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Let w,(x) := |x|[’exp(-Q(x)), p > —=1/2, where Q € C?: (-o0,0) — [0, 00) is an even function. In
2008 we have a relation of the orthonormal polynomial p, (wf, ; x) with respect to the weight wg (x);
Pr(x) = Ap(x)pp-1(x) = Bu(x)pn(x) — 2pnpu(x)/x, where A,(x) and B,(x) are some integrating
functions for orthonormal polynomials pn(wf,; x). In this paper, we get estimates of the higher
derivgtives of A,(x) and B, (x), which are important for estimates of the higher derivatives of
Pn(wy; x).
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1. Introduction and Results

Let R = (—o0,00). Let Q € C?> : R — R* = [0,00) be an even function, and let w(x) =
exp(—Q(x)) be such that fg)x”wz (x)dx <o foralln=0,1,2,.... For p > -1/2, we set

w,(x) = |x[Pw(x), x€R. (1.1)

Then we can construct the orthonormal polynomials p, ,(x) = pn(wﬁ;x) of degree n with
respect to w7 (x). That is,

f_ pn,p(x)pm,p(x)wﬁ (x)dx = 6,y (Kronecker’s delta), 1)

Pn,p(x) :Ynxn+"' s Yn :Yn,p > 0.



2 Journal of Inequalities and Applications

A function f : R* — R* is said to be quasi-increasing if there exists C > 0 such that
f(x) < Cf(y) for 0 < x < y. For any two sequences {b,},.; and {c,},.; of nonzero real
numbers (or functions), we write b, < ¢, if there exists a constant C > 0 independent of n (or
x) such that b, < Cc, for n large enough. We write b,, ~ ¢, if b, < ¢, and ¢, < b,,. We denote
the class of polynomials of degree at most n by 0,,.

Throughout C,Ci,Cy,... denote positive constants independent of n, x, ¢, and
polynomials of degree at most n. The same symbol does not necessarily denote the same
constant in different occurrences.

We will be interested in the following subclass of weights from [1].

Definition 1.1. Let Q : R — R* be even and satisfy the following properties.
(a) Q' (x) is continuous in R, with Q(0) = 0.
(b) Q" (x) exists and is positivein R \ {0}.

(c)
}%Q(x) = o0. (1.3)
(d) The function
_xQ (%)
T(x) := G x#0 (1.4)
is quasi-increasing in (0, o) with
T(x)>A>1, xeR"\{0}. (1.5)

(e) There exists C; > 0 such that

Qw |9
Q= om

a.e. x e R\ {0}. (1.6)

Then we write w € ¥(C?). If there also exist a compact subinterval J(3 0) of R and C; > 0
such that

Qw |9

IO 2 0w ae. xeR\J, (1.7)

then we write w € F(C?+).

In the following we introduce useful notations.

(a) Mhaskar-Rahmanov-Saff (MRS) numbers a, are defined as the positive roots of the
following equations:
1 U

2 f axuQ (@) s (1.8)

x=—



Journal of Inequalities and Applications 3

(b) Let

e = (xT(ax)) ™3, x>0. (1.9)

(c) The function ¢, (x) is defined as follows:

a, =X x| <
; X| S ay,
9u(x) = 3 ul(ay +x + auny) (@ — x + aymy)]'? (1.10)
pu(au), ay < |x|.

In the rest of this paper we often denote p,, ,(x) simply by p,(x). Let p, = p if nis odd,
pn = 0 otherwise and define the integrating functions A, (x) and B, (x) with respect to p,(x)
as follows:

Au(x) = 2an°° pa()Q(x, u)w? (u)du,
_ -~ (1.11)
Ba(x) =26 pulpans Q0w ),

where Q(x,u) = (Q'(x) - Q (1))/(x —u) and b, = Yn-1/Yn- Then in [2, Theorem 4.1] we have
a relation of the orthonormal polynomial p, (x) with respect to the weight wf,(x):

Pr(x) = Ap(X)Pu-1(x) = Bu(x)pu(x) - 2pn , Pn= (1.12)

X

pn(x) { p, nisodd,

0, mniseven,

and in [2, Theorem 4.2] we already have the estimates of the integrating functions A, (x)
and B, (x) with respect to p,(x). So, in this paper we will estimate the higher derivatives of
Ay, (x) and B, (x) for the estimates of the higher derivatives of pn(wﬁ ; x), because the higher
derivatives of p,,(x) play an important role in approximation theory such as investigating
convergence of Hermite-Fejér and Hermite interpolation based on the zeros of p, (w?; x) (see
(3, 4]).

