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We mainly consider the system −Δp(x)u = f(v) + h(u) in R, −Δq(x)v = g(u) + ω(v) in R, where

1 < p(x), q(x) ∈ C1(R) are periodic functions, and −Δp(x)u = −(|u′|p(x)−2u′)
′
is called p(x)-Laplacian.

We give the existence of infinitely many periodic solutions under some conditions.
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1. Introduction

The study of differential equations and variational problems with variable exponent growth
conditions has been a new and interesting topic. Many results have been obtained on this
kind of problems, for example [1–18]. On the applied background, we refer to [1, 3, 11, 18].
In this paper, we mainly consider the existence of infinitely many periodic solutions for the
system

(P)

⎧
⎨

⎩

−Δp(x)u = f(v) + h(u) in R,

−Δq(x)v = g(u) +ω(v) in R,
(1.1)

where p(x), q(x) ∈ C1(R) are functions. The operator −Δp(x)u = −(|u′|p(x)−2u′)
′
is called one-

dimensional p(x)-Laplacian. Especially, if p(x) ≡ p (a constant) and q(x) ≡ q (a constant),
then (P) is the well-known constant exponent system.

(u, v) is called a solution of (P), if u, v ∈ C1(R), |u′|p(x)−2u′ and |v′|p(x)−2v′ are absolute
continuous and satisfy (P) almost every where.
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In [19], the authors consider the existence of positive weak solutions for the following
constant exponent problems:

(I)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δpu = λf(v), in Ω,

−Δpv = λg(u), in Ω,

u = v = 0, on ∂Ω.

(1.2)

The first eigenfunction is used to construct the subsolution of constant exponent problems
successfully. Under the condition that λ is large enough and

lim
u→+∞

f
[
M

(
g(u)

)1/(p−1)]

up−1 = 0, for every M > 0, (1.3)

the authors give the existence of positive solutions for problem (I).
In [20], the author considers the existence and nonexistence of positive weak solution

to the following constant exponent elliptic system:

(II)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δpu = λuαvγ , in Ω,

−Δqv = λuδvβ, in Ω,

u = v = 0, on ∂Ω.

(1.4)

The first eigenfunction is used to construct the subsolution of constant exponent problems
successfully.

Because of the nonhomogeneity of p(x)-Laplacian, p(x)-Laplacian problems are more
complicated than those of p-Laplacian. Maybe the first eigenvalue and the first eigenfunction
of p(x)-Laplacian do not exist (see [6]). Even if the first eigenfunction of p(x)-Laplacian
exists, because of the nonhomogeneity of p(x)-Laplacian, the first eigenfunction cannot be
used to construct the subsolution of p(x)-Laplacian problems.

There are many papers on the existence of periodic solutions for p-Laplacian elliptic
systems, for example [21–24]. The results on the periodic solutions for variable exponent
systems are rare. Through a new method of constructing sub-supersolution, this paper gives
the existence of infinitely many periodic solutions for problem (P).

2. Main Results and Proofs

At first, we give an existence of positive solutions for variable exponent systems on bounded
domain via sub-super-solution method. The result itself has dependent value.
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Denote ΩR = (−R,R). Let us consider the existence of positive solutions of the
following:

(P1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δp(x)u = f(v) + h(u), in ΩR,

−Δq(x)v = g(u) +ω(v), in ΩR,

u = v = 0, on ∂ΩR.

(2.1)

Write z+ = supx∈R
z(x), z− = infx∈Rz(x), for any z ∈ C(R). Assume that

(H1) p(x), q(x) ∈ C1(R) satisfy

1 < p− ≤ p+ < ∞, sup
∣
∣p′(x)

∣
∣ < ∞, 1 < q− ≤ q+ < ∞, sup

∣
∣q′(x)

∣
∣ < ∞. (2.2)

(H2) f , g, h,ω : [0,+∞) → R are C1, monotone functions such that

lim
t→+∞

f(t) = lim
t→+∞

g(t) = lim
t→+∞

h(t) = lim
t→+∞

ω(t) = +∞. (2.3)

(H3) For any positive constant M, there are limt→+∞f[M(g(t))1/(q
−−1)]/tp

−−1 = 0.

(H4) limt→+∞h(t)/tp
−−1 = limt→+∞ω(t)/tq

−−1 = 0.

(H5) f, g, h, and ω are odd functions such that f(0) = g(0) = h(0) = ω(0) = 0, p(x)
and q(x) are even, and T is a periodic of p and q, namely, p(x) = p(x + T), q(x) =
q(x + T), for all x ∈ R.

