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1. Introduction

We consider the following nth-order differential equation with retarded argument:

x(n)(t) + f(t, x(t), x(τ(t))) = 0, n is even. (1.1)

Firstly, we introduce several conditions as follows:

(H1) f ∈ C(R+ × R2, R), uf(t, u, v) > 0 for uv > 0 and t ∈ R+.

(H2) τ ∈ C(R+, R), τ(t) ≤ t for t ∈ R+ and limt→∞τ(t) = ∞.

As customary, a solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise the solution is called nonoscillatory.

Definition 1.1. The function f(t, u, v) is said to be strongly superlinear if there exists α > 1,
such that |f(t, u, v)|/|u|α is a nondecreasing function with respect to |u|, |v| for each fixed
t ∈ R+.
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It is easy to see that the function |f(t, u, v)|/|u| is nondecreasing with respect to |u|, |v|
for t ∈ R+ if f(t, u, v) is strongly superlinear. The function |f(t, u, v)| is nondecreasing with
respect to |u|, |v| for t ∈ R+ if |f(t, u, v)|/|u| is nondecreasing with respect to |u|, |v|.

Definition 1.2. The function f(t, u, v) is said to be strongly sublinear if there exists 0 < β < 1,
such that |f(t, u, v)|/|u|β is a nonincreasing function with respect to |u|, |v| for each fixed t ∈
R+.

We should indicate that there are many ways in which one can define the concept of
strongly superlinearity, superlinearity, strongly sublinearity and sublinearity, to characterize
functions satisfying different conditions. For example, in [1] the strongly superlinearity is
used to specify functions with specific behavior at 0 and ∞; in [2] the superlinearity and
sublinearity are defined for multivariable functions. In this paper, we adopt the definitions as
in monograph [3].

In particular, if f(t, x(t), x(τ(t)) = p(t)xγ(t), where p(t) ∈ C([t0,∞), R+), t0 > 0, and γ
is the quotient of odd positive integers, then (1.1) becomes

x(n)(t) + p(t)xγ(t) = 0. (1.2)

It is easy to see that p(t)xγ(t) is strongly superlinear for γ > 1 and p(t)xγ(t) is strongly
sublinear for 0 < γ < 1. If n = 2; then (1.2) reduces to

x′′(t) + p(t)xγ(t) = 0, (1.3)

Equation (1.3) is the well-known Emden-Fowler equation [4].
Recently, many remarkable results have been established for the oscillation of solutions

of the second- and higher-order functional differential equations. For example, Theorem A is
presented in [2].

Theorem A. If γ = 1, then every bounded solution of (1.2) oscillates if and only if

∫∞

t0

sn−1p(s)ds = ∞. (1.4)

For (1.3), the well-known Theorems B–D are presented in [5–7].

Theorem B (see [5, 7]). If γ > 0, then (1.3) has a bounded nonoscillatory solution if and only if

∫∞

t0

sp(s)ds < ∞. (1.5)

Theorem C (see [5]). If γ > 1, then all solutions of (1.3) are oscillatory if and only if

∫∞

t0

sp(s)ds = ∞. (1.6)
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Theorem D (see [7]). If 0 < γ < 1, then (1.3) is oscillatory if and only if

∫∞

t0

sγp(s)ds = ∞. (1.7)

In [8], Waltman studied the oscillation of the solutions for the equation

x′′(t) + p(t)f(x(t)) = 0. (1.8)

Equation (1.8) is the prototype of (1.1) and (1.2). Theorems E and F were proved in [8].

Theorem E. If f(x(t)) satisfies (i)f(0) = 0 and f(x)/= 0 for x /= 0 and (ii)f ′(x) is continuous and
non-negative, then (1.8) has a bounded and eventually monotonic solution if and only if

∫∞
tp(t)dt < ∞. (1.9)

Theorem F. Suppose that the conditions (i) and (ii) in Theorem E are satisfied. If

lim
x→∞

inf

∣∣f(x)∣∣
|x|α /= 0 (1.10)

for some α > 1, then all solutions of (1.8) are oscillatory if and only if

∫∞
tp(t)dt = ∞. (1.11)

Some other related results can be found in [2, 4, 9–12] and the references cited therein.
Due to some problems of theoretical and technical character in handling with higher-order
nonlinear differential equations, there are only a few results which concern necessary and
sufficient conditions for the oscillatory behavior for (1.1). So there are a lot of things worth
further consideration for (1.1). The main purpose of this paper is to establish necessary and
sufficient conditions for (1.1). The obtained results extend the above theorems.