To estimate of the higher derivatives of A, (x) and B, (x) we need further assumptions
for Q(x) as follows.

Definition 1.2. Let w(x) = exp(-Q(x)) € F(C*+), and let v be a positive integer. Assume that
Q(x) is v—times continuously differentiable on R and satisfies the followings.

(a) QD (x) exists and Q¥ (x),i=0,1,...,v + 1 are nonnegative for x > 0.

(b) There exist positive constants C; > 0 such that for x € R\ {0}

[eX€3]
Q@) ’

|Q<f+1>(x)| < CiIQ(i) (x)| i=1,.... (1.13)
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(c) There exist constants 0 < 6 < 1 and ¢; > 0 such that on (0, ¢1]
1\ 9
QU (x) < c<;> . (1.14)

Then we write w(x) € F,(C?+).

Let v be a positive integer. Define form+a—-v >0, m>0,1>1,and a >0,
Qram(x) = |x|™ (exp, (|x|*) — a*exp,(0)), (1.15)
where a* = 0 if a = 0, otherwise a* = 1 and define
Qu(x) =1+ xPX =1, a>1. (1.16)

Here we let exp,(x) := x and for I > 1, exp,(x) = exp(exp(---(exp(x))---)) denotes the
Ith iterated exponential. In particular, exp;(x) = exp(exp,_;(x)). Then exp(-Qian(x)) and
exp(-Qq(x)) are typical examples of F,(C?+) (see [5]).

In the following we improve the inequality (4.3) in [2, Theorem 4.2].

Theorem 1.3. Let p > —1/2 and w(x) = exp(-Q(x)) € F(C?+). Additionally assume that Q" (x)
is nondecreasing. Then for |x| < ea, with 0 < € < 1/2 one has

|Bn(x)] < Mg, n) Ap(x), (1.17)
where

lim lim A(g, n) = 0. (1.18)

e—=0n—o0

In this paper our main theorem is as follows.

Theorem 1.4. Let p > —1/2 and w(x) = exp(-Q(x)) € F.(C?+) for positive integer v > 2. Assume
that 1+2p -6 >0 for p < 0and

a, < n'/+v-0), (1.19)

where 0 < 6 < 11is defined in (1.14).
(@) If Q (x)/Q(x) is quasi-increasing on [cy, ), then one has for |x| < a,(1 + 1,) and
j=0,...,v-1

Al 0] A,,(x)(@)j, T(a,)

BV ()| < An(x>(—)j. (1.20)

a
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Moreover, for any 0 < € < 1/2 there exists €*(¢,n) > 0 such that for |x| < eapand j=1,...,v -1,

|A(nf>(x)( <e'e, n)An(X)< >j, BY (x)| < €' (e,n) An(x) (f)] (1.21)

n
Qn

with e*(¢,n) — 0asn — oo.

(b) If QWY (x) is non-decreasing on [cz, o), then one has (1.20) and (1.21) for the respective
ranges of x.

(c) If there exists a constant 0 < & < 1 such that QD (x) < C(1/x)® on [cz, ), then one
has (1.20) and (1.21) for the respective ranges of x.

The examples satisfying the conditions (a), (b), or (c) of Theorem 1.4 are given in [5].

Remark 1.5. Under the assumptions of Theorem 1.4, we have from [2, Theorem 4.2] that there
exists C, ny > 0 such that for n > ng and |x| < a, (1 + L1,),

An(x)
2b,

i) (B +2L)? - 2) T Bao)] £ Au(), (1.22)

because w(x) = exp(-Q(x)) € F,(C?+) for positive integer v > 1 and 1+2p — 6 > 0 for p < 0.

In addition, for our future work we estimate a; and T'(a;) using A = C; in (1.6) for the
weight class F(C?+).

