = min
‖x‖∞=1

min
1≤i≤n

(
T(x)

)
i

(
S(x)

)
i = inf

x �=0

min1≤i≤n(T(x))i(S(x))i

‖x‖θ+ρ
∞

. (3.6)

By the definitions of α{T ,S}, β{T ,S}, α′{T ,S}, and β′{T ,S}, we can obtain the follow-
ing proposition.

Proposition 3.3. Let T ,S :Rn→Rn be two positively homogeneous functions with degrees
θ and ρ, respectively. Then the following conclusions hold:

(i) if {T ,S} has P-property, then

α{T ,S}‖x‖θ+ρ
∞ ≤ max

1≤i≤n
(
T(x)

)
i

(
S(x)

)
i ≤ β{T ,S}‖x‖θ+ρ

∞ ; (3.7)

(ii) if {T ,S} has M-property, then

β′{T ,S}‖x‖θ+ρ
∞ ≤ min

1≤i≤n
(
T(x)

)
i

(
S(x)

)
i ≤ α′{T ,S}‖x‖θ+ρ

∞ , (3.8)

β′{T ,S} ≤ α′{T ,S} ≤ α{T ,S} ≤ β{T ,S}. (3.9)

Note that, if T−1 exists, then the condition that {T ,S} has P-property (M-property) is
equivalent to the condition that ST−1 is P-type (M-type).

Theorem 3.4. Let T ,S : Rn → Rn be two positively homogeneous functions with degrees θ
and ρ, respectively. Suppose that {T ,S} has P-property and T has inverse T−1 in �. Then
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the following conclusions hold:
(a) β{T ,S} ≤ ‖T‖∞ ·‖S‖∞;
(b) α{T ,S} ≤ ‖S‖∞/‖T−1‖θ∞;

(c) 1/‖T−1‖θ+ρ
∞ ≤ β{T ,S}/β(ST−1), α{T ,S}/α(ST−1)≤ ‖T‖1+(ρ/θ)

∞ .

Proof. (a) For any nonzero x ∈Rn, it follows from (i) of Theorem 2.1 that

(
T(x)

)
i

(
S(x)

)
i ≤ ‖T(x)‖∞ ·‖S(x)‖∞ ≤ ‖T‖∞ ·‖S‖∞ ·‖x‖θ+ρ

∞ , i= 1,2, . . . ,n. (3.10)

By (3.4),

β{T ,S} ≤ ‖T‖∞ ·‖S‖∞. (3.11)

(b) From (2.2) and (i) of Theorem 2.1,

∥
∥T−1

∥
∥∞ = sup

x �=0

∥
∥T−1(x)

∥
∥∞

‖x‖1/θ∞
= sup

y �=0

‖y‖∞
∥
∥T(y)

∥
∥1/θ
∞
= sup

y �=0

(‖y‖θ∞ ·
∥
∥S(y)

∥
∥∞
)1/θ

(∥∥T(y)
∥
∥∞ ·

∥
∥S(y)

∥
∥∞
)1/θ . (3.12)

Since ‖T(y)‖∞ ·‖y‖∞ ≥max1≤i≤n yi(T(y))i and ‖S(y)‖∞ ≤ ‖S‖∞ ·‖y‖ρ∞, we have

∥
∥T−1

∥
∥∞ ≤ sup

y �=0

[ ‖S‖∞ ·‖y‖ρ+θ
∞

max1≤i≤n
(
T(y)

)
i

(
S(y)

)
i

]1/θ

= ‖S‖1/θ
∞ ·

[
sup
y �=0

‖y‖ρ+θ
∞

max1≤i≤n
(
T(y)

)
i

(
S(y)

)
i

]1/θ

=
[ ‖S‖∞
α{T ,S}

]1/θ

.

(3.13)

This implies that

α{T ,S} ≤ ‖S‖∞
∥
∥T−1

∥
∥θ∞

. (3.14)

(c) It follows from (2.9) that

β
(
ST−1)= sup

x �=0

max1≤i≤n xi
((
ST−1

)
(x)
)
i

‖x‖1+ρ/θ
∞

= sup
y �=0

max1≤i≤n
(
T(y)

)
i

(
S(y)

)
i

∥
∥T(y)

∥
∥1+ρ/θ
∞

≥ sup
y �=0

max1≤i≤n
(
T(y)

)
i

(
S(y)

)
i

‖T‖1+ρ/θ
∞ ·‖y‖ρ+θ

∞
= β{T ,S}
‖T‖1+ρ/θ

∞
.