2. Main Results

In order to establish our main results we need introduce and establish two lemmas.

Lemma 2.1 (see [13–15]). If x(t) is a positive and n-times differentiable function on [t0,∞), and
x(n)(t) is nonpositive and not identically zero on any subinterval [t1,∞), then there exist T ≥ t0 and
an integer k ∈ {0, 1, . . . , n − 1} such that n + k is odd and

(i) x(i)(t) ≥ 0 for t ≥ T , i = 0, 1, . . . , k − 1;

(ii) (−1)i+kx(i)(t) > 0 for i = k, k + 1, . . . , n;

(iii) (t − T)|x(k−i)(t)| ≤ (1 + i)|x(k−i−1)(t)| for t ≥ T , i = 0, 1, . . . , k − 1, k = 1, . . . , n − 1.
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Lemma 2.2. If f(t, u, v) is a strongly sublinear function, then

f(t, u1, v1)
u1

≥ f(t, u2, v2)
u2

(2.1)

for 0 < u1 ≤ u2 and 0 < v1 ≤ v2.

Proof. From 0 < u1 ≤ u2 and 0 < v1 ≤ v2 together with Definition 1.2 we clearly see that

f(t, u1, v1)

u
γ

1

≥ f(t, u2, v2)

u
γ

2

, (2.2)

where 0 < γ < 1. From 0 < u1/u2 ≤ 1 we know that (u1/u2)
γ−1 ≥ 1, and therefore

f(t, u1, v1)
u1

≥ f(t, u2, v2)
u2

(
u1

u2

)γ−1

≥ f(t, u2, v2)
u2

.

(2.3)

Our main result is Theorem 2.3.

Theorem 2.3. The following statements are true.
(a) Suppose that |f(t, u, v)| is a nondecreasing function with respect to |u| and |v| for t ∈ R+.

If

∫∞

t0

sn−1f(s, c, c)ds < ∞ (2.4)

for some constants c > 0, then (1.1) has a bounded nonoscillatory solution.
(b) If f(t, u, v) is a strongly superlinear function, then every solution of (1.1) oscillates if and

only if

∫∞

t0

sn−1f(s, c, c)ds = ∞ (2.5)

for any c > 0.
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(c) If |f(t, u, v)|/|u| is a nondecreasing function with respect to |u| and v|, then every bounded
solution of (1.1) oscillates if and only if

∫∞

t0

sn−1f(s, c, c)ds = ∞ (2.6)

for each c > 0.
(d) If f(t, u, v) is a strongly sublinear function, then every solution of (1.1) oscillates if and

only if

∫∞

t0

f
(
s, csn−1, cτ(s)n−1

)
ds = ∞ (2.7)

for any c > 0.

Proof. (a) Assume that (2.4) holds. Choose T0 ≥ t0 sufficiently large such that

∫∞

t

sn−1f(s, c, c)ds <
c

2
(2.8)

for t ≥ T0 and some c > 0.
Observing that if x(t) satisfies the equation

x(t) =
∫ t

T0

ds

∫∞

s

(u − s)n−2f(u, x(u), x(τ(u)))du +
c

2
, (2.9)

then x(t) is a solution of (1.1). Therefore it suffices to show that (2.9) has a bounded nonoscil-
latory solution.

Consider the functional set

M =
{
x ∈ C([T0,∞), R) :

c

2
≤ x(t) ≤ c

}
. (2.10)

Define the operator S : M → C([T0,∞), R) as follows:

