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1. Introduction and Preliminaries

Let Σ denote the class of functions of the form

f(z) =
1
z
+

∞∑

k=1

akz
k, (1.1)

which are analytic in the punctured open unit disk

U
∗ := {z : z ∈ C, 0 < |z| < 1} =: U \ {0}. (1.2)

Let f, g ∈ Σ, where f is given by (1.1) and g is defined by

g(z) =
1
z
+

∞∑

k=1

bkz
k. (1.3)
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Then the Hadamard product (or convolution) f ∗ g of the functions f and g is defined by

(
f ∗ g)(z) := 1

z
+

∞∑

k=1

akbkz
k =:

(
g ∗ f)(z). (1.4)

Let P denote the class of functions of the form

p(z) = 1 +
∞∑

k=1

pkz
k, (1.5)

which are analytic and convex in U and satisfy the condition

R
(
p(z)

)
> 0 (z ∈ U). (1.6)

For two functions f and g, analytic in U, we say that the function f is subordinate to g
in U, and write

f(z) ≺ g(z), (1.7)

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0, |ω(z)| < 1 (z ∈ U) (1.8)

such that

f(z) = g(ω(z)) (z ∈ U). (1.9)

Indeed, it is known that

f(z) ≺ g(z) =⇒ f(0) = g(0), f(U) ⊂ g(U). (1.10)

Furthermore, if the function g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0), f(U) ⊂ g(U). (1.11)

Analogous to the integral operator defined by Jung et al. [1], Lashin [2] introduced
and investigated the following integral operator:

Qα,β : Σ −→ Σ (1.12)
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defined, in terms of the familiar Gamma function, by

Qα,βf(z) =
Γ
(
β + α

)

Γ
(
β
)
Γ(α)

1
zβ+1

∫z

0
tβ
(
1 − t

z

)α−1
f(t)dt

=
1
z
+
Γ
(
β + α

)

Γ
(
β
)

∞∑

k=1

Γ
(
k + β + 1

)

Γ
(
k + β + α + 1

)akzk
(
α > 0; β > 0; z ∈ U

∗).

(1.13)

By setting

fα,β(z) :=
1
z
+

Γ
(
β
)

Γ
(
β + α

)
∞∑

k=1

Γ
(
k + β + α + 1

)

Γ
(
k + β + 1

) zk
(
α > 0; β > 0; z ∈ U

∗), (1.14)

we define a new function fλα,β(z) in terms of the Hadamard product (or convolution):

fα,β(z) ∗ fλα,β(z) =
1

z(1 − z)λ
(
α > 0; β > 0; λ > 0; z ∈ U

∗). (1.15)

Then, motivated essentially by the operator Qα,β, we now introduce the operator

Qλ
α,β : Σ −→ Σ, (1.16)

which is defined as

Qλ
α,βf(z) := f

λ
α,β(z) ∗ f(z)

(
z ∈ U

∗; f ∈ Σ
)
, (1.17)

where (and throughout this paper unless otherwise mentioned) the parameters α, β, and λ
are constrained as follows:

α > 0; β > 0; λ > 0. (1.18)

We can easily find from (1.14), (1.15), and (1.17) that

Qλ
α,βf(z) =

1
z
+
Γ
(
β + α

)

Γ
(
β
)

∞∑

k=1

(λ)k+1
(k + 1)!

Γ
(
k + β + 1

)

Γ
(
k + β + α + 1

)akzk (z ∈ U
∗), (1.19)

where (λ)k is the Pochhammer symbol defined by

(λ)k :=

⎧
⎨

⎩
1, (k = 0),

λ(λ + 1) · · · (λ + k − 1), (k ∈ N := {1, 2, . . .}).
(1.20)

Clearly, we know that Q1
α,β

= Qα,β.
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It is readily verified from (1.19) that

z
(
Qλ
α,βf
)′
(z) = λQλ+1

α,β f(z) − (λ + 1)Qλ
α,βf(z), (1.21)

z
(
Qλ
α+1,βf

)′
(z) =

(
β + α

)Qλ
α,βf(z) −

(
β + α + 1

)Qλ
α+1,βf(z). (1.22)

