
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2009, Article ID 212915, 13 pages
doi:10.1155/2009/212915

Research Article
Norm Comparison Inequalities for
the Composite Operator

Yuming Xing1 and Shusen Ding2

1 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
2 Department of Mathematics, Seattle University, Seattle, WA 98122, USA

Correspondence should be addressed to Yuming Xing, xyuming@hit.edu.cn

Received 2 August 2008; Accepted 15 January 2009

Recommended by András Rontó
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1. Introduction

The purpose of this paper is to establish the Lipschitz norm and BMO norm inequalities
for the composition of the homotopy operator T and the projection operator H applied
to differential forms in R

n, n ≥ 2. The harmonic projection operator H, one of the key
operators in the harmonic analysis, plays an important role in the Hodge decomposition
theory of differential forms. In the meanwhile, the homotopy operator T is also widely used
in the decomposition and the Lp-theory of differential forms. In many situations, we need to
estimate the various norms of the operators and their compositions.

We always assume that M is a bounded, convex domain and B is a ball in R
n, n ≥ 2,

throughout this paper. Let σB be the ball with the same center as B and with diam(σB) =
σ diam(B), σ > 0. We do not distinguish the balls from cubes in this paper. For any subset
E ⊂ R

n, we use |E| to denote the Lebesgue measure of E. We call w a weight if w ∈ L1
loc(R

n)
and w > 0 a.e. Differential forms are extensions of functions in R

n. For example, the function
u(x1, x2, . . . , xn) is called a 0-form. Moreover, if u(x1, x2, . . . , xn) is differentiable, then it is
called a differential 0-form. A differential k-form u(x) is generated by {dxi1 ∧dxi2 ∧· · ·∧dxik},
k = 1, 2, . . . , n, that is, u(x) =

∑
IωI(x)dxI =

∑
ωi1i2···ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik , where I =

(i1, i2, . . . , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n, and ωi1i2···ik(x) are differentiable functions. Let ∧l =
∧l(Rn) be the set of all l-forms in R

n, D′(M,∧l) be the space of all differential l-forms on M
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and Lp(M,∧l) be the l-formsω(x) =
∑

IωI(x)dxI onM satisfying
∫
M|ωI |p < ∞ for all ordered

l-tuples I, l = 1, 2, . . . , n. We denote the exterior derivative by d : D′(M,∧l) → D′(M,∧l+1) for
l = 0, 1, . . . , n − 1. The Hodge codifferential operator d� : D′(M,∧l+1) → D′(M,∧l) is given
by d� = (−1)nl+1 � d� on D′(M,∧l+1), l = 0, 1, . . . , n − 1. We write ‖u‖s,M = (

∫
M|u|s)1/s and

||u||s,M,w = (
∫
M|u|sw(x)dx)1/s, where w(x) is a weight. Let ∧lM be the lth exterior power of

the cotangent bundle and C∞(∧lM) be the space of smooth l-forms on M. We set W(∧lM) =
{u ∈ L1

loc(∧lM) : u has generalized gradient}. The harmonic l-fields are defined byH(∧lM) =
{u ∈ W(∧lM) : du = d�u = 0, u ∈ Lp for some 1 < p < ∞}. The orthogonal complement of H
in L1 is defined byH⊥ = {u ∈ L1 : 〈u, h〉 = 0 for all h ∈ H}. The harmonic projection operator
H : C∞(∧lM) → H is the operator involved in the Poisson’s equation ΔG(ω) = ω −H(ω),
where G is the Green’s operator. See [1–4] for more propeties of the projection operator and
Green’s operator.