S(x(t)) =
∫ t

T0

ds

∫∞

s

(u − s)n−2f(u, x(u), x(τ(u)))du +
c

2
. (2.11)
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Then we have

S(x(t)) =
∫ t

T0

f(u, x(u), x(τ(u)))du
∫u

T0

(u − s)n−2ds

+
∫∞

t

f(u, x(u), x(τ(u)))du
∫ t

T0

(u − s)n−2ds +
c

2

=
∫ t

T0

1
n − 1

(u − T0)n−1f(u, x(u), x(τ(u)))du

+
∫∞

t

1
n − 1

[
(u − T0)n−1 − (u − t)n−1

]
f(u, x(u), x(τ(u)))du +

c

2

≤
∫ t

T0

1
n − 1

(u − T0)n−1f(u, x(u), x(τ(u)))du

+
∫∞

t

n − 1
n − 1

(t − T0)(u − T0)n−2f(u, x(u), x(τ(u)))du +
c

2

≤
∫ t

T0

1
n − 1

(u − T0)n−1f(u, x(u), x(τ(u)))du

+
n − 1
n − 1

∫∞

t

(u − T0)n−1f(u, x(u), x(τ(u)))du +
c

2

≤ n − 1
n − 1

∫∞

T0

(u − T0)n−1f(u, x(u), x(τ(u)))du +
c

2

≤
∫∞

T0

(u − T0)n−1f(u, c, c)du +
c

2
≤ c.

(2.12)

Clearly, we have S(x(t)) ≥ c/2, and therefore SM ⊆ M.
Now, we define the functions un : [T0,∞) → R as follows:

un = S(un−1(t)), n ∈ N, (2.13)

where

u0 =
c

2
, t > T0. (2.14)

Since the function f(t, u, v) is nondecreasing with respect to u > 0 and v > 0, a straightfor-
ward verification shows the validity of the inequalities

c

2
≤ un−1 ≤ un ≤ c, t ≥ T0. (2.15)

Therefore limn→∞un(t) = u(t) for t ≥ T0. It follows from the Lebesgue convergence theorem
that u ∈ M and u(t) = S(u(t)).
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It is easy to see that u(t) is the desired bounded and nonoscillatory solution of (2.9)
(b) Sufficiency. Assume that

∫∞
t0
sn−1f(s, c, c)ds = ∞ for each c > 0. We will prove that

every solution of (1.1) oscillates. Otherwise, assume that (1.1) has a nonoscillatory solution
x(t). Without loss of generality, assume that x(t) > 0 for t ≥ t0. Then according to Lemma 2.1,
there exists an odd integer k ∈ {1, . . . , n − 1} and T ≥ t0 such that

x(i)(t) > 0 for t ≥ T, 0 ≤ i ≤ k,

(−1)i+kx(i)(t) > 0 for t ≥ T, k ≤ i ≤ n.
(2.16)

There are two possible cases.

Case 1 (k = 1). In this case we see that

x′(t) > 0, x′′(t) < 0, x(3)(t) > 0, . . . , x(n)(t) < 0. (2.17)

Since x(t) is an increasing function, hence for t ≥ T > 0 and some constants c > 0, one has

x(t) ≥ c > 0, x(τ(t)) ≥ c > 0. (2.18)

Making use of the Taylor expansion we get

x′(t) =
n−2∑
j=0

(−1)j
j!

x(1+j)(δ)(δ − t)j +
(−1)n−1
(n − 2)!

∫δ

t

(s − t)n−2x(n)(s)ds, T ≤ t ≤ δ. (2.19)

From (1.1) and (2.17) together with (2.19)we get

x′(t) >
∫δ

t

(s − t)n−2

(n − 2)!
f(s, x(s), x(τ(s)))ds. (2.20)

The strong superlinearity of f leads to

f(s, x(s), x(τ(s))) =
f(s, x(s), x(τ(s)))

xα(s)
xα(s) ≥ f(s, c, c)

cα
xα(s), (2.21)

which implies

x′(t) >
∫∞

t

(s − t)n−2

(n − 2)!
f(s, c, c)

cα
xα(s)ds >

∫∞

t

(s − t)n−2

(n − 2)!
f(s, c, c)

cα
xα(t)ds. (2.22)
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From (2.22) we have

∫ t

T

x′(s)
xα(s)

ds >

∫ t

T

ds

∫∞

s

(u − s)n−2

(n − 2)!
f(u, c, c)

cα
du

=
∫ t

T

f(u, c, c)
cα

du

∫u

T

(u − s)n−2

(n − 2)!
ds +

∫∞

t

f(u, c, c)
cα

du

∫ t

T

(u − s)n−2

(n − 2)!
ds.