By making use of the principle of subordination between analytic functions, we
introduce the subclasses MS∗(η;φ), MK(η;φ), MC(η, δ;φ, ψ), and MQC(η, δ;φ, ψ) of the
class Σ which are defined by

MS∗(η;φ
)
:=
{
f ∈ Σ :

1
1 − η

(
−zf

′(z)
f(z)

− η
)

≺ φ(z) (φ ∈ P; 0 � η < 1; z ∈ U
)}
,

MK(η;φ) :=
{
f ∈ Σ :

1
1 − η

(
−1 − zf ′′(z)

f ′(z)
− η
)

≺ φ(z) (φ ∈ P; 0 � η < 1; z ∈ U
)}
,

MC(η, δ;φ, ψ) :=
{
f ∈ Σ : ∃ g ∈ MS∗(η;φ

)
such that

1
1 − δ

(
−zf

′(z)
g(z)

− δ
)

≺ ψ(z)

(
φ, ψ ∈ P; 0 � η, δ < 1; z ∈ U

)}
,

MQC(η, δ;φ, ψ) :=
{
f ∈ Σ : ∃ g ∈ MK(η;φ) such that

1
1 − δ

(
−
(
zf ′(z)

)′

g ′(z)
− δ
)

≺ ψ(z)

(
φ, ψ ∈ P; 0 � η, δ < 1; z ∈ U

)
}
.

(1.23)

Indeed, the above mentioned function classes are generalizations of the general mero-
morphic starlike, meromorphic convex, meromorphic close-to-convex and meromorphic
quasi-convex functions in analytic function theory (see, for details, [3–12]).

Next, by using the operator defined by (1.19), we define the following subclasses
MSλ

α,β
(η;φ),MKλ

α,β
(η;φ),MCλ

α,β
(η, δ;φ, ψ), and MQCλ

α,β
(η, δ;φ, ψ) of the class Σ:

MSλ
α,β

(
η;φ
)
:=
{
f ∈ Σ : Qλ

α,βf ∈ MS∗(η;φ
)}
,

MKλ
α,β

(
η;φ
)
:=
{
f ∈ Σ : Qλ

α,βf ∈ MK(η;φ)
}
,

MCλα,β
(
η, δ;φ, ψ

)
:=
{
f ∈ Σ : Qλ

α,βf ∈ MC(η, δ;φ, ψ)
}
,

MQCλα,β
(
η, δ;φ, ψ

)
:=
{
f ∈ Σ : Qλ

α,βf ∈ MQC(η, δ;φ, ψ)
}
.

(1.24)
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Obviously, we know that

f ∈ MKλ
α,β

(
η;φ
)⇐⇒ −zf ′ ∈ MSλ

α,β

(
η;φ
)
, (1.25)

f ∈ MQCλα,β
(
η, δ;φ, ψ

)⇐⇒ −zf ′ ∈ MCλα,β
(
η, δ;φ, ψ

)
. (1.26)

In order to prove our main results, we need the following lemmas.

Lemma 1.1 (see [13]). Let κ, ϑ ∈ C. Suppose also that m is convex and univalent in U with

m(0) = 1, R(κm(z) + ϑ) > 0 (z ∈ U). (1.27)

If u is analytic in U with u(0) = 1, then the subordination

u(z) +
zu′(z)

κu(z) + ϑ
≺ m(z) (1.28)

implies that

u(z) ≺ m(z). (1.29)

Lemma 1.2 (see [14]). Let h be convex univalent in U and let ζ be analytic in U with

R(ζ(z)) � 0 (z ∈ U). (1.30)

If q is analytic in U and q(0) = h(0), then the subordination

q(z) + ζ(z)zq′(z) ≺ h(z) (1.31)

implies that

q(z) ≺ h(z). (1.32)

The main purpose of the present paper is to investigate some inclusion relationships
and integral-preserving properties of the subclasses

MSλ
α,β

(
η;φ
)
, MKλ

α,β

(
η;φ
)
, MCλα,β

(
η, δ;φ, ψ

)
, MQCλα,β

(
η, δ;φ, ψ

)
(1.33)

of meromorphic functions involving the operator Qλ
α,β. Several subordination and superordi-

nation results involving this operator are also derived.
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2. The Main Inclusion Relationships

We begin by presenting our first inclusion relationship given by Theorem 2.1.