Theorem 1.6. Let w(x) = exp(-Q(x)) € F(C?+), and we assume

Qw _ |9
Q=" Q6

x| >b >0, (1.23)

where b > 0 is large enough.
(a) Assume that T (x) is unbounded. Then for any n > 0 there exists C(17) > 0 such that for
t>1,

a; < C(n)th. (1.24)

(b) Suppose that there exist constants 1 > 0 and Cp > 0 such that a; < Cot'. Then there exists
a constant C depending only on A, 1, and C, such that for a; > 1,if A > 1

T(a;) < CtZ(Tl+)L—1)/()H—1), (1.25)
and if0 <A <1,

T(a;) < CH1. (1.26)
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Remark 1.7. (a) Levin and Lubinsky showed the following [1, Lemma 3.7]: there exists C > 0
such that for some ¢ > 0, and for large enough ¢,

T(a;) < CH~. (1.27)
If from (1.25) and (1.26) we set forany 0 < 7 < 2

2-1, 0<)1<1,

€= 2(2 _ Tl) (1.28)
W, A>1,

then we have (1.27) in Levin and Lubinsky’s lemma.
(b) If T (x) is unbounded, then (1.19) is trivially satisfied by (1.24).

2. Proof of Theorems
In this section we will prove the theorems of Section 1.

Lemma 2.1. Let p > —1/2 and let w(x) € F(C?). Then uniformly forn > 1,

@
suplpa, (o] (1 + 22 ) | - a2 " <1 1)

®)
suplpas (x)20(o)|(Jr1+ 2 ) = T (a,)) @2

(c) Markov inequality. Let O < p < oo. For any polynomial P € p,

[P (a1 22 )

- nT(an)l/Z

2.3
s (2.3)

) (1x+ 2 )’

Ly(R)

(d) Let p e R, 0 < p < oo, and r > 1. Then there exist positive constants L, 6, and C, such
that for any polynomial P € P,

"(Pw)(x)<|x| + %)ﬁ

Ly (arn<|x])

(2.4)

< exp(-Con ) || (Pw) () <|x| + %)ﬁ

Ly(La,/n<|x|<a,(1-Ly,))
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Proof. (a) follows from [2, Theorem 2.3]. (b) follows from [2, Theorem 2.4]. (c) follows form
[6, Theorem 2.1(b)]. (d) follows form [6, Theorem 2.3]. O

Lemma 2.2. Let p > —1/2 and let w(x) € F(C?). Then one has for ¢ > 0,

f . (pnw,)(w)du < al (2.5)

n

Proof. For p > 0, the results are immediate from Lemma 2.1(a). So we assume -1/2 < p < 0.
First we see

2p 2p

2 2 an |u|

W udu=f W u<u+—> ———du
nguSan/n(p p) () OSuSan/n(p el n (|u| + an/n)*

1 |ul*

an ) ocusa,/n (Ju] + an/n)**

1 2
c— <£) f | du (2:6)
an \ an 0<u<a,/n

L))
a, \ a, n

<ct,
n

IN

IN

because we know that a, = o(n) from [1, Lemma 3.5(c)]. Next we see by Lemma 2.1(a)
5 1
(pnwp)”(u)du < C—. (2.7)
a, /n<u<c an

Therefore, we have the result. O

Lemma 2.3. Let p > —1/2 and let w(x) € F(C?). Then
(a) one has

2p ,
J‘O<u<oo (pnw)z(u) <|u| + %) Q (u)du ~ ai’ (2.8)

n

(b) for x € [0, a, /2] one has
! n
Q) <C—~

()"

Proof. (a) Itis from [2, Lemma 4.3(d)]. (b) It is from [1, Lemma 3.8 (3.42)]. O
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Proof of Theorem 1.3. Since B, (x) is an odd function, we prove only for 0 < x < €a,. Let 0 :=

eA-1)/2A Then we have the following two lemmas.

Lemma 2.4. Uniformly for 6 and n

Jl » Pu()pn1 () w, (w)Q(x, u)du

Proof. For |u| < 8a,, we have by Lemma 2.1(a)

1 Jul* |u*

< (i +1>9A-1£.
no a%

<1
Nan

2 2 <
e = Vi~ (0a)? (1l + /)

(Ju] + an/n)*"

(2.10)

(2.11)

Since Q'(x) is nondecreasing and 1 — (1/ 2)(A+1)/ < (0 —€)/0 < 1, we have using

Lemma 2.3(b):

———_Q(fa,) -Q(x) _ Q(bay) on
Qlxu) < Oa, — x S (0-¢)a, <o Za_%'