(2.23)

By using the elementary inequality an−1 − bn−1 ≥ (a − b)an−2 for 0 < b ≤ a, we have

∫ t

T

(u − s)n−2ds = − (u − s)n−1

n − 1

∣∣∣∣∣
t

T

=
1

n − 1

[
(u − T)n−1 − (u − t)n−1

]
≥ 1

n − 1
(t − T)(u − T)n−2.

(2.24)

Therefore, we get

∫ t

T

x′(s)
xα(s)

ds ≥
∫ t

T

(u − T)n−1

(n − 1)!
f(u, c, c)

cα
du + (t − T)

∫∞

t

(u − T)n−2

(n − 1)!
f(u, c, c)

cα
du, (2.25)

∫ t

T

(u − T)n−1

(n − 1)!
f(u, c, c)

cα
du <

∫ t

T

x′(s)
xα(s)

ds, (2.26)

or

∫ t

T

(u − T)n−1

(n − 1)!
f(u, c, c)

cα
du <

x1−α(t)
α − 1

< ∞, (2.27)

which contradicts with (2.5).

Case 2 (k > 1). Making use of (2.21)we have

x(n)(t) +
f(t, c, c)

cα
xα(t) < 0. (2.28)

For t ≥ T , it follows from (iii) of Lemma 2.1 that

x(t) ≥ (t − T)k−1

k!
x(k−1)(t). (2.29)

For sufficiently large t, one has

xα(t) ≥ (t − T)(k−1)α

(k!)α
(
x(k−1)(t)

)α
>

(t − T)k−1

(k!)α
(
x(k−1)(t)

)α
, α > 1. (2.30)
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Let z(t) = x(k−1)(t), then

z(t) > 0, z′(t) > 0, z′′(t) < 0, . . . , (2.31)

and therefore

z(n−k+1)(t) +
f(t, c, c)

cα
(t − T)k−1

(k!)α
zα(t) < 0. (2.32)

Using the same method as in the proof of Case 1, we get

∫∞

T

sn−k
f(s, c, c)

cα
(s − T)k−1

(k!)α
ds < ∞, (2.33)

that is

∫∞

T

sn−1f(s, c, c)ds < ∞, (2.34)

which contradicts with (2.5).

Conversely, if every solution of (1.1) oscillates, then (2.5) holds. Otherwise (2.4) holds.
Theorem 2.3(a) implies that (1.1) has a nonoscillatory solution.

(c) Sufficiency. Without loss of generality, we assume that x(t) is a bounded positive
solution. We divided the proof into two cases.

Case 1 (k = 1). The same argument as in the proof of Theorem 2.3(b) implies that inequality
(2.26) holds for α = 1, that is,

∫ t

T

(u − T)n−1

(n − 1)!
f(u, c, c)

c
du <

∫ t

T

x′(s)
x(s)

ds = lnx(t) − lnx(T) < ∞, (2.35)

which contradicts with (2.6).

Case 2 (k > 1). From the proof of Theorem 2.3(b) we also clearly see that

∫∞

T

un−1f(u, c, c)du < ∞, (2.36)

which contradicts with (2.6).

Conversely, if every bounded solution of (1.1) oscillates, and then (2.6) holds.
Otherwise (2.4) holds, then Theorem 2.3(a) implies that (1.1) has a nonoscillatory bounded
solution.

(d) Sufficiency. Without loss of generality, we assume that x(t) is a finally positive
solution, that is, x(t) > 0 for t ≥ T > 0. We consider the following two cases.
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Case 1 (k = 1). In this case we see that

x(t) > 0, x′(t) > 0, x′′(t) < 0, . . . , xn(t) < 0, (2.37)

then we know that

lim
t→∞

x′(t) = L ∈ [0,∞), (2.38)

and there exist constants T1 > T and c > 0 such that x(t) ≤ c(t − T) and x(τ(t)) ≤ c(τ(t) − T)
for t ≥ T1 > T. The strong sublinearity of f implies that

f(t, x(t), x(τ(t))) =
f(t, x(t), x(τ(t)))

xβ(t)
xβ(t)

≥ f(t, c(t − T), c(τ(t) − T))
cβ

(
x(t)
t − T

)β

.