Theorem 2.1. Let 0 � η < 1 and φ ∈ P with

max
z∈U

{
R
(
φ(z)

)}
< min

{
λ − η + 1
1 − η ,

β + α − η + 1
1 − η

}
(z ∈ U). (2.1)

Then

MSλ+1
α,β

(
η;φ
) ⊂ MSλ

α,β

(
η;φ
) ⊂ MSλ

α+1,β

(
η;φ
)
. (2.2)

Proof. We first prove that

MSλ+1
α,β

(
η;φ
) ⊂ MSλ

α,β

(
η;φ
)
. (2.3)

Let f ∈ MSλ+1
α,β (η;φ) and suppose that

h(z) :=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,β
f
)′
(z)

Qλ
α,βf(z)

− η

⎞
⎟⎠, (2.4)

where h is analytic in U with h(0) = 1. Combining (1.21) and (2.4), we find that

λ
Qλ+1
α,β f(z)

Qλ
α,βf(z)

= −(1 − η)h(z) − η + λ + 1. (2.5)

Taking the logarithmical differentiation on both sides of (2.5) and multiplying the resulting
equation by z, we get

1
1 − η

⎛
⎜⎝−

z
(
Qλ+1
α,β f

)′
(z)

Qλ+1
α,β
f(z)

− η

⎞
⎟⎠ = h(z) +

zh′(z)
−(1 − η)h(z) − η + λ + 1

≺ φ(z). (2.6)

By virtue of (2.1), an application of Lemma 1.1 to (2.6) yields h ≺ φ, that is f ∈ MSλ
α,β

(η;φ).
Thus, the assertion (2.3) of Theorem 2.1 holds.

To prove the second part of Theorem 2.1, we assume that f ∈ MSλ
α,β(η;φ) and set

g(z) :=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α+1,βf

)′
(z)

Qλ
α+1,βf(z)

− η

⎞
⎟⎠, (2.7)
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where g is analytic in U with g(0) = 1. Combining (1.22), (2.1), and (2.7) and applying the
similar method of proof of the first part, we get g ≺ φ, that is f ∈ MSλ

α+1,β(η;φ). Therefore,
the second part of Theorem 2.1 also holds. The proof of Theorem 2.1 is evidently completed.

Theorem 2.2. Let 0 � η < 1 and φ ∈ P with (2.1) holds. Then

MKλ+1
α,β

(
η;φ
) ⊂ MKλ

α,β

(
η;φ
) ⊂ MKλ

α+1,β

(
η;φ
)
. (2.8)

Proof. In view of (1.25) and Theorem 2.1, we find that

f ∈ MKλ+1
α,β

(
η;φ
)⇐⇒ Qλ+1

α,β f ∈ MK(η;φ)

⇐⇒ −z
(
Qλ+1
α,β f

)′ ∈ MS∗(η;φ
)

⇐⇒ Qλ+1
α,β

(−zf ′) ∈ MS∗(η;φ
)

⇐⇒ −zf ′ ∈ MSλ+1
α,β

(
η;φ
)

=⇒ −zf ′ ∈ MSλ
α,β

(
η;φ
)

⇐⇒ Qλ
α,β

(−zf ′) ∈ MS∗(η;φ
)

⇐⇒ −z
(
Qλ
α,βf
)
∈ MS∗(η;φ

)

⇐⇒ Qλ
α,βf ∈ MK(η;φ)

⇐⇒ f ∈ MKλ
α,β

(
η;φ
)
,

(2.9)

f ∈ MKλ
α,β

(
η;φ
)⇐⇒ −zf ′ ∈ MSλ

α,β

(
η;φ
)

=⇒ −zf ′ ∈ MSλ
α+1,β

(
η;φ
)

⇐⇒ Qλ
α+1,β

(−zf ′) ∈ MS∗(η;φ
)

⇐⇒ Qλ
α+1,βf ∈ MK(η;φ)

⇐⇒ f ∈ MKλ
α+1,β

(
η;φ
)
.