Note. In [14], the present author discussed the existence of solutions of (P1), under the
conditions that (P1) is radial, p(x) = q(x), and h = ω ≡ 0. Because of the nonhomogeneity of
variable exponent problems, variable exponent problems are more complicated than constant
exponent problems, and many results and methods for constant exponent problems are
invalid for variable exponent problems. In many cases, the radial symmetric conditions are
effective to deal with variable exponent problems. There are many results about the radial
variable exponent problems (see [4, 14, 16]), but the following Theorem 2.1 does not assume
any symmetric conditions.

We will establish.

Theorem 2.1. If (H1)–(H4) hold, then (P1) possesses a positive solution, when R is sufficiently large.

Proof. If we can construct a positive subsolution (φ1, φ2) and supersolution (z1, z2) of (P1),
namely,

−Δp(x)φ1 ≤ f
(
φ2

)
+ h

(
φ1

)
, −Δq(x)φ2 ≤ g

(
φ1

)
+ω

(
φ2

)
, for a.e. x ∈ R,

−Δp(x)z1 ≥ f(z2) + h(z1), −Δq(x)z2 ≥ g(z1) +ω(z2), for a.e. x ∈ R,
(2.4)

which satisfy φ1 ≤ z1 and φ2 ≤ z2, then (P1) possesses a positive solution (see [5]).
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Step 1. We will construct a subsolution of (P1).
Denfine

φ1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−k2(x−R) − 1, R − a < x ≤ R,

eak2 − 1 +
∫R−a

x

(
k2e

ak2
)(p(R−a)−1)/(p(r)−1)[sin

(
ε2(r − (R − a)) +

π

2

)]1/(p(r)−1)
dr,

R − a − π

2ε2
< x ≤ R − a,

eak2−1+
∫R−a

R−a−π/2ε2

(
k2e

ak2
)(p(R−a)−1)/(p(r)−1)[sin

(
ε2(r−(R−a))+π

2

)]1/(p(r)−1)
dr,

−R + a +
π

2ε1
< x ≤ R − a − π

2ε2
,

eak1 − 1 +
∫x

−R+a

(
k1e

ak1
)(p(−R+a)−1)/(p(r)−1)[sin

(π

2
− ε1(r − (−R + a))

)]1/(p(r)−1)
dr,

−R + a ≤ x ≤ −R + a +
π

2ε1
,

ek1(x+R) − 1, −R ≤ x < −R + a.

φ2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−k4(x−R) − 1, R − a < x ≤ R,

eak4 − 1 +
∫R−a

x

(
k4e

ak4
)(q(R−a)−1)/(q(r)−1)[sin

(
ε4(r − (R − a)) +

π

2

)]1/(q(r)−1)
dr,

R − a − π

2ε4
< x ≤ R − a,

eak4−1+
∫R−a

R−a−π/2ε4

(
k4e

ak4
)(q(R−a)−1)/(q(r)−1)[sin

(
ε4(r−(R−a))+π

2

)]1/(q(r)−1)
dr,

−R + a +
π

2ε3
< x ≤ R − a − π

2ε4
,

eak3 − 1 +
∫x

−R+a

(
k3e

ak3
)(q(−R+a)−1)/(q(r)−1)[sin

(π

2
− ε3(r − (−R + a))

)]1/(q(r)−1)
dr,

−R + a ≤ x ≤ −R + a +
π

2ε3
,

ek3(x+R) − 1, −R ≤ x < −R + a,

(2.5)

where

a = min

{
inf p(x) − 1

4
(
sup

∣
∣p′(x)

∣
∣ + 1

) ,
inf q(x) − 1

4
(
sup

∣
∣q′(x)

∣
∣ + 1

)

}

, b = min
{
f(0), g(0), h(0), ω(0),−1},

εi = k
−p+
i e−akip

+
, i = 1, 2, εi = k

−q+
i e−akiq

+
, i = 3, 4; R >

π

εi
, i = 1, 2, 3, 4,

(2.6)



Journal of Inequalities and Applications 5

k1 and k2 satisfy

eak2 − 1 +
∫R−a

R−a−π/2ε2

(
k2e

ak2
)(p(R−a)−1)/(p(r)−1)[

sin
(
ε2(r − (R − a)) +

π

2

)]1/(p(r)−1)
dr

= eak1−1+
∫−R+a+π/2ε1

−R+a

(
k1e

ak1
)(p(−R+a)−1)/(p(r)−1)[

sin
(π

2
−ε1(r−(−R+a))

)]1/(p(r)−1)
dr,

(2.7)

k3 and k4 satisfy

eak4 − 1 +
∫R−a

R−a−π/2ε4

(
k4e

ak4
)q(R−a)−1/q(r)−1[

sin
(
ε4(r − (R − a)) +

π

2

)]1/q(r)−1
dr

= eak3 − 1 +
∫−R+a+π/2ε3

−R+a

(
k3e

ak3
)q(−R+a)−1/q(r)−1[

sin
(π

2
− ε3(r − (−R + a))

)]1/q(r)−1
dr,

(2.8)

then φ1(x) ∈ C([−R,R]), and φ2(x) ∈ C([−R,R]). It is easy to see that φi ≥ 0 and φi ∈
C1([−R,R]), i = 1, 2. Obviously, εi = k

−p+
i e−akip

+
is continuous about ki.