(2.39)

The same argument as in the proof of Case 1 of Theorem 2.3(b) yields

x′(t) >
∫∞

t

(s − t)n−2

(n − 2)!
f(s, x(s), x(τ(s)))ds. (2.40)

Integrating from T to t leads to

x(t) > x(t) − x(T)

>

∫ t

T

(u − T)n−1

(n − 1)!
f(u, x(u), x(τ(u)))du + (t − T)

∫∞

t

(u − T)n−2

(n − 1)!
f(u, x(u), x(τ(u)))du

> (t − T)
∫∞

t

(u − T)n−2

(n − 1)!
f(u, x(u), x(τ(u)))du.

(2.41)

That is

x(t)
t − T

>

∫∞

t

(u − T)n−2

(n − 1)!
f(u, c(u − T), c(τ(u) − T))

cβ

(
x(u)
u − T

)β

du. (2.42)

Let

z(t) =
∫∞

t

(u − T)n−2

(n − 1)!
f(u, c(u − T), c(τ(u) − T))

cβ

(
x(u)
u − T

)β

du, (2.43)
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then z′(t) < 0, 0 < z(t) < x(t)/(t − T) and

z′(t) = − (t − T)n−2

(n − 1)!
f(t, c(t − T), c(τ(t) − T))

cβ

(
x(t)
t − T

)β

< − (t − T)n−2

(n − 1)!
f(t, c(t − T), c(τ(t) − T))

cβ
zβ(t),

z′(t)
zβ(t)

≤ − (t − T)n−2

(n − 1)!
f(t, c(t − T), c(τ(t) − T))

cβ
,

(2.44)

and for T1 > T , one has

∫ t

T1

z′(u)
zβ(u)

du ≤ −
∫ t

T1

(u − T)n−2

(n − 1)!
f(u, c(u − T), c(τ(u) − T))

cβ
du,

1
1 − β

[
z1−β(t) − z1−β(T1)

]
≤ − 1

(n − 1)!

∫ t

T1

(u − T)n−2+β
f(u, c(u − T), c(τ(u) − T))

cβ
du.

(2.45)

Therefore

∫ t

T1

(u − T)n−2
f(u, c(u − T), c(τ(u) − T))

cβ
du < ∞ (2.46)

or

∫∞

T1

(u − T)n−2f(u, c(u − T), c(τ(u) − T))du < ∞. (2.47)

By condition (H2), we can choose T̃1 > T1 such that τ(u) − T > (1/2)τ(u) > 1 and u − T >

(1/2)u > 1 for u > T̃1. Then making use of Lemma 2.2, we have

f(u, c(u − T), c(τ(u) − T))
c(u − T)

≥
f
(
u, c(u − T)n−1, c(τ(u) − T)n−1

)

c(u − T)n−1

≥
f
(
u, cun−1, c(τ(u))n−1

)
cun−1 , u > T̃1.

(2.48)

From (2.47) and (2.48) together with u − T > (1/2)u we get

∫∞

T̃1

f
(
u, cun−1, c(τ(u))n−1

)
dt < ∞, (2.49)

which contradicts with (2.7).
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Case 2 (k > 1). That is,

x(t) > 0, x′(t) > 0, . . . , x(k−1)(t) > 0, x(k)(t) > 0, x(k+1)(t) < 0, . . . , x(n)(t) < 0. (2.50)

From x(k)(t) > 0 and x(k+1)(t) < 0 for t ≥ T > 0 we know that

lim
t→∞

x(k)(t) = L ∈ [0,∞), (2.51)

and there exist constants T2 > T and c1 > 0 such that x(t) < c1(t−T)k and x(τ(t)) < c1(τ(t)−T)k
for t ≥ T2 > T > 0. The strong sublinearity of f leads to

f(t, x(t), x(τ(t))) =
f(t, x(t), x(τ(t)))

xβ(t)
xβ(t)

≥
f
(
t, c(t − T)k, c1(τ(t) − T)k

)
[
c1(t − T)k

]β xβ(t).