(2.10)

Combining (2.9) and (2.10), we deduce that the assertion of Theorem 2.2 holds.

Theorem 2.3. Let 0 � η < 1, 0 � δ < 1 and φ, ψ ∈ P with (2.1) holds. Then

MCλ+1α,β

(
η, δ;φ, ψ

) ⊂ MCλα,β
(
η, δ;φ, ψ

) ⊂ MCλα+1,β
(
η, δ;φ, ψ

)
. (2.11)
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Proof. We begin by proving that

MCλ+1α,β

(
η, δ;φ, ψ

) ⊂ MCλα,β
(
η, δ;φ, ψ

)
. (2.12)

Let f ∈ MCλ+1
α,β

(η, δ;φ, ψ). Then, by definition, we know that

1
1 − δ

⎛
⎜⎝−

z
(
Qλ+1
α,β f

)′
(z)

Qλ+1
α,β
g(z)

− δ

⎞
⎟⎠ ≺ ψ(z) (2.13)

with g ∈ MSλ+1
α,β

(η;φ), Moreover, by Theorem 2.1, we know that g ∈ MSλ
α,β

(η;φ), which
implies that

q(z) :=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,βg
)′
(z)

Qλ
α,β
g(z)

− η

⎞
⎟⎠ ≺ φ(z). (2.14)

We now suppose that

p(z) :=
1

1 − δ

⎛
⎜⎝−

z
(
Qλ
α,βf
)′
(z)

Qλ
α,β
g(z)

− δ

⎞
⎟⎠, (2.15)

where p is analytic in U with p(0) = 1. Combining (1.21) and (2.15), we find that

−[(1 − δ)p(z) + δ]Qλ
α,βg(z) = λQλ+1

α,β f(z) − (λ + 1)Qλ
α,βf(z). (2.16)

Differentiating both sides of (2.16) with respect to z and multiplying the resulting equation
by z, we get

−(1 − δ)zp′(z) − [(1 − δ)p(z) + δ][−(1 − η)q(z) − η + λ + 1
]
= λ

z
(
Qλ+1
α,β f

)′
(z)

Qλ
α,β
g(z)

. (2.17)

In view of (1.21), (2.14), and (2.17), we conclude that

1
1 − δ

⎛
⎜⎝−

z
(
Qλ+1
α,β f

)′
(z)

Qλ+1
α,β
g(z)

− δ

⎞
⎟⎠ = p(z) +

zp′(z)
−(1 − η)q(z) − η + λ + 1

≺ ψ(z). (2.18)

By noting that (2.1) holds and

q(z) ≺ φ(z), (2.19)
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we know that

R
(−(1 − η)q(z) − η + λ + 1

)
> 0. (2.20)

Thus, an application of Lemma 1.2 to (2.18) yields

p(z) ≺ ψ(z), (2.21)

that is f ∈ MCλ
α,β

(η, δ;φ, ψ), which implies that the assertion (2.12) of Theorem 2.3 holds.
By virtue of (1.22) and (2.1), making use of the similar arguments of the details above,

we deduce that

MCλα,β
(
η, δ;φ, ψ

) ⊂ MCλα+1,β
(
η, δ;φ, ψ

)
. (2.22)

The proof of Theorem 2.3 is thus completed.

Theorem 2.4. Let 0 � η < 1, 0 � δ < 1 and φ, ψ ∈ P with (2.1) holds. Then

MQCλ+1α,β

(
η, δ;φ, ψ

) ⊂ MQCλα,β
(
η, δ;φ, ψ

) ⊂ MQCλα+1,β
(
η, δ;φ, ψ

)
. (2.23)

Proof. In view of (1.26) and Theorem 2.3, and by similarly applying the method of proof of
Theorem 2.2, we conclude that the assertion of Theorem 2.4 holds.

3. A Set of Integral-Preserving Properties

In this section, we derive some integral-preserving properties involving two families of
integral operators.

