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We prove a strong convergence theorem for finding a common element of the set of solutions for
generalized equilibrium problems, the set of fixed points of a relatively nonexpansive mapping,
and the set of fixed points of a quasi-φ-nonexpansive mapping in a Banach space by using
the shrinking Projection method. Our results improve the main results in S. Takahashi and W.
Takahashi (2008) and Takahashi and Zembayashi (2008). Moreover, the method of proof adopted
in the paper is different from that of S. Takahashi and W. Zembayashi (2008).

1. Introduction

Let E be a Banach space and let C be a closed convex subsets of E. Let F be an equilibrium
bifunction from C × C into R and let A : C → E∗ be a nonlinear mapping. Then, we consider
the following generalized equilibrium problem: find z ∈ C such that

F
(
z, y

)
+
〈
Az, y − z

〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP, that is,

EP =
{
z ∈ C : F

(
z, y

)
+
〈
Az, y − z

〉 ≥ 0, ∀y ∈ C
}
. (1.2)

In the case of A ≡ 0, EP is denoted by EP(F). In the case of F ≡ 0, EP is denoted by VI(C,A).
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A mapping S : C → E is said to be nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.3)

We denote the set of fixed points of S by F(S).
A mapping f : C → C is said to be Quasi-φ-nonexpansive if

φ
(
p, fx

) ≤ φ
(
p, x

)
, ∀x ∈ C, ∀p ∈ T

(
f
)
, (1.4)

where φ is defined by (2.3).
Recently, in Hilbert space, Tada and Takahashi [1], and S. Takahashi andW. Takahashi

[2] considered iterative methods for finding an element of EP(F) ∩ F(S). Very recently, S.
Takahashi and W. Takahashi [3] introduced an iterative method for finding an element of
EP ∩ F(S), where A : C → H is an inverse-strongly monotone mapping and then proved
a strong convergence theorem. On the other hand, Takahashi and Zembayashi [4] prove
a strong convergence theorem for finding a common element of the set of solutions of an
equilibrium problem and the set of fixed points of a relatively nonexpansive mapping in a
Banach space by using the shrinking Projection method which is different from S. Takahashi
and W. Takahashi’s hybrid method [3].

In this paper, motivated by Takahashi and Zembayashi [4], in Banach space, we prove
a strong convergence theorem for finding an element of EP∩F(S)∩F(f), whereA : C → E∗ is
a continuous and monotone operator, S is a relatively nonexpansive mapping, and f is quasi-
φ-nonexpansive mapping. Moreover, the method of proof adopted in the paper is different
from that of [3].

2. Preliminaries

Throughout this paper, all the Banach spaces are real. We denote by N and R the sets of
positive integers and real numbers, respectively. Let E be a Banach space and let E∗ be the
topological dual of E. For all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉.
Then, the duality mapping J on E is defined by

J(x) =
{
x∗ ∈ 2E

∗
: 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
(2.1)

for every x ∈ E. By the Hahn-Banach theorem, J(x) is nonempty; see [5] for more details.
We denote the weak convergence and the strong convergence of a sequence {xn} to x in E
by xn ⇀ x and xn → x, respectively. We also denote the weak∗ convergence of a sequence
{x∗

n} to x∗ in E by x∗
n⇀

∗x∗. A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1
for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x /=y. It is also said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 such that ‖x + y‖/2 < 1 − δ for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and
‖x − y‖ ≥ ε. A uniformly convex Banach space has the Kadec-Klee property, that is, xn ⇀ x
and ‖xn‖ → ‖x‖ imply xn → x. The space E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)
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exists for all x, y ∈ S(E) = {z ∈ E : ‖z‖ = 1}. It is also said to be uniformly smooth if the limit
exists uniformly in x, y ∈ S(E). We know that if E is smooth, strictly convex, and reflexive,
then the duality mapping J is single valued, one to one, and onto; see [6] for more details.