In the following, we will prove that (φ1, φ2) is a subsolution for (P1). By computation,

−Δp(x)φ1 =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
k2e

−k2(x−R))p(x)−1[−k2
(
p(x)−1)+p′(x) ln k2−k2p′(x)(x−R)

]
, R − a < x ≤ R,

ε2
(
k2e

ak2
)(p(R−a)−1) cos

(
ε2(x − (R − a)) +

π

2

)
, R − π

2ε2
< x < R − a,

0, −R+a+
π

2ε1
<x<R−a− π

2ε2
,

ε1
(
k1e

ak1
)p(−R+a)−1[cos

(π

2
− ε1(x − (−R + a))

)]
, −R + a < x < −R + a,

(
k1e

k1(x+R)
)p(x)−1[−k1

(
p(x)−1)−p′(x) ln k1−k1p′(x)(x+R)

]
, −R ≤ x < −R + a.

(2.9)

If k2 is sufficiently large, we have

−Δp(x)φ1 ≤ −k2
[

inf p(x) − 1 − sup
∣
∣p′(x)

∣
∣

(
ln k2
k2

+ R − r

)]

≤ −k2a, ∀x ∈ (R − a,R).

(2.10)

As a is a constant and only depends on p(x) and q(x), when k2 is large enough, we
have −k2a < 2b. Since φ1(x) ≥ 0 and f + h is monotone, we have

−Δp(x)φ1 ≤ 2b ≤ f(0) + h(0) ≤ f
(
φ2

)
+ h

(
φ1

)
, R − a < x ≤ R. (2.11)
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According to (H2), when ki are large enough, we have

f
(
eaki − 1

)
≥ 1, g

(
eaki − 1

)
≥ 1, h

(
eaki − 1

)
≥ 1, ω

(
eaki − 1

)
≥ 1, i = 1, 2, 3, 4,

(2.12)

where ki are dependent on f , g, h, ω, p and q, and they are independent on R. Since ε2 =
k
−p+
2 e−ak2p

+
, when x ∈ (R − a − π/2ε, R − a), we have

−Δp(x)φ1 = ε2
(
k2e

ak2
)(p(R−1)−1)

cos
(
ε(x − (R − a)) +

π

2

)
≤ ε2k

p+

2 eak2p
+
= 1. (2.13)

Then we have

−Δp(x)φ1 ≤ 1 ≤ f
(
φ2

)
+ h

(
φ1

)
, R − a − π

2ε2
< x < R − a. (2.14)

Obviously

−Δp(x)φ1 = 0 ≤ 1 ≤ f
(
φ2

)
+ h

(
φ1

)
, − R + a +

π

2ε1
< x < R − a − π

2ε2
. (2.15)

When k2 is large enough, from (2.7) we can see that k1 is large enough. Similar to the
discussion of the above, we can conclude

−Δp(x)φ1 ≤ 1 ≤ f
(
φ2

)
+ h

(
φ1

)
, − R + a < x < −R + a +

π

2ε1
, (2.16)

−Δp(x)φ1 ≤ f(0) + h(0) ≤ f
(
φ2

)
+ h

(
φ1

)
, − R < x < −R + a. (2.17)

Since φi(x) ∈ C1([−R,R]), combining (2.11), (2.14), (2.15), (2.16) and (2.17), we have

−Δp(x)φ1 ≤ f
(
φ2

)
+ h

(
φ1

)
, for a.e. x ∈ (−R,R). (2.18)

Similarly, when k4 is large enough, we have

−Δq(x)φ2 ≤ g
(
φ1

)
+ω

(
φ2

)
, for a.e. x ∈ (−R,R). (2.19)

Then (φ1, φ2) is a subsolution of (P1).

Step 2. We will construct a supersolution of (P1).
Let z1 be a solution of

−
(∣
∣z′1

∣
∣p(x)−2z′1

)′
= 2μ, z1(R) = 0 = z1(−R), (2.20)

where μ is a positive constant and μ > 1.
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Obviously, there exists x0 ∈ ΩR such that z1(x) =
∫R
x |(r − x0)2μ|1/(p(r)−1)−12μ(r − x0)dr.