The differential equation d�A(x, dω) = 0 is called the A-harmonic equation and the
nonlinear elliptic partial differential equation

d�A(x, dω) = B(x, dω) (1.1)

is called the nonhomogeneous A-harmonic equation for differential forms, where A : M ×
∧l(Rn) → ∧l(Rn) and B : M × ∧l(Rn) → ∧l−1(Rn) satisfy the conditions:

|A(x, ξ)| ≤ a|ξ|p−1, A(x, ξ)·ξ ≥ |ξ|p, |B(x, ξ)| ≤ b|ξ|p−1 (1.2)

for almost every x ∈ M and all ξ ∈ ∧l(Rn). Here a, b > 0 are constants and 1 < p < ∞
is a fixed exponent associated with (1.1). A solution to (1.1) is an element of the Sobolev
space W1,p

loc (M,∧l−1) such that
∫
MA(x, dω)·dϕ + B(x, dω)·ϕ = 0 for all ϕ ∈ W

1,p
loc (M,∧l−1) with

compact support. Let A : M × ∧l(Rn) → ∧l(Rn) be defined by A(x, ξ) = ξ|ξ|p−2 with p > 1.
Then A satisfies required conditions and d�A(x, dω) = 0 becomes the p-harmonic equation
d�(du|du|p−2) = 0 for differential forms. If u is a function (a 0-form), the above equation
reduces to the usual p-harmonic equation

div
(∇u|∇u|p−2) = 0 (1.3)

for functions. Some results have been obtained in recent years about different versons of the
A-harmonic equation, see [2–9].

Let ω ∈ L1
loc(M,∧l), l = 0, 1, . . . , n. We write ω ∈ locLipk(M,∧l), 0 ≤ k ≤ 1, if

‖ω‖locLipk,M
= sup

σQ⊂M
|Q|−(n+k)/n∥∥ω −ωQ

∥
∥
1,Q < ∞ (1.4)

for some σ ≥ 1. The factor σ here is for convenience and in fact the norm ‖ω‖locLipk,M
is

independent of this expansion factor, see [8]. Further, we write Lipk(M,∧l) for those forms
whose coefficients are in the usual Lipschitz space with exponent k and write ‖ω‖Lipk,M

for
this norm. Similarly, for ω ∈ L1

loc(M,∧l), l = 0, 1, . . . , n, we write ω ∈ BMO(M,∧l) if

‖ω‖�,M = sup
σQ⊂M

|Q|−1∥∥ω −ωQ

∥
∥
1,Q < ∞ (1.5)
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for some σ ≥ 1. Again, the factor σ here is for convenience and the norm ‖ω‖�,M is
independent of the expansion factor σ, see [8]. When ω is a 0-form, (1.5) reduces to the
classical definition of BMO(M).

The following operator Ky with the case y = 0 was first introduced by Cartan in [10].
Then, it was extended to the following version in [6]. For each point y ∈ M, there is a linear
operator Ky : C∞(M,∧l) → C∞(M,∧l−1) defined by (Kyω)(x; ξ1, . . . , ξl−1) =

∫1
0t

l−1ω(tx + y −
ty;x − y, ξ1, . . . , ξl−1)dt and the decomposition ω = d(Kyω) + Ky(dω). A homotopy operator
T : C∞(M,∧l) → C∞(M,∧l−1) is defined by Tω =

∫
Mϕ(y)Kyω dy, averaging Ky over all

points y inM, where ϕ ∈ C∞
0 (M) is normalized by

∫
Mϕ(y)dy = 1 and the decomposition

ω = d(Tω) + T(dω) (1.6)

holds for any differential form ω. The l-form ωM ∈ D′(M,∧l) is defined by

ωM = |M|−1
∫

M

ω(y)dy, l = 0, ωM = d(Tω), l = 1, 2, . . . , n (1.7)

for all ω ∈ Lp(M,∧l), 1 ≤ p < ∞. From [6], we know that for any differential form u ∈
Ls
loc(B,∧l), l = 1, 2, . . . , n, 1 < s < ∞, we have

∥
∥∇(Tu)

∥
∥
s,B ≤ C|B|‖u‖s,B, (1.8)

‖Tu‖s,B ≤ C|B|diam(B)‖u‖s,B. (1.9)

2. Lipschitz Norm Estimates

The following Hölder inequality will be used in the proofs of main theorems.