Let E be a smooth, strictly convex, and reflexive Banach space and let C be a closed
convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
y, x

)
=
∥
∥y

∥
∥2 − 2

〈
y, Jx

〉
+ ‖x‖2, ∀x, y ∈ E. (2.3)

Following Alber [7], the generalized projection ΠC from E onto C is defined by ΠC(x) = z,
where z is the solution to the following minimization problem:

φ(z, x) = min
y∈C

φ
(
y, x

)
, ∀x ∈ E. (2.4)

The generalized projection ΠC from E onto C is well defined, single valued and satisfies

(‖x‖ − ∥∥y
∥∥)2 ≤ φ

(
y, x

) ≤ (‖x‖ + ∥∥y
∥∥)2, ∀x, y ∈ E. (2.5)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC is the metric projection of E onto C. It
is well know that the following conclusions for generalized projections hold.

Lemma 2.1 (Alber [7] and Kamimura and Takahashi [8]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C, y ∈ E. (2.6)

Lemma 2.2. Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E, let x ∈ E, and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈
y − z, Jx − Jz

〉 ≤ 0, ∀y ∈ C. (2.7)

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E, and let T be a mapping fromC into itself. We denoted by F(T) the set of fixed
points of T . A point p ∈ C is said to be an asymptotic fixed point of T [9, 10] if there exists
{xn} in C which converges weakly to p and limn→∞‖xn − Txn‖ = 0. We denote the set of all
asymptotic fixed point of T by F̂(T). Following Matsushita and Takahashi [11], a mapping
T : C → C is said to be relatively nonexpansive if the following conditions are satisfied:

(1) F(T) is nonempty;

(2) φ(u, Tx) ≤ φ(u, x), for all u ∈ F(T), x ∈ C;

(3) F̂(T) = F(T).

The following lemma is due to Matsushita and Takahashi [11].

Lemma 2.3 (Matsushita and Takahashi [11]). Let C be a nonempty closed convex subset of a
smooth, strictly convex and reflexive Banach space E, and let T be a relatively nonexpansive mapping
from C into itself. Then F(T) is closed and convex.
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We also know the following lemmas.

Lemma 2.4 (see [8]). LetE be a smooth and uniformly convex Banach space and let {xn} and {yn} be
sequences inE such that either {xn} or {yn} is bounded. If limnφ(xn, yn) = 0, then limn‖xn−yn‖ = 0.

Lemma 2.5 (see [12]). Let E be a uniformly convex Banach space and Br(0) be a closed ball of E.
Then there exists a continuous, stricting increasing and convex function g : [0,∞) → [0,∞) with
g(0) = 0 such that

∥
∥λx + μy + γz

∥
∥2 ≤ λ‖x‖2 + μ

∥
∥y

∥
∥2 + γ‖z‖2 − λμg

(∥∥x − y
∥
∥) (2.8)

for all x, y, z ∈ Br(0) and λ, μ, γ ∈ [0, 1].

For solving the equilibrium problem for bifunction F : C × C → R, let us assume that
F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim sup
t↓0

F
(
tz + (1 − t)x, y

) ≤ F
(
x, y

)
; (2.9)

(A4) for each x ∈ C, y �→ F(x, y) is a convex and lower semicontinuous.

If an equilibrium bifunction F : C × C → R satisfies conditions (A1)–(A4), then we
have the following two important results.

Lemma 2.6 (see [13]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let F be an equilibrium bifunction F : C × C → R satisfying conditions
(A1)–(A4), and let r > 0 for any given x ∈ E. Then, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.10)

Lemma 2.7 (see [4]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E; let F be an equilibrium bifunction F : C × C → R satisfying
conditions (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → 2C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
(2.11)
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for all x ∈ E. Then, the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [27], that is, for any x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
; (2.12)

(3) F(Tr) = F̂(Tr) = EP(F);

(4) EP(F) is a closed and convex set.