Theorem 3.1. Let f ∈ MSλ
α,β(η;φ) with φ ∈ P and

R
(
φ(z)

)
<

R(ν) − η
1 − η (z ∈ U; R(ν) > 1). (3.1)

Then the integral operator Fν(f) defined by

Fν
(
f
)
:= Fν

(
f
)
(z) =

ν − 1
zν

∫z

0
tν−1f(t)dt (z ∈ U; R(ν) > 1) (3.2)

belongs to the classMSλ
α,β

(η;φ).

Proof. Let f ∈ MSλ
α,β(η;φ). Then, from (3.2), we find that

z
(
Qλ
α,βFν(f)

)′
(z) + νQλ

α,βFν
(
f
)
(z) = (ν − 1)Qλ

α,βf(z). (3.3)
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By setting

P(z) :=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,β
Fν(f)

)′
(z)

Qλ
α,βFν

(
f
)
(z)

− η

⎞
⎟⎠, (3.4)

we observe that P is analytic in U with P(0) = 0. It follows from (3.3) and (3.4) that

−(1 − η)P(z) − η + ν = (ν − 1)
Qλ
α,βf(z)

Qλ
α,βFν

(
f
)
(z)

. (3.5)

Differentiating both sides of (3.5) with respect to z logarithmically and multiplying the
resulting equation by z, we get

P(z) +
zP

′(z)
−(1 − η)P(z) − η + ν

=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,βf
)′
(z)

Qλ
α,β
f(z)

− η

⎞
⎟⎠ ≺ φ(z). (3.6)

Since (3.1) holds, an application of Lemma 1.1 to (3.6) yields

1
1 − η

⎛
⎜⎝−

z
(
Qλ
α,β
Fν(f)

)′
(z)

Qλ
α,βFν

(
f
)
(z)

− η

⎞
⎟⎠ ≺ φ(z), (3.7)

which implies that the assertion of Theorem 3.1 holds.

Theorem 3.2. Let f ∈ MKλ
α,β

(η;φ) with φ ∈ P and (3.1) holds. Then the integral operator Fν(f)

defined by (3.2) belongs to the classMKλ
α,β

(η;φ).

Proof. By virtue of (1.25) and Theorem 3.1, we easily find that

f ∈ MKλ
α,β

(
η;φ
)⇐⇒ −zf ′ ∈ MSλ

α,β

(
η;φ
)

=⇒ Fν
(−zf ′) ∈ MSλ

α,β

(
η;φ
)

⇐⇒ −z(Fν(f)
)′ ∈ MS∗(η;φ

)

⇐⇒ Fν
(
f
) ∈ MKλ

α,β

(
η;φ
)
.

(3.8)

The proof of Theorem 3.2is evidently completed.
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Theorem 3.3. Let f ∈ MCλα,β(η, δ;φ, ψ) with φ ∈ P and (3.1) holds. Then the integral operator

Fν(f) defined by (3.2) belongs to the classMCλ
α,β

(η, δ;φ, ψ).

Proof. Let f ∈ MCλ
α,β

(η, δ;φ, ψ). Then, by definition, we know that there exists a function
g ∈ MS∗(η;φ) such that

1
1 − η

⎛
⎜⎝−

z
(
Qλ
α,βf
)′
(z)

Qλ
α,β
g(z)

− η

⎞
⎟⎠ ≺ ψ(z). (3.9)

Since g ∈ MS∗(η;φ), by Theorem 3.1, we easily find that Fν(g) ∈ MS∗(η;φ), which implies
that

H(z) :=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,β
Fν(g)

)′
(z)

Qλ
α,βFν

(
g
)
(z)

− η

⎞
⎟⎠ ≺ φ(z). (3.10)

We now set

Q(z) :=
1

1 − δ

⎛
⎜⎝−

z
(
Qλ
α,β
Fν(f)

)′
(z)

Qλ
α,βFν

(
g
)
(z)