Moreover we know that for p > -1/2,

Oa, 2p
u a
[ [ [ e,
o (lul+an/n)* [ul<an/n an/n<ful<Bay, n

Therefore, we have

f o P 00T W

1 n
< - 1 A—l_.
~<n9+ )9 2

Consequently, we have the result using Cauchy-Schwartz inequality

JI <o Pn(u)Pn—l(u)W§(u)Q(x, u)du

(A-1)/2A

Lemma 2.5. Uniformly for 0 = ¢ and for n

L e P ()Pt ()20 () Q(x, u)du

1 n
< - 1 A—l_‘
~ (”9 ! >9 a’

< <£(1—1/A)(A—1) +£1/A>£2‘

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Proof. For Oa,, < |u| < ay,, we have similarly to [2, (4.6)]

QCx,w) - QG )| =2 uQ (x) = xQ (u)

2 — 12
_ an|Qean)| + car|Q @) 2.17)
- (Gan)z
1/A
< g-ymna-n M ET |y
Se o |Qw)
(see Lemma 2.3(b)). Therefore, we have by Lemma 2.3(a),
f P ()1 (1)202 (1) Q(x, W)l
0a,<|u|<az,
<f o prt0pe e ][ QG 1 - Q9
ay<|u|<az,
< 5(1-1/A)(A—1>£2I |pn ()P (u) | @) () du (2.18)
ay J 0a,<|ul<az,
gl/A 2 :
| [P (00 1) |03 (1) | Q ()|l
An ) 6a,<|ul<az,
< /M-t
: @ a
Here we used Lemma 2.1(b). O
Since for a constant C > 0
20N v ) -nC
Prl0pac (w0 Q0 wdu| < o(e™), (219)
a,<|u
(see [2, page 233]), there exists A(n1) > 0 such that
—_— n
[ PP (W 0QC ] S A0 (220)
az<|u n

and AM(n) — 0asn — oo. We know from [2, Lemma 4.7] that b, = y,-1/yn ~ a,. From

(1.22) we have A, (x)/b, ~ n/a? for |x| < ea, and from the preceding considerations and the
definition of B, (x) it follows that for |x| < ea,

[Bu(x)| _ A(e,m)n A(e,n) An(x)
bn ~ 11,21 bn ’

(2.21)
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where for some positive constant C > 0

Ag,n):=C- max{ <ni9 + 1>GA‘l,s(l‘l/M(A‘l),sl/A,)L(n) } (2.22)

Consequently, (1.17) is proved, and we can obtain that lim,_.¢lim, .o, A(¢,n) = 0. Now, we
have for |x| < eay,

An(x) ~ ai B, (x)] < A(e, n)ai. (2.23)
n n D

Proof of Theorem 1.4. First, we see thatfor 1 <j<v -1
() ” 2\ W S
A () =2bn ) (puwp)” () 5 Q(x, w)du. (2.24)
o x

We split proof of (1.20) into some lemmas as follows:

(1) Lemma2.6isfor0 < x < a,(1+1,), asn <u,and1<j<v-1;

(2) Lemma29isfora,/2<x<a,(1+1,),0<u<ay,andj=v-1;

(3) Lemma 2.10isfor0<x < a,/2,0<u< asg,and j=v-1;

(4) Lemma 2.11lisfor0<x < a,(1+17,),0<u<as, and1<j<v-2;
on the other hand, (1.21) will be proved by Lemmas 2.13 and 2.6.

For 1 < j <v -1 there exists 7 between u and x such that

fﬁmnm=—JL—<2@Nszﬂﬁw—m”+enMQwO

dx] — )it i —k)!
X (x—u) k=0 (j-k) (2.25)
QU (x) - QU (1)
- xX—u ’
Then for x > 0 and u > 0, since Q(f”) (u) is increasing for 1 < j <v -1, we have
j (+1) — OU+D)
0< L omm < L0 -7 W) (2.26)
dx] X—u
If u < 0and x > 0, then since |QU*V (17)| < QU*V (-u) for 7 < 0,
‘ﬁQ(x/u) —‘ Y —u
_ QUM () + QU (- (227)
- x+ (—u)

L QU - QI (w) Q0 (-u) - QI (0)

x - (—u) -u-0
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So, for this case we can prove the result similarly to the case x,u > 0. For the other cases,
we can prove it by the symmetry of Q, similarly. Therefore, we assume that u and x are
nonnegative, and we will prove this theorem only for nonnegative x and u. Moreover, for
simplicity, we let ¢ = ¢, without loss of generality, because we know by (1.13) that Q™+ (1)
is bounded for any u between ¢; and c;.