Lemma 2.8 (see [4]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E; let F be an equilibrium bifunction F : C × C → R satisfying
conditions (A1)–(A4). For r > 0, x ∈ E and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.13)

3. The Main Results

In this section, we prove a strong convergence theorem which is the main result in the paper.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let A : C → E∗ be a continuous and monotone operator. Let F
be a bifunction from C ×C to R which satisfies (A1)–(A4), let S be a relatively nonexpansive mapping
of C into itself such that F(S) ∩ EP ∩ F(f)/= ∅, and let f : C → C be a closed quasi-φ-nonexpansive
mapping. Let {xn} be the sequence generated by x0 = x ∈ C, C0 = C and

yn = J−1
(
αnJf(xn) + βnJxn + γnJSxn

)
,

un ∈ C such that F
(
un, y

)
+
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x

(3.1)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn}, {βn}, {γn} ⊂ [0, 1], and {rn} ⊂
[a,∞) for some a > 0. If the following conditions are satisfied

(C1) αn + βn + γn = 1,

(C2) lim infn→∞βnγn > 0; lim infn→∞αnβn > 0,

then {xn} converges strongly to ΠF(S)∩F(f)∩EPx, where ΠF(S)∩F(f)∩EP is the generalized
projection of E onto F(S) ∩ F(f) ∩ EP.

Proof. We define a bifunction G : C × C → R by

G
(
z, y

)
= F

(
z, y

)
+
〈
Az, y − z

〉
, ∀z, y ∈ C. (3.2)
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Next, we prove that the bifunction G satisfies conditions (A1)–(A4).

(A1) G(x, x) = 0 for all x ∈ C.

Since G(x, x) = F(x, x) + 〈Ax, 0〉 = F(x, x) = 0, for all x ∈ C.

(A2) G is monotone, that is, G(z, y) +G(y, z) ≤ 0 for all y, z ∈ C.

Since A is a continuous and monotone operator, hence from the definition of G we
have

G
(
z, y

)
+G

(
y, z

)
= F

(
z, y

)
+ 〈Az, y − z〉 + F

(
y, z

)
+ 〈Ay, z − y〉

= F
(
z, y

)
+ F

(
y, z

)
+ 〈Az, y − z〉 − 〈Ay, y − z〉

≤ 0 + 〈Az −Ay, y − z〉 = −〈Ay −Az, y − z〉 ≤ 0.

(3.3)

(A3) For each x, y, z ∈ C,

lim sup
t↓0

G
(
tz + (1 − t)x, y

) ≤ G
(
x, y

)
. (3.4)

Since

lim sup
t↓0

G
(
tz + (1 − t)x, y

)
= lim sup

t↓0
F
(
tz + (1 − t)x, y

)

+ lim sup
t↓0

〈
A(tz + (1 − t)x), y − (tz + (1 − t)x)

〉

≤ F
(
x, y

)
+
〈
Ax, y − x

〉
= G

(
x, y

)
.

(3.5)

(A4) For each x ∈ C, y �→ G(x, y) is a convex and lower semicontinuous.

For each x ∈ C, for all t ∈ (0, 1) and for all y, z ∈ C, since F satisfies (A4), we have

G
(
x, ty + (1 − t)z

)
= F

(
x, ty + (1 − t)z

)
+
〈
Ax, ty + (1 − t)z − x

〉

≤ t
[
F
(
x, y

)
+
〈
Ax, y − x

〉]
+ (1 − t)[F(x, z) + 〈Ax, z − x〉]

= tG
(
x, y

)
+ (1 − t)G(x, z).

(3.6)

So, y �→ G(x, y) is convex.

Similarly, we can prove that y �→ G(x, y) is lower semicontinuous.
Therefore, the generalized equilibrium problem (1.1) is equivalent to the following

equilibrium problem: find z ∈ C such that

G
(
z, y

) ≥ 0, ∀y ∈ C, (3.7)
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and (3.1) can be written as

yn = J−1
(
αnJf(xn) + βnJxn + γnJSxn

)
,

un ∈ C such that G
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x.