(3.15)

By (3.4) and Theorem 2.1,

∥
∥T−1(y)

∥
∥∞ ≤

∥
∥T−1

∥
∥∞ ·‖y‖1/θ

∞ ,

β{T ,S} = sup
x �=0

max1≤i≤n
(
T(x)

)
i

(
S(x)

)
i

‖x‖ρ+θ
∞

= sup
y �=0

max1≤i≤n yi
((
ST−1

)
(y)
)
i

∥
∥T−1(y)

∥
∥ρ+θ
∞

.
(3.16)
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It follows that

β{T ,S} ≥ sup
y �=0

max1≤i≤n yi
((
ST−1

)
(y)
)
i

∥
∥T−1

∥
∥θ+ρ
∞ ·‖y‖1+ρ/θ

∞
= β

(
ST−1

)

∥
∥T−1

∥
∥θ+ρ
∞

. (3.17)

Hence

1
∥
∥T−1

∥
∥θ+ρ
∞

≤ β{T ,S}
β
(
ST−1

) ≤ ‖T‖1+ρ/θ
∞ . (3.18)

By similar arguments, we can prove that

1
∥
∥T−1

∥
∥θ+ρ
∞

≤ α{T ,S}
α
(
ST−1

) ≤ ‖T‖1+ρ/θ
∞ . (3.19)

This completes the proof. �

Remarks 3.5. Theorem 3.4 generalizes and improves Theorem 2.7 of Xiu and Zhang [6].

Similarly, we can obtain the following result.

Theorem 3.6. Let T ,S : Rn → Rn be two positively homogeneous functions with degrees θ
and ρ, respectively. Suppose that {T ,S} has M-property and T has inverse T−1 in �. Then
the following conclusions hold:

(1) β′{T ,S} ≤ ‖S‖∞/‖T−1‖θ∞;

(2) 1/‖T−1‖θ+ρ
∞ ≤ α′{T ,S}/α′(ST−1), β′{T ,S}/β′(ST−1)≤ ‖T‖1+(ρ/θ)

∞ .

4. An application

In this section, we give a bound for the solution of the homogeneous complementarity
problem, denoted by HCP(T ,q), which consists of finding x ∈Rn such that

x ≥ 0, T(x) + q ≥ 0, xT
(
T(x) + q

)= 0, (4.1)

where T :Rn→Rn is a P-type and positively homogenous function and q ∈Rn.

Theorem 4.1. Let T : Rn → Rn be a P-type and positively homogeneous function with de-
gree θ. Suppose that T has inverse T−1 in � and x is the unique solution of HCP(T ,q).
Then

[
α
(
T−1)]θ∥∥(−q)+

∥
∥∞ ≤ ‖x‖θ∞ ≤

∥
∥(−q)+

∥
∥∞

α(T)
, (4.2)

where (−q)+ denotes the nonnegative part of −q.

Proof. If x = 0, then (−q)+ = 0. The conclusion holds trivially. In the sequel we always
suppose that x �= 0, equivalently, q is not nonnegative. Since x solves HCP(T ,q), by
Proposition 2.4, one has

α(T)‖x‖θ+1
∞ ≤ max

1≤i≤n
xi
(
T(x)

)
i = max

1≤i≤n
xi(−q)i

≤ max
1≤i≤n

xi
(
(−q)+

)
i ≤ ‖x‖∞ ·

∥
∥(−q)+

∥
∥∞.

(4.3)



Ya-Ping Fang et al. 9

This implies that

‖x‖θ∞ ≤
∥
∥(−q)+

∥
∥∞

α(T)
. (4.4)

It follows from (2.12) that

α
(
T−1)‖y‖1+1/θ

∞ ≤ max
1≤i≤n

yi
(
T−1(y)

)
i. (4.5)

Thus we have

α
(
T−1)∥∥T(x)

∥
∥1+1/θ
∞ ≤ max

1≤i≤n
xi
(
T(x)

)
i. (4.6)

Since T(x)≥−q, we know that |T(x)| ≥ (T(x))+ ≥ (−q)+ and so

∥
∥T(x)

∥
∥∞ ≥

∥
∥(−q)+

∥
∥∞. (4.7)

By (4.6), (4.7), and the fact that xi(T(x) + q)i = 0, we know

α
(
T−1)∥∥(−q)+

∥
∥1+1/θ
∞ ≤ α

(
T−1)∥∥T(x)

∥
∥1+1/θ
∞ ≤ max

1≤i≤n
xi
(
T(x)

)
i

= max
1≤i≤n

xi(−q)i ≤ ‖x‖∞ ·
∥
∥(−q)+

∥
∥∞.

(4.8)

Hence

[
α
(
T−1)]θ∥∥(−q)+

∥
∥∞ ≤ ‖x‖θ∞. (4.9)

This completes the proof. �
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