Lemma 2.1. Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 + β−1. If f and g are measurable functions on
R

n, then ‖fg‖s,E ≤ ‖f‖α,E · ‖g‖β,E for any E ⊂ R
n.

Lemma 2.2 (see [1]). Let u ∈ C∞(∧lM) and l = 1, 2, . . . , n, 1 < s < ∞. Then, there exists a positive
constant C, independent of u, such that

∥
∥dd∗G(u)

∥
∥
s,M +

∥
∥d∗dG(u)

∥
∥
s,M +

∥
∥dG(u)

∥
∥
s,M +

∥
∥d∗G(u)

∥
∥
s,M +

∥
∥G(u)

∥
∥
s,M ≤ C‖u‖s,M.

(2.1)

We first prove the following Poincaré-type inequality for the composition of the homotopy operator and
the projection operator.

Theorem 2.3. Let u ∈ Ls
loc(M,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a smooth differential form in a

bounded, convex domainM,H be the projection operator and T : C∞(M,∧l) → C∞(M,∧l−1) be the
homotopy operator. Then, there exists a constant C, independent of u, such that

∥
∥T

(
H(u)

) − (
T
(
H(u)

))
B

∥
∥
s,B ≤ C|B|diam(B)‖u‖s,B (2.2)

for all balls B with B ⊂ M.
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Proof. Let H be the projection operator and T be the homotopy operator. For any differential
form u, we know that

∥
∥uB

∥
∥
s,B ≤ C1

∥
∥u

∥
∥
s,B. (2.3)

Replacing u byH(u) in (2.3) yields

∥
∥(H(u))B

∥
∥
s,B ≤ C1

∥
∥H(u)

∥
∥
s,B. (2.4)

Since H(u) = u −ΔG(u) and Δ = d�d + dd�, by Lemma 2.2, we have

∥
∥H(u)

∥
∥
s,B =

∥
∥u −ΔG(u)

∥
∥
s,B

≤ ‖u‖s,B +
∥
∥ΔG(u)

∥
∥
s,B

≤ ‖u‖s,B + C2‖u‖s,B
≤ C3‖u‖s,B.

(2.5)

Using (1.9), (2.4), and (2.5), we find that

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
s,B =

∥
∥Td(T(H(u)))

∥
∥
s,B

≤ C4|B|diam(B)
∥
∥d(T(H(u)))

∥
∥
s,B

= C4|B|diam(B)
∥
∥(H(u))B

∥
∥
s,B

≤ C5|B|diam(B)
∥
∥H(u)

∥
∥
s,B

≤ C6|B|diam(B)‖u‖s,B.

(2.6)

The proof of Theorem 2.3 has been completed.

Using Theorem 2.3, we estimate the following Lipschitz norm of the composite
operator T ◦H.

Theorem 2.4. Let u ∈ Ls(M,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a smooth differential form in a
bounded, convex domainM,H be the projection operator and T : C∞(M,∧l) → C∞(M,∧l−1) be the
homotopy operator. Then, there exists a constant C, independent of u, such that

∥
∥T(H(u))

∥
∥
locLipk,M

≤ C‖u‖s,M, (2.7)

where k is a constant with 0 ≤ k ≤ 1.

Proof. From Theorem 2.3, we have

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
s,B ≤ C1|B|diam(B)‖u‖s,B (2.8)
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for all balls B with B ⊂ M. Using the Hölder inequality with 1 = 1/s + (s − 1)/s, we find that

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
1,B =

∫

B

∣
∣T(H(u)) − (T(H(u)))B

∣
∣dx

≤
(∫

B

∣
∣T(H(u)) − (T(H(u)))B

∣
∣sdx

)1/s(∫

B

1s/(s−1)dx
)(s−1)/s

= |B|(s−1)/s∥∥T(H(u)) − (T(H(u)))B
∥
∥
s,B

= |B|1−1/s∥∥T(H(u)) − (T(H(u)))B
∥
∥
s,B

≤ |B|1−1/s(C1|B|diam(B)‖u‖s,B
)