(3.8)

Since the bifunction G satisfies conditions (A1)–(A4), from Lemma 2.7, for a given r >
0 and x ∈ C, we can define a mapping Wr : E → 2C as follows:

Wr(x) =
{
z ∈ C : G

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
. (3.9)

Moreover, Wr satisfies the conclusions in Lemma 2.7.
Putting un = Wrnyn for all n ∈ N, we have from Lemmas 2.7 and 2.8 that Wrn are

relatively nonexpansive.
We divide the proof of Theorem 3.1 into six steps.

Step 1. We first show that Cn is closed and convex. It is obvious that Cn is closed. Since

φ(z, un) ≤ φ(z, xn) ⇐⇒ ‖un‖2 − ‖xn‖2 − 2〈z, Jun − Jxn〉 ≥ 0, (3.10)

Cn is convex. So, Cn is a closed convex subset of E for all n ∈ N ∪ {0}.

Step 2. Next we show by induction that EP(G) ∩ F(S) ∩ F(f) ⊂ Cn for all n ∈ N ∪ {0}. From
C0 = C, we have

EP(G) ∩ F(S) ∩ F
(
f
) ⊂ C0. (3.11)



8 Journal of Inequalities and Applications

Suppose that EP(G)∩F(S)∩F(f) ⊂ Ck for some k ∈ N∪{0}. For any u ∈ EP(G)∩F(S)∩F(f) ⊂
Ck, since Wrk and S are relatively nonexpansive, f is quasi-φ-nonexpansive, we have

φ(u, uk) = φ
(
u,Wrkyk

) ≤ φ
(
u, yk

)
= φ

(
u, J−1

(
αkJf(xk) + βkJxk + γkJSxk

))

= ‖u‖2 − 2
〈
u, αkJf(xk) + βkJxk + γkJSxk

〉
+
∥
∥
∥J−1

(
αkJf(xk) + βkJxk + γkJSxk

)∥∥
∥
2

≤ ‖u‖2 − 2αk

〈
u, Jf(xk)

〉 − 2βk〈u, Jxk〉 − 2γk〈u, JSxk〉

+
∥
∥αkJf(xk) + βkJxk + γkJSxk

∥
∥2

≤ ‖u‖2 − 2αk

〈
u, Jf(xk)

〉 − 2βk〈u, Jxk〉 − 2γk〈u, JSxk〉

+ αk

∥
∥Jf(xk)

∥
∥2 + βk‖Jxk‖2 + γk‖JSxk‖2

≤ αk

(
‖u‖2 − 2

〈
u, Jf(xk)

〉
+
∥∥f(xk)

∥∥2
)
+ βk

(
‖u‖2 − 2〈u, Jxk〉 + ‖xk‖2

)

+ γk
(
‖u‖2 − 2〈u, JSxk〉 + ‖Sxk‖2

)

= αkφ
(
u, f(xk)

)
+ βkφ(u, xk) + γkφ(u, Sxk)

≤ αkφ(u, xk) + βkφ(u, xk) + γkφ(u, xk) = φ(u, xk).
(3.12)

Hence, we have u ∈ Ck+1. This implies that

EP(G) ∩ F(S) ∩ F
(
f
) ⊂ Cn, ∀n ∈ N ∪ {0}. (3.13)

So, {xn} is well defined.

Step 3. Next we prove that the sequences {xn}, {Sxn}, and {fxn} are bounded. From the
definition of xn, we have

φ(xn, x) = φ(ΠCnx, x) ≤ φ(u, x) − φ(u,ΠCnx) ≤ φ(u, x) (3.14)

for all u ∈ EP(G) ∩ F(S) ∩ F(f) ⊂ Cn. Then φ(xn, x) is bounded. Therefore, {xn},{Sxn}, and
{fxn} are bounded.

Step 4. Next we prove that

lim
n→∞

‖xn+1 − xn‖ = 0, lim
n→∞

‖xn − un‖ = 0, lim
n→∞

‖xn − Sxn‖ = 0, lim
n→∞

∥∥xn − fxn

∥∥ = 0.