On the other hand, if QU*? (u) is increasing, then

QU (u) - QU (x)

(2.28)
u-x
is also increasing for u because there exists a point ¢ between x and u such that
d [ QU (y) - QU (x) ~ QU+ (1) — (Q(i+1)(u) - Q<7*1)(x))/(u - x)
du U-x - u-x
(2.29)

_ QU -QIDE)

u-x

Moreover, if QU*V (t) < C(1/ t)5 for t between x and u, then we see

Q™ (u) - Q™ (x) _ 1 J‘ QU (1) dt < Cx <u1_5 _ x1—6> < C(l)ﬁ' (2.30)

u-—x Tu-x - u

To complete the proof of Theorem 1.4 we prove a series of lemmas.

Lemma26. Let0<x<a,(1+n,)and1<j<v-1:

Ia4n<u(pnwp) (u)—Q(x Wdu < <M>]¥ 2.31)
Proof. Since
Ag;iX) - <I0%% * fﬂ4n<u> (put0p)’ (u) Q(x u)du, (2.32)
we have to estimate
f%JmmJWP—@%ww—fwd 033)

First, we see for x > 0 large enough,

QU (x)e QM (2.34)
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is decreasing because

!

(QUD(x)e2®) = (QU) (x) - QU (1) Q' (x) )2, (2.35)
and so from our assumption,

QU (x) - QU (x)Q (x) < QU W% ~Qwe e

. (2.36)
- QUIWE (5 -1) <0

if C < Q(x). We use this fact. Let 2p = f + i where < 0, and let i be a nonnegative integer,
and let P(u) = p%(u)u'. Let u > 0. Then since

QU*Y (ayy) T(an)\’
gy <(Fa) 237

by (1.13), we have for some ¢ between x and u
[ ] awrwer @
Agn<u A4n<u
<[ Qi wdu
Agn<u

QU (ayy)w(asm) s
ST Oy

j P(w)ww)Q (u)du (by(2.34)) (2.38)

j [¢'e)
< (F2DY waal, [ - P Jwwdn

n Qan

[oe]

Jm P(u)%w(u)du = (Pw)(aq,) — f P (H)w(u)du.

Qdn Q4n

Applying Lemma 2.1(d) with L., Li-norm and Lemma 2.1(c),

|(Pw)(an)| < exp(=Can®)|(Pw) (X)L (La, /nslxi<an(1-Ly.)

J‘OO r (u)w(u)'du < exp(—Czn"‘)” <P/w> (x) ”

Qan

Ly(Lay /n<|x|<an (1-L1,))

nT(an)l/Z

< exp(—Con®) "

| (Pw) ) I, (La, /n<ixi<an(i-Ln)) -
(2.39)
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Therefore,

f P(u)yw(u)Q (u)|du < exp(=Con®)||(Pw)(xX)|IL, (La, /nslxi<ar1-Ln,)

Q4n

D (2.40)
a1 (an
+exp(-Con) O P o)y 1 icont-n
Consequently we have
T(a, j )
(P2 Y wiaud, [ [P ]
n Agn<u
T(an) ] ay|],,2,,,2
S( an > xp(-Cart) [Pt Lo (Lay /n<|x|<an(1-L1,))
T(a,)\’ nT(a,)"? il 2 o 241
+< an ) a, exp(=Can) ||pacey Ly (Lay /n<|x|<an (1-Lija)) 241)
_nd3 T(ay) J
SO<€ >< Qn )
< (T(an)>f An(x)
~ a, an
O

Lemma 2.7. If Q' (x)/Q(x) is quasi-increasing on [c1,00) or if QWD (x) is nondecreasing on
[c1,00), then one has

( T v-1
1+< (a")> 2, 0<u<a, c<x<
an a% 2
v—1
) ) 1 (T(aan)> 12/ C1 SHSZCL OSXSCL
v _ v
QV(x) - QW (w) _ | o 0.42)
xX—-u v
<M> % 2C1§u§@105x§C1/
an ay 3
T(an)>”_1n an a
_ — <u< — <x < —.
\( a a,%/ Cl_u_3/C1_x_2