− δ

⎞
⎟⎠, (3.11)

where Q is analytic in U with Q(0) = 1. From (3.3), and (3.11), we get

−[(1 − δ)Q(z) + δ]Qλ
α,βFν

(
g
)
(z) + νQλ

α,βFν
(
f
)
(z) = (ν − 1)Qλ

α,βf(z). (3.12)

Combining (3.10), (3.11), and (3.12), we find that

−(1 − δ)zQ
′(z) − [(1 − δ)Q(z) + δ]

[−(1 − η)H(z) − η + ν
]
= (ν − 1)

z
(
Qλ
α,β
f
)′
(z)

Qλ
α,βFν

(
g
)
(z)

. (3.13)

By virtue of (1.21), (3.10), and (3.13), we deduce that

1
1 − δ

⎛
⎜⎝−

z
(
Qλ
α,β
f
)′
(z)

Qλ
α,β
g(z)

− δ

⎞
⎟⎠ = Q(z) +

zQ
′(z)

−(1 − η)H(z) − η + ν
≺ ψ(z). (3.14)
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The remainder of the proof of Theorem 3.3 is much akin to that of Theorem 2.3. We, therefore,
choose to omit the analogous details involved. We thus find that

Q(z) ≺ ψ(z), (3.15)

which implies that Fν(f) ∈ MCλ
α,β

(η, δ;φ, ψ). The proof of Theorem 3.3 is thus completed.

Theorem 3.4. Let f ∈ MQCλα,β(η, δ;φ, ψ) with φ ∈ P and (3.1) holds. Then the integral operator

Fν(f) defined by (3.2) belongs to the classMQCλα,β(η, δ;φ, ψ).

Proof. In view of (1.26) and Theorem 3.3, and by similarly applying the method of proof of
Theorem 3.2, we deduce that the assertion of Theorem 3.4 holds.

Theorem 3.5. Let f ∈ MSλ
α,β

(η;φ) with φ ∈ P and

R
(
σ − ηξ − (1 − η)ξφ(z)) > 0 (z ∈ U; ξ /= 0). (3.16)

Then the function Kσ
ξ (f) ∈ Σ defined by

Qλ
α,βK

σ
ξ

(
f
)
:= Qλ

α,βK
σ
ξ

(
f
)
(z)

=
(
σ − ξ
zσ

∫z

0
tσ−1
(
Qλ
α,βf(t)

)ξ
dt

)1/ξ

(z ∈ U
∗; ξ /= 0)

(3.17)

belongs to the classMSλ
α,β(η;φ).

Proof. Let f ∈ MSλ
α,β

(η;φ) and suppose that

M(z) :=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,β
Kσ
ξ
(f)
)′
(z)

Qλ
α,βK

σ
ξ

(
f
)
(z)

− η

⎞
⎟⎠. (3.18)

Combining (3.17) and (3.18), we have

σ − ηξ − (1 − η)ξM(z) = (σ − ξ)
⎛

⎝
Qλ
α,β
f(z)

Qλ
α,β
Kσ
ξ
(f)(z)

⎞

⎠
ξ

. (3.19)

Now, in view of (3.17), (3.18), and (3.19), we get

M(z) +
zM

′(z)
σ − ηξ − (1 − η)ξM(z)

=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,β
f
)′
(z)

Qλ
α,β
f(z)

− η

⎞
⎟⎠ ≺ φ(z). (3.20)
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Since (3.16) holds, an application of Lemma 1.1 to (3.20) yields

M(z) ≺ φ(z), (3.21)

that is, Kσ
ξ
(f) ∈ MSλ

α,β
(η;φ). We thus complete the proof of Theorem 3.5.

Theorem 3.6. Let f ∈ MKλ
α,β(η;φ) with φ ∈ P and (3.16) holds. Then the function Kσ

ξ (f) ∈ Σ

defined by (3.17) belongs to the classMKλ
α,β

(η;φ).

Proof. By virtue of (1.25) and Theorem 3.5, and by similarly applying the method of proof of
Theorem 3.2, we conclude that the assertion of Theorem 3.6 holds.