(3.15)

From xn+1 ∈ Cn+1 ⊂ Cn and xn = ΠCnx, we have

φ(xn, x) ≤ φ(xn+1, x), ∀n ∈ N ∪ {0}. (3.16)



Journal of Inequalities and Applications 9

Thus, {φ(xn, x)} is nondecreasing. So, the limit of {φ(xn, x)} exists. Since

φ(xn+1, xn) = φ(xn+1,ΠCnx) ≤ φ(xn+1, x) − φ(ΠCnx, x) = φ(xn+1, x) − φ(xn, x) (3.17)

for all n ∈ N ∪ {0}, we have limn→∞φ(xn+1, xn) = 0. From xn+1 = ΠCn+1x ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N ∪ {0}. (3.18)

Therefore, we also have

lim
n→∞

φ(xn+1, un) = 0. (3.19)

Since limn→∞φ(xn+1, xn) = limn→∞φ(xn+1, un) = 0 and E is uniformly convex and smooth, we
have from Lemma 2.4 that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0. (3.20)

So, we have

lim
n→∞

‖xn − un‖ = 0. (3.21)

Since J is uniformly norm-to-norm continuous on bounded sets and limn→∞‖xn − un‖ = 0,
we have

lim
n→∞

‖Jxn − Jun‖ = 0. (3.22)

For any u ∈ EP(G) ∩ F(S) ∩ F(f), from Lemma 2.5 and (3.8), we have

φ(u, un) = φ
(
u,Wrnyn

) ≤ φ
(
u, yn

)
= φ

(
u, J−1

(
αnJf(xn) + βnJxn + γnJSxn

))

= ‖u‖2 − 2
〈
u, αnJf(xn) + βnJxn + γnJSxn

〉
+
∥∥αnJf(xn) + βnJxn + γnJSxn

∥∥2

≤ (
αn + βn + γn

)‖u‖2 − 2
〈
u, αnJf(xn) + βnJxn + γnJSxn

〉

+ αn

∥∥Jf(xn)
∥∥2 + βn‖Jxn‖2 + γn‖JSxn‖2 − βnγng(‖Jxn − JSxn‖)

= αn

(
‖u‖2 − 2

〈
u, Jf(xn)

〉
+
∥∥f(xn)

∥∥2
)
+ βn

(
‖u‖2 − 2〈u, Jxn〉 + ‖xn‖2

)

+ γn
(
‖u‖2 − 2〈u, JSxn〉 + ‖Sxn‖2

)
− βnγng(‖Jxn − JSxn‖)

= αnφ
(
u, f(xn)

)
+ βnφ(u, xn) + γnφ(u, Sxn) − βnγng(‖Jxn − JSxn‖)

= φ(u, xn) − βnγng(‖Jxn − JSxn‖).

(3.23)
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Therefore, we have

βnγng(‖Jxn − JSxn‖) ≤ φ(u, xn) − φ(u, un). (3.24)

Since

φ(u, xn) − φ(u, un) = ‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉

≤
∣
∣
∣‖xn‖2 − ‖un‖2

∣
∣
∣ + 2|〈u, Jxn − Jun〉|

≤ |‖xn‖ − ‖un‖|(‖xn‖ + ‖un‖) + 2‖u‖ · ‖Jxn − Jun‖
≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖ · ‖Jxn − Jun‖,

(3.25)

from (3.21) and (3.22), we have

lim
n→∞

(
φ(u, xn) − φ(u, un)

)
= 0. (3.26)

Since lim infn→∞βnγn > 0, we have

lim
n→∞

g(‖Jxn − JSxn‖) = 0. (3.27)

Therefore, from the property of g, we have

lim
n→∞

‖Jxn − JSxn‖ = 0. (3.28)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn − Sxn‖ = 0. (3.29)
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Similarly, we have

φ(u, un) = φ
(
u,Wrnyn

) ≤ φ
(
u, yn

)
= φ

(
u, J−1

(
αnJf(xn) + βnJxn + γnJSxn

))

= ‖u‖2 − 2
〈
u, αnJf(xn) + βnJxn + γnJSxn

〉
+
∥
∥αnJf(xn) + βnJxn + γnJSxn

∥
∥2

≤ (
αn + βn + γn

)‖u‖2 − 2
〈
u, αnJf(xn) + βnJxn + γnJSxn

〉

+ αn

∥
∥Jf(xn)