Proof. Case (a-1).0<u<cjandc; <x < a,/2. Let

QYW - QY (x) QY w) QY (c1) , QW (er) QW (x)

u-x u-cCc c1— X

= Q1 (u) + Q2(x). (2.43)
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Then we have Q; (1) < 1 from (2.30). Then if Q' (x)/Q(x) is quasi-increasing on [c1, o), there
exists a point ¢ € [c1, x] such that by (1.13)

(v+1) ' —_ 0O
Qz(x)z‘Q (é)HQ(xa)c Q)

Q@) —a

~

_(Q®\ Q@) -Q' )
Q) /2=

(2.44)

_(Q@/2)\"|Q @2
~\ Q(an/2) an

If Q@*D(x) is nondecreasing on [c1, o0), there exists a point ¢ € [c1, x] such that by (2.28) and
(1.13)

Q" (an/2) - Q™ (c1)

an/2-c

Q2(x) <

_ QY2 Q(an/2) - Q (e)
™~ Q(an/2) an/2-c

- (2.45)
< Q,(an/z) Ql(an/z)
~\ Qan/2) Qn
v-1
< <M> n
~ Qn a,%
Case (a-2). For c; <u <2¢p and 0 < x < ¢1, we have similarly to Case (a-1),
T " v-1
Q@1 Qs (fe) L (246)

Case (b). 2c; u < a,/3 and 0 < x < ¢;. Using the method of Case (a-1), and similarly
to Case (a-2),

(2.47)

QY w) -QW(x) QY w) -QW(a1) _ (T(a,» )”‘1

u-—x u--cq a,

EYE
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Case (c).c1 £u<a,/3and ¢ < x < a,/2. We can prove similarly to Q; (1) and Q»(x)
of Case (a-1). If Q' (x)/Q(x) is quasi-increasing on [c1, o0), there exists a point ¢ € [c, x] such
that by (1.13)

QM (x) - QW) Q) ‘ ‘ Q'(x)- Q' (u)
X

x—u Q® ~u
§ <Q’(an/2) >V'1‘Q’(an/2) ‘ (2.48)
~ Q(an/z) an

If Q@+ (x) is nondecreasing on [c;, ), there exists a point ¢ € [c1, x] such that by (1.13)

Q¥ (x) - QW (w) _ Q™ (an/2) - QY (w)

xX—u a,/2-u
’ v-1 ’
1Q (a,/2)] Q (an/2)
< | =7 = 2.49
~ < Q(an/z) an ( )
(T(an)>v_1£
an a,21 ]
Lemma 2.8. One has
(1
— 0<u<c, 0<x<a,
u
(») e Y] v-1_
Q) -QTwW (T(an)> Qleu), 0<u<ay, 2 <x<ai(l+n), (250
xX—u a, 2
v-1
() 0mw T <usan 05x<P
Proof. Case (a). 0 < u < ¢y and 0 < x < ¢;. From (2.30) and (1.14)
(v) —_ 0O 6
Q™ (u) - Q™ (x) < C(l) _ (2.51)
u-—x u

Case (b-1). 0 < u < a,/3 and a,/2 < x < a,(1 + 1,). Since by [1, page 64, Lemma
3.2(a)]

Q(an/2) | (3)“/ (2.52)

Q'(a./3) = \2
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we have

: : : Qan/3)\ _ - 2\ A1
Qwrxymzcum<1—QWMb>zgcncf(g) >. (2.53)

Therefore, since for this case
(Qw-Qw)~Q ), (2.54)

we have

QU (x) - QW () Q%) (x) - Q¥ ()
u 0w -Qw 2%

w Q(x,u) (2.55)

a0
5(¥$5vbum>

Case (b-2). a,/3 <u < agy and a, /2 < x < a,(1 + 77,,). There exists a point ¢ between x
and u such that by (1.13)

<

~

QY (x) -Q»w) _ QM (x) -Q™ ()
x—u - Q@-Q

Q@)
T

S(Q?YHwa

< (M) "o

Qn

Q(x, u)

<

~

Q(x, u)

(2.56)

Case (c). a,/3 < u < ag, and 0 < x < a, /4. By the same method as Case (b), we have

() e 162 T Y v-1
Q(?_f(mﬁ(iiW oo, -
O
Lemma 2.9. Let a, /2 < x < ay(1 +11,). Then
dv_l . T(an) v-1 An (x)
IOSuSu4n (inp)z(u) a1 Q(x,u)du < ( - ) — (2.58)