≤ C2|B|2−1/s+1/n‖u‖s,B,
(2.9)

where we have used diam(B) = C|B|1/n. Now, from the definition of Lipschitz norm, (2.9)
and 2 − 1/s + 1/n − 1 − k/n = 1 − 1/s + 1/n − k/n > 0, we obtain

∥
∥T(H(u))

∥
∥
locLipk,M

= sup
σB⊂M

|B|−(n+k)/n∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B

= sup
σB⊂M

|B|−1−k/n∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B

≤ sup
σB⊂M

|B|−1−k/nC2|B|2−1/s+1/n‖u‖s,B

= sup
σB⊂M

C2|B|1−1/s+1/n−k/n‖u‖s,B

≤ sup
σB⊂M

C2|M|1−1/s+1/n−k/n‖u‖s,B

≤ C3 sup
σB⊂M

‖u‖s,B

≤ C3‖u‖s,M.

(2.10)

The proof of Theorem 2.4 has been completed.

In order to prove Theorem 2.6, we extend [11, Lemma 8.2.2] into the following version
for differential forms.

Lemma 2.5. Let ϕ be a strictly increasing convex function on [0,∞) with ϕ(0) = 0, and D be a
bounded domain in R

n. Assume that u is a smooth differential form inD such that ϕ(k(|u| + |uD|)) ∈
L1(D;μ) for any real number k > 0 and μ({x ∈ D : |u − uD| > 0}) > 0, where μ is a Radon measure
defined by dμ = w(x)dx for a weight w(x). Then, for any positive constant a, we have

∫

D

ϕ(a|u|)dμ ≤ C

∫

D

ϕ
(
2a

∣
∣u − uD

∣
∣
)
dμ, (2.11)

where C is a positive constant.
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Proof. Let C1 =
∫
Dϕ(2a|uD|)dμ. Note that μ({x ∈ D : 2a|u − uD| > 0}) = μ({x ∈ D : |u − uD| >

0}) > 0. Then, there exists a constant C2 such that C1 ≤ C2
∫
Dϕ(2a|u − uD|)dμ, that is

∫

D

ϕ
(
2a

∣
∣uD

∣
∣
)
dμ ≤ C2

∫

D

ϕ
(
2a

∣
∣u − uD

∣
∣
)
dμ. (2.12)

Since ϕ is an increasing convex function, we obtain

∫

D

ϕ(a|u|)dμ ≤
∫

D

ϕ

(
1
2
(
2a

∣
∣u − uD

∣
∣
)
+
1
2
(
2a

∣
∣uD

∣
∣
)
)

dμ

≤ 1
2

∫

D

ϕ
(
2a

∣
∣u − uD

∣
∣
)
dμ +

1
2

∫

D

ϕ
(
2a

∣
∣uD

∣
∣
)
dμ

≤ 1
2

∫

D

ϕ
(
2a

∣
∣u − uD

∣
∣
)
dμ +

C2

2

∫

D

ϕ
(
2a

∣
∣u − uD

∣
∣
)
dμ

≤ C3

∫

D

ϕ
(
2a

∣
∣u − uD

∣
∣
)
dμ.

(2.13)

The proof of Lemma 2.5 is completed.

Theorem 2.6. Let u ∈ Ls
loc(M,∧1), 1 < s < ∞, be a smooth differential form satisfying the

nonhomogeneous A-harmonic equation in a bounded, convex domain M and the Lebesgue |{x ∈
B : |u − uB| > 0}| > 0 for any ball B ⊂ M. Assume that H is the projection operator and
T : C∞(M,∧l) → C∞(M,∧l−1) is the homotopy operator. Then, there exists a constant C,
independent of u, such that

‖T(H(u))‖locLipk,M
≤ C‖u‖�,M, (2.14)

where k is a constant with 0 ≤ k ≤ 1.