Theorem 3.7. Let f ∈ MCλα,β(η, δ;φ, ψ)with φ ∈ P and (3.16) holds. Then the functionKσ
ξ (f) ∈ Σ

defined by (3.17) belongs to the classMCλα,β(η, δ;φ, ψ).

Proof. Let f ∈ MCλ
α,β

(η, δ;φ, ψ). Then, by definition, we know that there exists a function
g ∈ MS∗(η;φ) such that (3.9) holds. Since g ∈ MS∗(η;φ), by Theorem 3.5, we easily find that
Kσ
ξ (g) ∈ MS∗(η;φ), which implies that

R(z) :=
1

1 − η

⎛
⎜⎝−

z
(
Qλ
α,βK

σ
ξ (g)

)′
(z)

Qλ
α,β
Kσ
ξ

(
g
)
(z)

− η

⎞
⎟⎠ ≺ φ(z). (3.22)

We now set

D(z) :=
1

1 − δ

⎛
⎜⎝−

z
(
Qλ
α,βK

σ
ξ (f)

)′
(z)

Qλ
α,β
Kσ
ξ

(
g
)
(z)

− δ

⎞
⎟⎠, (3.23)

where D is analytic in U with D(0) = 1. From (3.17) and (3.23), we get

−ξ[(1 − δ)D(z) + δ]Qλ
α,βK

σ
ξ

(
g
)
(z) + δQλ

α,βK
σ
ξ

(
f
)
(z) = (δ − ξ)Qλ

α,βf(z). (3.24)

Combining (3.22), (3.23), and (3.24), we find that

−ξ(1 − δ)zD
′(z) − [(1 − δ)D(z) + δ]

[−(1 − η)ξR(z) − ηξ + δ] = (δ − ξ)
z
(
Qλ
α,β
f
)′
(z)

Qλ
α,β
Kσ
ξ

(
g
)
(z)

.

(3.25)

Furthermore, by virtue of (1.22), (3.22), and (3.25), we deduce that

1
1 − δ

⎛
⎜⎝−

z
(
Qλ
α,β
f
)′
(z)

Qλ
α,β
g(z)

− δ

⎞
⎟⎠ = D(z) +

zD
′(z)

−(1 − η)ξR(z) − ηξ + δ ≺ ψ(z). (3.26)
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The remainder of the proof of Theorem 3.7 is similar to that of Theorem 2.3. We, therefore,
choose to omit the analogous details involved. We thus find that

D(z) ≺ ψ(z), (3.27)

which implies that Kσ
ξ (f) ∈ MCλα,β(η, δ;φ, ψ). The proof of Theorem 3.7 is thus completed.

Theorem 3.8. Let f ∈ MQCλ
α,β

(η, δ;φ, ψ) with φ ∈ P and (3.16) holds. Then the functionKσ
ξ
(f) ∈

Σ defined by (3.17) belongs to the classMQCλ
α,β

(η, δ;φ, ψ).

Proof. By virtue of (1.26) and Theorem 3.7, and by similarly applying the method of proof of
Theorem 3.2, we deduce that the assertion of Theorem 3.8 holds.

4. Subordination and Superordination Results

In this section, we derive some subordination and superordination results associated with
the operator Qλ

α,β
. By similarly applying the methods of proof of the results obtained by Cho

et al. [15], we get the following subordination and superordination results. Here, we choose
to omit the details involved. For some other recent sandwich-type results in analytic function
theory, one can find in [16–30] and the references cited therein.

Corollary 4.1. Let f, g ∈ Σ. If

R

(
1 +

zϕ′′(z)
ϕ′(z)

)
> −�

(
z ∈ U; ϕ(z) := zQλ

α,βg(z)
)
, (4.1)

where

� :=
1 +
(
β + α

)2 −
∣∣∣1 − (β + α)2

∣∣∣

4
(
β + α

) , (4.2)

then the subordination relationship

zQλ
α,βf(z) ≺ zQλ

α,βg(z) (4.3)

implies that

zQλ
α+1,βf(z) ≺ zQλ

α+1,βg(z). (4.4)

Furthermore, the function zQλ
α+1,βg is the best dominant.
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Corollary 4.2. Let f, g ∈ Σ. If

R

(
1 +

zχ′′(z)
χ′(z)

)
> −�

(
z ∈ U; χ(z) := zQλ+1

α,β g(z)
)
, (4.5)

where

� :=
1 + λ2 − ∣∣1 − λ2∣∣

4λ
, (4.6)

then the subordination relationship

zQλ+1
α,β f(z) ≺ zQλ+1

α,β g(z) (4.7)

implies that

zQλ
α,βf(z) ≺ zQλ

α,βg(z). (4.8)

Furthermore, the function zQλ
α,β
g is the best dominant.