Proof. 1t is trivial from (2.26) and Lemma 2.8. O
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Lemma 2.10. Let 0 < x < a,/2.
(a) If0 < x < ¢y, then

a-t ——— 1
2
ZW,) () ——Q(x, u)du < —. 2.59
fosm (0,104 Qi S (259)
Moreover, one knows that
v-1
i 5 <T(an)> An(x). (2.60)
a, a, a,

(b) If Q' (x)/Q(x) is quasi-increasing on [c1, o), or if QW1 (x) is nondecreasing on [c1, o),
then

a1 T(a, v—lAn
Jogusa4n(inp)2(u)—dxv1Q(x,u)du < ( (a )> (x) 261)

Qn an

(c) If there exists a constant 0 < & < 1 such that Q®+V (x) < C(1/x)'S on (0,00), then one
has (2.61).

Proof. (a) For 0 < x < ¢; we have from Lemmas 2.8, 2.1(a), and 2.2

v-1
’[ (pnwp)z(u) d TQ(x, u)du < J (pnwp)z(u)u‘édu
0<u<c; dxv- 0<u<c

1
a_l P 2 0/

S n

2p 2p

l(i) f uzp—65i<£> <0
ap \ an 0<u<c; ap \ ap

S1

~ an

(2.62)

because 1+2p -6 > 0 for p < 0. On the other hand, from (1.19) we see a?, < n*/(*7=9) < 5, and
from (1.22) we see A,(x) ~n/a, for 0 < x < ¢1. So we have

v-1 v-1
om o 1<T(an>> _ An®) (T(a,o) _ (263)
ay (1;4—1 [1,21 ay an an
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(b) For 0 < x < ¢1, we have from (a), Lemmas 2.7, and 2.8

dv—l
[ w0 [ o +
0<u<ay, X 0<u<c; c1<u<L2c 2¢1<u<a, /3 ay/3<usag,

()4

(2.64)

Similarly, for ¢; < x < a,,/2 we have from Lemmas 2.7 and 2.8

dv—l

2

[ w0 [ «f

0<u<ayy, dx 0<u<a c1<u<a, /3 a,/3<u<ay,

< Aale) (Tlen) )™

~ o oa, an

(2.65)

(c) Then by (2.26) and Lemma 2.1(a)

IOSuSuM (pan)Z(u) dd;’:*ll Qlx,u)du S f (inp)z(u)uf‘sdu

0<u<agn

2p—6

u
f du
0susas (y + a,/n)*\/u? — a2

O<u<a,/n ay/n<u<a, /2 a,/2<u<as, (2 66)

A

N A
CME

| 2

<

1 v-1
i)

N

Here, we use the fact 1/a5 < n/a’*! from (1.19) for the last inequality. O

Lemma 2.11. Let 0 < x < ay(1+1,). Thenfor 1 < j<v -2,

d — A, T(a,)\/
J‘OSuSaM (inp)z(u)ﬂQ(X,u)du < #(ﬂ) ) (2.67)

n an

Proof. By the same reason as the proof of Lemma 2.10 when Q®*V(x) is nondecreasing on
[c1,00), it is proved. O
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To prove (1.21) we need some lemmas.

Lemma 2.12. Let 0 < e < 1 and |x| < eay,.
(a) For some C > 0 one has

' A-1
Qlean) . e m

< —. 2.68
Qlear) " Qlear) ay (268)
(b) Forany 0 < € <1, there exists €1(¢,n) > 0 such that for 2ea, < u

A — An(x) ( n >j Q(x,u)

= < = .

dij(x,u) <e1(g,n) a, . + car) , (2.69)

and e1(e,n) — O0asn — oo.

Proof. (a) It follows from Lemma 2.3(b). (b) By (2.25), Lemma 2.3(b), and (a), we have

di J=1 A (j+1-k) O(x,u)
L Qmw sy, G

= (ea) ™ (ean)
LQean) (e n\ " QW
Ckz:‘) (.ean)k+1 <Q(€an) an> ’ (cay)
oepl [ oepl Q(x u)
- 2.70
S Ckz:(:) (ean)< L an <Q(san) an> Ay (ean)’ (2.70)
n/n\ g Ak f €M j_k Q(x/ u)
= Ca_ﬁ<a_n> %g <Q(€an)> <"> (ean)’
Ay(x) / n Q(x u)
S . (E, n) n ( ap > (san)] ’
where we let
j-1 A1\ 7K k
— rkaf € N
e1(g,n) = Cés <Q(£an)> <;> 0 (2.71)
asn — oo. Therefore, this lemma is proved. O

Lemma 2.13. Suppose that the one of the three conditions (a), (b), and (c) in Theorem 1.4 is satisfied.
Then for any 0 < € < 1/2, there exists €>(e,n) > 0 such that for |x| < eapand j=1,...,v -1,

J‘0<u§a4,, (inp) (u) Q(x u)du < 52(5 n) n(x) <an) ) (2.72)

Tl

with e5(e,n) — 0asn — oo.