Proof. Using Lemma 2.5 with ϕ(t) = ts and the weight w(x) = 1 over the ball B, we have

‖u‖s,B ≤ C1
∥
∥u − uB

∥
∥
s,B. (2.15)

From Theorem 2.3 and (2.15), we obtain

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
s,B ≤ C2|B|diam(B)‖u‖s,B

≤ C3|B|diam(B)
∥
∥u − uB

∥
∥
s,B.

(2.16)
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From the definition of the Lipschitz norm, the Hölder inequality with 1 = 1/s + (s − 1)/s and
(2.16), for any ball B with B ⊂ M, we find that

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
1,B =

∫

B

∣
∣T(H(u)) − (T(H(u)))B

∣
∣dx

≤
(∫

B

∣
∣T(H(u)) − (T(H(u)))B

∣
∣sdx

)1/s(∫

B

1s/(s−1)dx
)(s−1)/s

= |B|(s−1)/s∥∥T(H(u)) − (T(H(u)))B
∥
∥
s,B

= |B|1−1/s∥∥T(H(u)) − (T(H(u)))B
∥
∥
s,B

≤ C4|B|2−1/s+1/n
∥
∥u − uB

∥
∥
s,B.

(2.17)

Next, from the weak reverse Hölder inequality for solutions of the nonhomogeneous A-
harmonic equation, we have

∥
∥u − uB

∥
∥
s,B ≤ C5|B|(1−s)/s

∥
∥u − uB

∥
∥
1,σ1B

(2.18)

for some constant σ1 > 1. Combination of (2.17) and (2.18) gives

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
1,B ≤ C4|B|2−1/s+1/n

∥
∥u − uB

∥
∥
s,B

≤ C6|B|1+1/n
∥
∥u − uB

∥
∥
1,σ1B

.
(2.19)

Hence, we obtain

|B|−(n+k)/n∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B ≤ C6|B|1/n−k/n

∥
∥u − uB

∥
∥
1,σ1B

= C6|B|1+1/n−k/n|B|−1
∥
∥u − uB

∥
∥
1,σ1B

≤ C7|B|1+1/n−k/n
∣
∣σ1B

∣
∣−1∥∥u − uB

∥
∥
1,σ1B

≤ C7|M|1+1/n−k/n∣∣σ1B
∣
∣−1∥∥u − uB

∥
∥
1,σ1B

≤ C8
∣
∣σ1B

∣
∣−1∥∥u − uB

∥
∥
1,σ1B

.

(2.20)

Thus, taking the supremum on both sides of (2.20) over all balls σ2B ⊂ M with σ2 > σ1 and
using the definitions of the Lipschitz and BMO norms, we find that

‖T(H(u))‖locLipk,M
= sup

σ2B⊂M
|B|−(n+k)/n∥∥T(H(u)) − (T(H(u)))B

∥
∥
1,B

≤ C7 sup
σ2B⊂M

∣
∣σ1B

∣
∣−1∥∥u − uB

∥
∥
1,σ1B

≤ C7‖u‖�,M,

(2.21)



8 Journal of Inequalities and Applications

that is,

‖T(H(u))‖locLipk,M
≤ C‖u‖�,M. (2.22)

The proof of Theorem 2.6 has been completed.

Note that inequality (2.14) implies that the norm ‖T(H(u))‖locLipk,M
of T(H(u)) can be

controlled by the norm ‖u‖�,M when u is a 1-form.