(2.52)

It follows from (iii) of Lemma 2.1, that

x(t) ≥ (t − T)k−1

k!
x(k−1)(t), (2.53)

and thus

xβ(t) ≥ (t − T)(k−1)β

(k!)β
[
x(k−1)(t)

]β
. (2.54)

Let z(t) = x(k−1)(t), then z(t) > 0, z′(t) > 0, z′′(t) < 0, . . . , z(n−k+1) < 0 and

z(n−k+1)(t) +
f
(
t, c1(t − T)k, c1(τ(t) − T)k

)
[
c1(t − T)k

]β (t − T)(k−1)β

(k!)β
zβ(t) < 0, (2.55)

where n − k + 1 is also even. According to the same process as the one used in the proof of
Case 1 of Theorem 2.3(d) we conclude that

∫∞

T2

s(n−k)β
f
(
s, c1(s − T)k, c1(τ(s) − T)k

)
[
c1(s − T)k

]β (s − T)(k−1)βds < ∞. (2.56)
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By condition (H2), we can choose T̃2 > T2 such that τ(s) − T > (1/2)τ(s) > 1 and s − T >

(1/2)s > 1 for s > T̃2. Now making use of Lemma 2.2, we have

f
(
s, c1(s − T)k, c1(τ(s) − T)k

)
[
c1(s − T)k

]β ≥
f
(
s, c1(s − T)n−1, c1(τ(s) − T)n−1

)
[
c1(s − T)n−1

]β

≥
f
(
s, c1s

n−1, c1(τ(s))n−1
)

(
c1sn−1

)β .

(2.57)

From (2.56) and (2.57) together with s − T > (1/2)s we clearly see that

∫∞

T̃2

f
(
s, c1s

n−1, c1(τ(s))n−1
)
dt < ∞, (2.58)

which contradicts with (2.7).

Necessity

If every solution of (1.1) oscillates, then (2.7) holds. Otherwise, assuming that

∫∞

t0

f
(
s, csn−1, cτ(s)n−1

)
ds < ∞ (2.59)

for some constants c > 0, we should prove that (1.1) has a nonoscillatory solution. From (2.59)
we know that there exist t ≥ T and some c > 0 such that

∫∞

t

f

(
u,

c

2(n − 1)!
(u − T)n−1,

c

2(n − 1)!
(τ(u) − T)n−1

)
du ≤ c

4
. (2.60)

Let X be the Banach space of all real-valued continuous functions x(t) endowed with
the norm

‖x‖ = sup
t≥T

∣∣∣∣∣
x(t)

(t − T)n−1

∣∣∣∣∣, (2.61)

and let M be the subset of X defined by

M =
{
x ∈ X :

c

2(n − 1)!
(t − T)n−1 ≤ x(t) ≤ c

(n − 1)!
(t − T)n−1, t ≥ T

}
. (2.62)

Define the mapping S on M by

S(x(t)) =
∫ t

T

ds1

∫s1

T

ds2 · · ·
∫sn−2

T

[
c

2
+
∫∞

sn−1
f(u, x(u), x(τ(u)))du

]
dsn−1, (2.63)

where the integration is n − 1 times.
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By Lemma 2.2, for x(t) ∈ M one has

f(t, x(t), x(τ(t)))
x(t)

≤
f
(
t, (c/2(n − 1)!)(t − T)n−1, (c/2(n − 1)!)(τ(t) − T)n−1

)

(c/2(n − 1)!)(t − T)n−1
(2.64)

for sufficient large t ≥ τ(t) > T , that is,

f(t, x(t), x(τ(t))) ≤ f

(
t,

c

2(n − 1)!
(t − T)n−1,

c

2(n − 1)!
(τ(t) − T)n−1

)
x(t)

(c/2(n − 1)!)(t − T)n−1

≤ 2f
(
t,

c

2(n − 1)!
(t − T)n−1,

c

2(n − 1)!
(τ(t) − T)n−1

)
.

(2.65)

From (2.60) and (2.65) we get

∫∞

T

f(u, x(u), x(τ(u)))du ≤ 2
∫∞

T

f

(
u,

c

2(n − 1)!
(u − T)n−1,

c

2(n − 1)!
(τ(u) − T)n−1

)
du ≤ c

2
.

(2.66)

Equation (2.66) and the definition of the operator S imply that S(x(t)) ≤ (c/(n−1)!)(t−T)n−1.
On the other hand, we clearly see that S(x(t)) ≥ (c/2(n − 1)!)(t − T)n−1 for t ≥ T . Therefore,
SM ⊆ M.