Denote byQ the set of all functions f that are analytic and injective on U−E(f), where

E
(
f
)
=
{
ε ∈ ∂U : lim

z→ ε
f(z) = ∞

}
, (4.9)

and such that f ′(ε)/= 0 for ε ∈ ∂U − E(f). If f is subordinate to F, then F is superordinate to
f . We now derive the following superordination results.

Corollary 4.3. Let f, g ∈ Σ. If

R

(
1 +

zϕ′′(z)
ϕ′(z)

)
> −�

(
z ∈ U; ϕ(z) := zQλ

α,βg(z)
)
, (4.10)

where � is given by (4.2), also let the function zQλ
α,β
f be univalent in U and zQλ

α+1,βf ∈ Q, then the
subordination relationship

zQλ
α,βg(z) ≺ zQλ

α,βf(z) (4.11)

implies that

zQλ
α+1,βg(z) ≺ zQλ

α+1,βf(z). (4.12)

Furthermore, the function zQλ
α+1,βg is the best subordinant.
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Corollary 4.4. Let f, g ∈ Σ. If

R

(
1 +

zχ′′(z)
χ′(z)

)
> −�

(
z ∈ U; χ(z) := zQλ+1

α,β g(z)
)
, (4.13)

where � is given by (4.6), also let the function zQλ+1
α,β
f be univalent in U and zQλ

α,β
f ∈ Q, then the

subordination relationship

zQλ+1
α,β g(z) ≺ zQλ+1

α,β f(z) (4.14)

implies that

zQλ
α,βg(z) ≺ zQλ

α,βf(z). (4.15)

Furthermore, the function zQλ
α,βg is the best subordinant.

Combining the above mentioned subordination and superordination results involving
the operator Qλ

α,β
, we get the following “sandwich-type results”.

Corollary 4.5. Let f, gk ∈ Σ (k = 1, 2). If

R

(
1 +

zϕ′′
k(z)

ϕ′
k(z)

)
> −�

(
z ∈ U; ϕk(z) := zQλ

α,βgk(z) (k = 1, 2)
)
, (4.16)

where � is given by (4.2), also let the function zQλ
α,βf be univalent in U and zQλ

α+1,βf ∈ Q, then the
subordination chain

zQλ
α,βg1(z) ≺ zQλ

α,βf(z) ≺ zQλ
α,βg2(z) (4.17)

implies that

zQλ
α+1,βg1(z) ≺ zQλ

α+1,βf(z) ≺ zQλ
α+1,βg2(z). (4.18)

Furthermore, the functions zQλ
α+1,βg1 and zQλ

α+1,βg2 are, respectively, the best subordinant and the
best dominant.

Corollary 4.6. Let f, gk ∈ Σ (k = 1, 2). If

R

(
1 +

zχk′′(z)
χk′(z)

)
> −�

(
z ∈ U; χk(z) := zQλ+1

α,β gk(z) (k = 1, 2)
)
, (4.19)
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where � is given by (4.6), also let the function zQλ+1
α,β f be univalent in U and zQλ

α,βf ∈ Q, then the
subordination chain

zQλ+1
α,β g1(z) ≺ zQλ+1

α,β f(z) ≺ zQλ+1
α,β g2(z) (4.20)

implies that

zQλ
α,βg1(z) ≺ zQλ

α,βf(z) ≺ zQλ
α,βg2(z). (4.21)

Furthermore, the functions zQλ
α,β
g1 and zQλ

α,β
g2 are, respectively, the best subordinant and the best

dominant.
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