Theorem 2.7. Let u ∈ Ls
loc(M,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a smooth differential form in a

bounded, convex domainM,H be the projection operator and T : C∞(M,∧l) → C∞(M,∧l−1) be the
homotopy operator. Then, there exists a constant C, independent of u, such that

‖T(H(u))‖�,M ≤ C‖T(H(u))‖locLipk,M
. (2.23)

Proof. From the definitions of the Lipschitz and BMO norms, we obtain

‖T(H(u))‖�,M = sup
σB⊂M

|B|−1∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B

= sup
σB⊂M

|B|k/n|B|−(n+k)/n∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B

≤ sup
σB⊂M

|M|k/n|B|−(n+k)/n∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B

≤ |M|k/n sup
σB⊂M

|B|−(n+k)/n∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B

≤ C1 sup
σB⊂M

|B|−(n+k)/n∥∥T(H(u)) − (T(H(u)))B
∥
∥
1,B

≤ C1
∥
∥T(H(u))

∥
∥
locLipk,M

,

(2.24)

that is

‖T(H(u))‖�,M ≤ C1‖T(H(u))‖locLipk,M
, (2.25)

where C1 and k are constants with 0 ≤ k ≤ 1. We have completed the proof of Theorem 2.7.

3. BMO Norm Estimates

We have developed some estimates for the Lipschitz norm ‖·‖locLipk,M
in last section. Now,

we estimates the BMO norm ‖·‖�,M. We first prove the following inequality between the BMO
norm and the Lipschitz norm for the composite operator.
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Theorem 3.1. Let u ∈ Ls(M,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a smooth differential form in a
bounded, convex domainM,H be the projection operator and T : C∞(M,∧l) → C∞(M,∧l−1) be the
homotopy operator. Then, there exists a constant C, independent of u, such that

‖T(H(u))‖�,M ≤ C‖u‖s,M. (3.1)

Proof. From Theorems 2.4 and 2.7, we have

‖T(H(u))‖locLipk,M
≤ C1‖u‖s,M, (3.2)

‖T(H(u))‖�,M ≤ C2‖T(H(u))‖locLipk,M
, (3.3)

respectively. Combination of (3.2) and (3.3) yields

‖T(H(u))‖�,M ≤ C3‖u‖s,M. (3.4)

The proof of Theorem 3.1 has been completed.

Based on the above results, we discuss the weighted Lipschitz and BMO norms. For
ω ∈ L1

loc(M,∧l, wα), l = 0, 1, . . . , n, we write ω ∈ locLipk(M,∧l, wα), 0 ≤ k ≤ 1, if

‖ω‖locLipk,M,wα = sup
σQ⊂M

(μ(Q))−(n+k)/n
∥
∥ω −ωQ

∥
∥
1,Q,wα < ∞ (3.5)

for some σ > 1, where M is a bounded domain, the Radon measure μ is defined by dμ =
w(x)αdx, w is a weight and α is a real number. For convenience, we will write the following
simple notation locLipk(M,∧l) for locLipk(M,∧l, wα). Similarly, for ω ∈ L1

loc(M,∧l, wα), l =
0, 1, . . . , n, we will write ω ∈ BMO(M,∧l, wα) if

‖ω‖�,M,wα = sup
σQ⊂M

(μ(Q))−1
∥
∥ω −ωQ

∥
∥
1,Q,wα < ∞ (3.6)

for some σ > 1, where the Radonmeasure μ is defined by dμ = w(x)αdx,w is a weight and α is
a real number. Again, the factor σ in the definitions of the norms ‖ω‖locLipk,M,wα and ‖ω‖�,M,wα

is for convenience and in fact these norms are independent of this expansion factor. We also
write BMO(M,∧l) to replace BMO(M,∧l, wα) when it is clear that the integral is weighted.