20 Journal of Inequalities and Applications

Proof. First, we consider the case of which (c) in Theorem 1.4 is satisfied. Then the lemma
follows from (2.66) with & (¢, n) := (1/n)""". Now, we consider the other cases. If we consider
only for |x| < €a, and |u| < 2¢a, in proving Lemmas 2.7 and 2.8, then we know that for
|x| <eayandj=1,...,v-1

b u_é " <%l((58:11n)) >] Q,E(Zan)/ 0<u<2¢c,
& _ | (Q(ea) \ Qcan) ]
@Q(X,u) 5 3 (Q(Ean) > eay, ’ 2c1 <u< Ean, (2'73)
Q'(eay) jQ’(Ean) c
( Q(eay) > ea, Ean <u<2eay,.

Then we have by Lemma 2.12(a)

W g, [
nW,) (1) —Q(x, u)du < +
jOSuSZEan (p P) ( )dxl Q( ) 0<u<2c; 2c1<u<l¢eay
_ 1, (Qean Qean
~ a8 \Qean) ) eay (2.74)

i L M ! An(x) / n\/
<n1+i te 2<Q(ga,,)>> an <a_n)'

A

and we can see that

a2+j—5 gAfl j
e3(e,n) = L— + EA2<Q(5a )> — 0 asn— oo. (2.75)
n

Finally, we estimate . By Lemma 2.12(b) we have

f 2ea,<usag,

f (pato,) (1) O, wydu
2ea,<u<a, prie dx '

< ngan<u<a4n <£1 (e,m) Ar;(x) <£>7 4 1 Olx, 1) u)> (pnwp)z(u)du (2.76)

n Qan (san)]

1\ Aux) /n
< <£1(.€,n)+ (gn)j>a—”<a_n> .
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Therefore, if we let ex(¢, n) = e3(g, 1) + £1(¢,n) + 1/ (en)/, then

J.0<u§u4,, (inp)z( ) Q(x u)du < e:(e, n) n(x) <an> , 2.77)

and &,(e,n) — O0asn — oo by (2.75) and (2.76). O

From the proof of Lemma 2.6, we have the following. There exists e4(n) > 0 satisfying
£4(n) — 0asn — oo such that

—_— Au(x)/ n i
[ rop00 00 < e 220 (1) 278)
Uu>as, n n
Therefore, from Lemmas 2.6, 2.9, 2.10, and 2.11 we obtain the_estimate for Ag )(x) in (1.20),
and from Lemma 2.13 and (2.78) we have the estimate for AS[ ’ (x) in (1.21). Using Cauchy-

Schwarz Inequality we also have the estimate for B,(qj )(x) in (1.20) and (1.21). Consequently,
we proved Theorem 1.4, completely. O

Proof of Theorem 1.6. (a) (1.24) follows from [1, (3.45)] easily.
(b) Suppose that (1.23) is satisfied on |x| > D for some D > 0 large enough. Let x > D.
From (1.23) we have for large x > D

Q'(x) Q(x) \*
1“<Q’<D>> <ln (Q(D)> ‘ @79)

and we have for large x > D

Q) _/Qm)\*
s < (o) - (250
Case A > 1. Then we can see by [1, Lemma 3.4 (3.18)] and (2.80)
aQ (@) _ QD) f\
T(a;) = ==~ < . 2.81
(ar) O(a) < QD) TaQ(ar) <m> (2.81)
Therefore from the assumption a; < C,t" we have for any 7> 0
T(a;) < C(A, 7)) 2D/ (+D), (2.82)
Case 0 < A < 1. Then we have by (2.80)
T - 220 OO QD) 08

Qx) ~ Q(D) Q)
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Therefore, from the assumption a; < C,t" we have for any 7 > 0

T(a;) < C(A, )t (2.84)
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