∥
∥2 + βn‖Jxn‖2 + γn‖JSxn‖2 − αnβng

(∥∥Jxn − Jfxn

∥
∥)

= αn

(
‖u‖2 − 2

〈
u, Jf(xn)

〉
+
∥
∥f(xn)

∥
∥2
)
+ βn

(
‖u‖2 − 2〈u, Jxn〉 + ‖xn‖2

)

+ γn
(
‖u‖2 − 2〈u, JSxn〉 + ‖Sxn‖2

)
− αnβng

(∥∥Jxn − Jfxn

∥
∥)

= αnφ
(
u, f(xn)

)
+ βnφ(u, xn) + γnφ(u, Sxn) − αnβng

(∥∥Jxn − Jfxn

∥
∥)

= φ(u, xn) − αnβng
(∥∥Jxn − Jfxn

∥∥).

(3.30)

Therefore, we have

αnβng
(∥∥Jxn − Jfxn

∥∥) ≤ φ(u, xn) − φ(u, un). (3.31)

From (3.26) and lim infn→∞αnβn > 0, we have

lim
n→∞

g
(∥∥Jxn − Jfxn

∥∥) = 0. (3.32)

Therefore, from the property of g, we have

lim
n→∞

∥∥Jxn − Jfxn

∥∥ = 0. (3.33)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥∥xn − fxn

∥∥ = 0. (3.34)

Step 5. Next we prove that

Ww(xn) ⊂ F(S) ∩ EP(G) ∩ F
(
f
)
, (3.35)

where Ww(xn) = {p ∈ C, there exists subsequence {xnk} ⊂ {xn} such that xnk ⇀ p}.
(a) We prove that Ww(xn) ⊂ F(S).

In fact, for any given p ∈ Ww(xn), there exists a subsequence {xnk} of {xn} such that
xnk ⇀ p. Since ‖xnk − Sxnk‖ → 0 and S is relatively nonexpansive, we have p ∈ F̂(S) = F(S),
that is, Ww(xn) ⊂ F(S).
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(b) We prove that Ww(xn) ⊂ EP(G).

In fact, from un = Wrnyn, (3.12) and Lemma 2.8, we have that

φ
(
un, yn

)
= φ

(
Wrnyn, yn

) ≤ φ
(
u, yn

) − φ
(
u,Wrnyn

) ≤ φ(u, xn) − φ
(
u,Wrnyn

)

= φ(u, xn) − φ(u, un).
(3.36)

Hence it follows from (3.26) that

lim
n→∞

φ
(
un, yn

)
= 0. (3.37)

Since E is uniformly convex and smooth and {un} is bounded, we have from Lemma 2.4 that

lim
n→∞

∥
∥un − yn

∥
∥ = 0. (3.38)

For any given p ∈ Ww(xn), there exists a subsequence {xnk} ⊂ {xn} such that xnk ⇀ p. Since
‖xn − un‖ → 0, we have unk ⇀ p.

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.38), we have

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.39)

From rn ≥ a, we have

lim
n→∞

∥∥Jun − Jyn

∥∥

rn
= 0. (3.40)

By un = Wrnyn, we have

G
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.41)

Replacing n by nk, we have from (A2) that

1
rnk

〈
y − unk , Junk − Jynk

〉 ≥ −G(
unk , y

) ≥ G
(
y, unk

)
, ∀y ∈ C. (3.42)

SinceG(x, ·) is convex and lower semicontinuous, it is also weakly lower semicontinuous. So,
letting k → ∞, we have from (3.42) and (A4) that

G
(
y, p

) ≤ 0, ∀y ∈ C. (3.43)

For any t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)p. Since y ∈ C and hence G(yt, p) ≤ 0,
from conditions (A1) and (A4), we have

0 = G
(
yt, yt

) ≤ tG
(
yt, y

)
+ (1 − t)G

(
yt, p

) ≤ tG
(
yt, y

)
. (3.44)
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This implies that G(yt, y) ≥ 0. Hence from condition (A3), we have G(p, y) ≥ 0 for all y ∈ C,
and hence p ∈ EP(G).