Definition 3.2. We say a pair of weights (w1(x), w2(x)) satisfies the Ar,λ(E)-condition in a set
E ⊂ R

n, write (w1(x), w2(x)) ∈ Ar,λ(E), for some λ ≥ 1 and 1 < r < ∞with 1/r + 1/r ′ = 1 if

sup
B⊂E

(
1
|B|

∫

B

(
w1

)λdx
)1/λr( 1

|B|
∫

B

w−λr ′/r
2 dx

)1/λr ′

< ∞. (3.7)
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Lemma 3.3 (see [8]). Let u be a smooth differential form satisfying the nonhomogeneousA-harmonic
equation inM, σ > 1 and 0 < s, t < ∞. Then there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB (3.8)

for all balls or cubes B with σB ⊂ M.
Using the reverse Hölder inequality (Lemma 3.3) and Theorem 2.3, one obtains the following

weighted version:

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
s,B,wα

1
≤ C|B|diam(B)‖u‖s,σB,wα

2
(3.9)

for all balls B with σB ⊂ M, where (w1(x), w2(x)) ∈ Ar,λ(M), and r, s, α, λ and σ are constants
with 1 < r < ∞, s > 1, 0 < α ≤ 1, λ ≥ 1 and σ > 1.

Theorem 3.4. Let u ∈ Ls(M,∧l, ν), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneous
A-harmonic equation in a bounded, convex domain M, H be the projection operator and T :
C∞(M,∧l) → C∞(M,∧l−1) be the homotopy operator, where the measure μ and ν are defined by
dμ = wα

1dx, dν = wα
2dx and (w1(x), w2(x)) ∈ Ar,λ(M) for some λ ≥ 1 and 1 < r < ∞ with

w1(x) ≥ ε > 0 for any x ∈ M. Then, there exists a constant C, independent of u, such that

‖T(H(u))‖locLipk,M,wα
1
≤ C‖u‖s,M,wα

2
, (3.10)

where k and α are constants with 0 ≤ k ≤ 1 and 0 < α ≤ 1.

Proof. Since μ(B) =
∫
Bw

α
1dx ≥ ∫

Bε
αdx = C1|B|, we have

1
μ(B)

≤ C2

|B| (3.11)

for any ball B. Using (3.9) and the Hölder inequality with 1 = 1/s + (s − 1)/s, we find that

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
1,B,wα

1
=
∫

B

∣
∣T(H(u)) − (T(H(u)))B

∣
∣dμ

≤
(∫

B

∣
∣T(H(u)) − (T(H(u)))B

∣
∣sdμ

)1/s(∫

B

1s/(s−1)dμ
)(s−1)/s

= (μ(B))(s−1)/s
∥
∥T(H(u)) − (T(H(u)))B

∥
∥
s,B,wα

1

= (μ(B))1−1/s
∥
∥T(H(u)) − (T(H(u)))B

∥
∥
s,B,wα

1

≤ (μ(B))1−1/s
(
C3|B|diam(B)‖u‖s,σB,wα

2

)

≤ C4(μ(B))
1−1/s|B|1+1/n‖u‖s,σB,wα

2
.

(3.12)
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Notice that −1/s − k/n + 1 + 1/n > 0 and |M| < ∞, from (3.5), (3.11), and (3.12), we have

‖T(H(u))‖locLipk,M,wα
1
= sup

σB⊂M
(μ(B))−(n+k)/n

∥
∥T(H(u)) − (T(H(u)))B

∥
∥
1,B,wα

1

= sup
σB⊂M

(μ(B))−1−k/n
∥
∥T(H(u)) − (T(H(u)))B

∥
∥
1,B,wα

1

≤ C5 sup
σB⊂M

(μ(B))−1/s−k/n|B|1+1/n‖u‖s,σB,wα
2

≤ C6 sup
σB⊂M

|B|−1/s−k/n+1+1/n‖u‖s,σB,wα
2

≤ C6 sup
σB⊂M

|M|−1/s−k/n+1+1/n‖u‖s,σB,wα
2

≤ C6|M|−1/s−k/n+1+1/n sup
σB⊂M

‖u‖s,σB,wα
2

≤ C7‖u‖s,M,wα
2
.

(3.13)

We have completed the proof of Theorem 3.4.

We now estimate the ‖·‖�,M,wα
1
norm in terms of the Ls norm.