It is routine to prove that S is continuous and Sx is relatively compact in the topology
of the Frechet space C[T,∞). Therefore, there exists x(t) ∈ M such that x(t) = S(x(t)) follows
from the well-known Schauder’s fixed point Theorem. It is easy to see that x(t) is the solution
of (1.1).

The proof of Theorem 2.3 is completed.

Remark 2.4. If f(s, x(s), x(τ(s)) = p(s)xγ(s), then f(s, c, c) = cγp(s) ≡ c̃p(s) and f(s,
csn−1, cτ(s)n−1) = cγs(n−1)γp(s) ≡ c̃s(n−1)γp(s). For (1.2) we can derive Corollary 2.5 from
Theorem 2.3.

Corollary 2.5. If n is even, then the following statements are true.
(a) If

∫∞

t0

sn−1p(s)ds < ∞, (2.67)

then (1.2) has a bounded nonoscillatory solution.
(b) If γ > 1, then every solution of (1.2) oscillates if and only if

∫∞

t0

sn−1p(s)ds = ∞. (2.68)
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(c) If γ = 1, then every bounded solution of (1.2) oscillates if and only if

∫∞

t0

sn−1p(s)ds = ∞. (2.69)

(d) If 0 < γ < 1, then every solution of (1.2) oscillates if and only if

∫∞

t0

s(n−1)γp(s)ds = ∞. (2.70)

It is easy to see that Theorem A can be obtained directly from our Corollary 2.5(c).

For n = 2, we have Corollary 2.6 for (1.3).

Corollary 2.6. If n = 2, then the following statements are true.
(a) If

∫∞

t0

sp(s)ds < ∞. (2.71)

then (1.3) has a bounded nonoscillatory solution.
(b) If γ > 1, then every solution of (1.3) oscillates if and only if

∫∞

t0

sp(s)ds = ∞. (2.72)

(c) If γ = 1, then every bounded solution of (1.3) oscillates if and only if

∫∞

t0

sp(s)ds = ∞. (2.73)

(d) If 0 < γ < 1, then every solution of (1.3) oscillates if and only if

∫∞

t0

sγp(s)ds = ∞. (2.74)

We clearly see that our results in Corollary 2.6(a), (b), and (d) are exactly correspond-
ing to the results in Theorems B, C, and D, respectively.
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Remark 2.7. If f(t, x(t), x(τ(t))) = p(t)f(x(t)), then (1.1) becomes

x(n)(t) + p(t)f(x(t)) = 0. (2.75)

From the proof of Theorem 2.3(b) we indicate that the strongly superlinearity of f(x(t)) can
be replaced by the condition

lim
x→∞inf

∣∣f(x(t))∣∣
|x|α /= 0. (2.76)

In fact, if x(t) is a nonoscillatory solution of (2.75), then from Theorem 2.3(a)wemay assume
that x(t) is unbounded, and (2.76) implies that limx→∞ inf(|f(x(t)|/|x|α) ≥ K > 0, and there
exists T such that x(t) > 0 and f(x(t))/xα(t) ≥ K > 0 for t > T . Then we get

p(t)f(x(t)) ≥ Kp(t)xα(t), t > T. (2.77)

We notice that if (2.21) is replaced by (2.77), then Corollary 2.8 follows from the proof of
Theorem 2.3(b).

Corollary 2.8. If limx→∞ inf(|f(x(t)|/|x|α)/= 0, then all solutions of (2.75) oscillate if and only if

∫∞

t0

tn−1p(t) = ∞. (2.78)

If n = 2, then one clearly sees that Theorem F is the special case of Corollary 2.8.

Example 2.9. The equation

x(4)(t) +
24

t3(t − 2)(t − 1)
x2(t)x(t − 1) = 0, t ≥ 3 (2.79)

satisfies the assumptions of Theorem 2.3(a) but does not satisfy the assumptions of
Theorem 2.3(b) and (c); hence there exists a bounded nonoscillatory solution. In fact x(t) =
1 − 1/t is one such solution.

Example 2.10. The equation

x′′(t) + (2 − sin t)sin2/3t
x1/3(t)

2 + x(t − π)
= 0 (2.80)

satisfies the assumptions of Theorem 2.3(d). Hence every solution of (1.1) is oscillatory. In
fact x(t) = sin t is one such solution.
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Matematicky Časopis Slovenskej Akadémie Vied, vol. 11, pp. 250–254, 1961.
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