(c) Now we prove that Ww(xn) ⊂ F(f).

In fact, for any given p ∈ Ww(xn), there exists a subsequence {xnj} such that xnj ⇀ p.
Since Cj ⊂ Cn, for all j ≥ n, we have xj ∈ Cn, for all j ≥ n. Since Cn is a closed convex subset
of E. we have p ∈ Cn for all n ≥ 1, that is, p ∈ ⋂∞

n=1 Cn. From (3.14) and (3.16), we have

φ(xn, x) ≤ φ(xn+1, x) ≤ φ
(
p, x

)
. (3.45)

Since the norm is weakly lower semicontinuous, we have

φ
(
p, x

)
=
∥
∥p

∥
∥2 − 2

〈
p, Jx

〉
+ ‖x‖2 ≤ lim inf

nj →∞

(∥
∥∥xnj

∥
∥∥
2 − 2

〈
xnj , Jx

〉
+ ‖x‖2

)

= lim inf
nj →∞

φ
(
xnj , x

)
≤ lim sup

nj →∞
φ
(
xnj , x

)
≤ φ

(
p, x

)
,

(3.46)

that is, φ(xnj , x) → φ(p, x), then, ‖xnj‖ → ‖p‖. Since E is uniformly convex Banach space,
E has a Kadec-Klee property, we have xnj → p. From (3.34) and f being closed, we have
f(p) = p, that is, p ∈ F(f).

Step 6. Finally we prove that

xn −→ w, (3.47)

where w = ΠF(S)∩F(f)∩EPx. From xn = ΠCnx and w ∈ F(S) ∩ EP(G) ∩ F(f) ⊂ Cn, we have

φ
(
p, x

)
=
∥∥p

∥∥2 − 2
〈
p, Jx

〉
+ ‖x‖2 ≤ lim inf

k→∞

(
‖xk‖2 − 2〈xk, Jx〉 + ‖x‖2

)

= lim inf
k→∞

φ(xk, x) ≤ lim sup
k→∞

φ(xk, x) ≤ φ(w,x).
(3.48)

From the definition of ΠF(S)∩F(f)∩EP, we have p = w. Hence, limk→∞φ(xk, x) = φ(w,x).
Therefore, we have

0 = lim
k→∞

(
φ(xk, x) − φ(w,x)

)

= lim
k→∞

(
‖xk‖2 − ‖w‖2 − 2〈xk −w, Jx〉

)

= lim
k→∞

(
‖xk‖2 − ‖w‖2

)
.

(3.49)

Since E has the Kadec-Klee property, we have that xn → w = ΠF(S)∩F(f)∩EPx. Therefore, {xn}
converges strongly to ΠF(S)∩F(f)∩EPx.

This completes the proof of Theorem 3.1.
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Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. and A : C → E∗ be a continuous and monotone operator. Let
F be a bifunction from C × C to R which satisfies (A1)–(A4) and let S be a relatively nonexpansive
mapping of C into itself such that F(S) ∩ EP/= ∅. Let {xn} be the sequence generated by x0 = x ∈
C, C0 = C, and

yn = J−1
(
βnJxn +

(
1 − βn

)
JSxn

)
,

un ∈ C such that F
(
un, y

)
+
〈
Aun, y − un

〉
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x

(3.50)

for every n ∈ N ∪{0}, where J is the duality mapping on E, {βn} ⊂ [0, 1] satisfies lim infn→∞βn(1−
βn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly to ΠF(S)∩EPx, where
ΠF(S)∩EP is the generalized projection of E onto F(S) ∩ EP.

Proof. In Theorem 3.1, take f = S, we get αn + γn = 1 − βn. Therefore, the conclusion of
Theorem 3.2 can be obtained from Theorem 3.1.

Remark 3.3. Theorem3.1 in [3] and Theorem3.1 in [4] are special cases of Theorem 3.2.
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