Theorem 3.5. Let u ∈ Ls(M,∧l, ν), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneous
A-harmonic equation in a bounded domain M H be the projection operator and T : C∞(M,∧l) →
C∞(M,∧l−1) be the homotopy operator, where the measure μ and ν are defined by dμ = wα

1dx, dν =
wα

2dx and (w1(x), w2(x)) ∈ Ar,λ(M) for some λ ≥ 1 and 1 < r < ∞ with w1(x) ≥ ε > 0 for any
x ∈ M. Then, there exists a constant C, independent of u, such that

‖T(H(u))‖�,M,wα
1
≤ C‖u‖s,M,wα

2
, (3.14)

where α is a constant with 0 < α ≤ 1.

Proof. From the definitions of the weighted Lipschitz and the weighted BMO norms, we have

‖u‖�,M,wα
1
= sup

σB⊂M
(μ(B))−1

∥
∥u − uB

∥
∥
1,B,wα

1

= sup
σB⊂M

(μ(B))k/n(μ(B))−(n+k)/n
∥
∥u − uB

∥
∥
1,B,wα

1

≤ sup
σB⊂M

(μ(M))k/n(μ(B))−(n+k)/n
∥
∥u − uB

∥
∥
1,B,wα

1

≤ (μ(M))k/n sup
σB⊂M

(μ(B))−(n+k)/n
∥
∥u − uB

∥
∥
1,B,wα

1

≤ C1 sup
σB⊂M

(μ(B))−(n+k)/n
∥
∥u − uB

∥
∥
1,B,wα

1

≤ C1‖u‖locLipk,M,wα
1
,

(3.15)
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where C1 is a positive constant. Replacing u by T(H(u)) in (3.15), we obtain

‖T(H(u))‖�,M,wα
1
≤ C1‖T(H(u))‖locLipk,M,wα

1
, (3.16)

where k is a constant with 0 ≤ k ≤ 1. Now, from Theorem 3.4, we find that

‖T(H(u))‖locLipk,M,wα
1
≤ C2‖u‖s,M,wα

2
. (3.17)

Substituting (3.17) into (3.16), we obtain

‖T(H(u))‖�,M,wα
1
≤ C3‖u‖s,M,wα

2
. (3.18)

The proof of Theorem 3.5 has been completed.

Theorem 3.6. Let u ∈ D′(M,∧l) and du ∈ Ls(M,∧l+1), l = 0, 1, . . . , n − 1, 1 < s < ∞, be a smooth
differential form in a bounded and convex domain M. Then, there exists a constant C, independent of
u, such that

∥
∥u − uM

∥
∥
�,M ≤ C|M|1/n‖du‖s,M. (3.19)

Proof. From the decomposition (1.6), we have

∥
∥u − uB

∥
∥
s,B = ‖Tdu‖s,B ≤ C1|B|diam(B)‖du‖s,B ≤ C2|B||B|1/n‖du‖s,B. (3.20)

Using (1.5), (3.20) and the Hölder inequality, it follows that

∥
∥u − uM

∥
∥
�,M = sup

σB⊂M
|B|−1

∫

B

∣
∣u − uM − (

u − uM

)
B

∣
∣dx

= sup
σB⊂M

|B|−1
∫

B

∣
∣u − uM − uB + uM

∣
∣dx

= sup
σB⊂M

|B|−1
∫

B

∣
∣u − uB

∣
∣dx

≤ sup
σB⊂M

|B|−1
(∫

B

∣
∣u − uB

∣
∣sdx

)1/s(∫

B

1s/(s−1)dx
)(s−1)/s

≤ sup
σB⊂M

|B|−1/s
(∫

B

∣
∣u − uB

∣
∣sdx

)1/s

≤ sup
σB⊂M

|B|−1/sC2|B||B|1/n‖du‖s,B

≤ sup
σB⊂M

C2|B|1/n‖du‖s,B

≤ C2|M|1/n‖du‖s,M.

(3.21)

This ends the proof of Theorem 3.6.
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