Note that x0 is dependent on μ. Denote β = β(2μ) = max|x|≤R z1(x). It is easy to see that

1
C
μ1/p+−1 ≤ β

(
2μ

) ≤ Cμ1/p−−1, where C ≥ 1 is a positive constant. (2.21)

Let us consider

−�p(x)z1 = 2μ in ΩR,

−�q(x)z2 = 2g
(
β
(
2μ

))
in ΩR,

z1 = z2 = 0 on ∂ΩR.

(2.22)

Similarly, we have

1
C

[
g
(
β
(
2μ

))]1/(q+−1) ≤ max
|x|≤R

z2(x) ≤ C
[
g
(
β
(
2μ

))]1/(q−−1). (2.23)

Wewill prove that (z1, z2) is a supersolution for (P1). From limt→+∞ω(t)/tq
−−1 = 0 and

(2.23), when μ is large enough, we can easily see that

−Δq(x)z2 = 2g
(
β
(
2μ

)) ≥ g(z1) +ω(z2). (2.24)

Since limt→+∞f[Cg(2t)
1/(q−−1)]/tp

−−1 = 0 and limt→+∞h(t)/tp
−−1 = 0, when μ is large

enough, according to (2.21) and (2.23), we have

2μ ≥ 2
(
1
C
β
(
2μ

)
)p−−1

≥ f
[
C
(
g
(
β
(
2μ

)))1/(q−−1)] + h
((
β
(
2μ

)))
. (2.25)

This means that

−Δp(x)z1 = 2μ ≥ f
[
C
(
g
(
β
(
2μ

)))1/(q−−1)] + h
((
β
(
2μ

))) ≥ f(z2) + h(z1). (2.26)

According to (2.24) and (2.26), we can conclude that (z1, z2) is a supersolution for (P1),
when μ is large enough.

Step 3. We will prove that φ1 ≤ z1 and φ2 ≤ z2.
Obviously, when μ is large enough, we can easily see that g(β(2μ)) is large enough,

then

f
(
φ2

)
+ h

(
φ1

) ≤ μ, ∀x ∈ ΩR,

g
(
φ1

)
+ω

(
φ2

) ≤ g
(
β
(
2μ

))
, ∀x ∈ ΩR.

(2.27)
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Let us consider

−Δp(x)� = μ in ΩR. (2.28)

It is easy to see that φ1 is a subsolution of (2.28), when μ is large enough. Obviously,
we can see that z1 is a supersolution of (2.28), and

z1(R) = φ1(R) = z1(−R) = φ1(−R) = 0. (2.29)

According to the comparison principle (see [12]), we can see that φ1 ≤ z1.
Let us consider

−Δp(x)� = g
(
β
(
2μ

))
in ΩR. (2.30)

It is easy to see that φ2 is a subsolution of (2.30), when μ is large enough. Obviously,
we can see that z2 is a supersolution of (2.30), and

z2(R) = φ2(R) = z2(−R) = φ2(−R) = 0. (2.31)

According to the comparison principle (see [12]), we can see that φ2 ≤ z2.
Thus, we can conclude that φ1 ≤ z1 and φ2 ≤ z2, when μ is sufficiently large. This

completes the proof.

Theorem 2.2. If (H1)–(H5) hold, then (P) has infinitely many periodic solutions.

Proof. Let R = nT . According to Theorem 2.1, we can conclude that there exists an integer n0

which is large enough such that (P1) has a positive solution (u#
n(x), v

#
n(x)) for any integer n ≥

n0. Since p and q are even, and f, g, h, and ω are odd, then (−u#
n(−x),−v#

n(−x)) is a negative
solution of (P1). We can define a C1 function (un(x), vn(x)) on [−nT, 3nT] as

un(x) =

⎧
⎨

⎩

u#
n(x), x ∈ [−nT, nT],

−u#
n(−(x − 2nT)), x ∈ (nT, 3nT],

vn(x) =

⎧
⎨

⎩

v#
n(x), x ∈ [−nT, nT],

−v#
n(−(x − 2nT)), x ∈ (nT, 3nT].

(2.32)

We extend (un(x), vn(x)) as (un(x), vn(x)) = (un(x+m4nT), vn(x+m4nT)),wherem is
an integer such that x+m4nT ∈ [−nT, 3nT]. It is easy to see that un, vn ∈ C1(R), (un(x), vn(x))
is a solution of (P), and the periodic of (un(x), vn(x)) is 4nT . This completes the proof.
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