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Let {Xn; n ≥ 1} be a standardized non-stationary Gaussian sequence, and let denote Sn =
∑n

k=1 Xk ,
σn =

√
Var(Sn). Under some additional condition, let the constants {uni; 1 ≤ i ≤ n, n ≥ 1} satisfy

∑n
i=1(1−Φ(uni)) → τ as n → ∞ for some τ ≥ 0 and min1≤i≤n uni ≥ c(logn)1/2, for some c > 0, then,

we have limn→∞(1/ logn)
∑n

k=1(1/k)I{∩k
i=1(Xi ≤ uki), Sk/σk ≤ x} = e−τΦ(x) almost surely for any

x ∈ R, where I(A) is the indicator function of the eventA andΦ(x) stands for the standard normal
distribution function.

1. Introduction

When {X,Xn;n ≥ 1} is a sequence of independent and identically distributed (i.i.d.) random
variables and Sn =

∑n
k=1 Xk, n ≥ 1, Mn = max1≤k≤nXk for n ≥ 1. If E(X) = 0, Var(X) = 1, the

so-called almost sure central limit theorem (ASCLT) has the simplest form as follows:

lim
n→∞

1
logn

n∑

k=1

1
k
I

{
Sk√
k
≤ x

}

= Φ(x), (1.1)

almost surely for all x ∈ R, where I(A) is the indicator function of the event A and
Φ(x) stands for the standard normal distribution function. This result was first proved
independently by Brosamler [1] and Schatte [2] under a stronger moment condition; since
then, this type of almost sure version was extended to different directions. For example,
Fahrner and Stadtmüller [3] and Cheng et al. [4] extended this almost sure convergence for
partial sums to the case of maxima of i.i.d. random variables. Under some natural conditions,
they proved as follows:

lim
n→∞

1
logn

n∑

k=1

1
k
I

{
Mk − bk

ak
≤ x

}

= G(x) a.s. (1.2)
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for all x ∈ R, where ak > 0 and bk ∈ R satisfy

P

(
Mk − bk

ak
≤ x

)

−→ G(x), as k −→ ∞ (1.3)

for any continuity point x of G.
In a related work, Csáki and Gonchigdanzan [5] investigated the validity of (1.2) for

maxima of stationary Gaussian sequences under some mild condition whereas Chen and
Lin [6] extended it to non-stationary Gaussian sequences. Recently, Dudziński [7] obtained
two-dimensional version for a standardized stationary Gaussian sequence. In this paper,
inspired by the above results, we further studyASCLT in the joint version for a non-stationary
Gaussian sequence.

2. Main Result

Throughout this paper, let {Xn;n ≥ 1} be a non-stationary standardized normal sequence,
and σn =

√
Var(Sn). Here a 	 b and a ∼ b stand for a = O(b) and a/b → 1, respectively.

Φ(x) is the standard normal distribution function, and φ(x) is its density function; C will
denote a positive constant although its value may change from one appearance to the next.
Now, we state our main result as follows.

Theorem 2.1. Let {Xn;n ≥ 1} be a sequence of non-stationary standardized Gaussian variables
with covariance matrix (rij) such that 0 ≤ rij ≤ ρ|i−j| for i /= j, where ρn ≤ 1 for all n ≥ 1 and
sups≥n

∑s−1
i=s−n ρi 	 (logn)1/2/(log logn)1+ε, ε > 0. If the constants {uni; 1 ≤ i ≤ n, n ≥ 1} satisfy

∑n
i=1(1 − Φ(uni)) → τ as n → ∞ for some τ ≥ 0 and min1≤i≤nuni ≥ c(logn)1/2, for some c > 0,

then

lim
n→∞

1
logn

n∑

k=1

1
k
I

{
k⋂

i=1

(Xi ≤ uki),
Sk

σk
≤ x

}

= e−τΦ(x), (2.1)

almost surely for any x ∈ R.

Remark 2.2. The condition sups≥n
∑s−1

i=s−n ρi 	 (logn)1/2/(log log n)1+ε, ε > 0 is inspired by
(a1) in Dudziński [8], which is much more weaker.

3. Proof

First, we introduce the following lemmas which will be used to prove our main result.

Lemma 3.1. Under the assumptions of Theorem 2.1, one has

∑

1≤i<j≤n
rij exp

(

−
u2
ni + u2

nj

2
(
1 + rij

)

)

≤ C
(
log logn

)1+ε . (3.1)

Proof. This lemma comes from Chen and Lin [6].
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The following lemma is Theorem 2.1 and Corollary 2.1 in Li and Shao [9].

Lemma 3.2. (1) Let {ξn} and {ηn} be sequences of standard Gaussian variables with covariance
matrices R1 = (r1ij) and R0 = (r0ij), respectively. Put ρij = max(|r1ij |, |r0ij |). Then one has

P

⎛

⎝
n⋂

j=1

{
ξj ≤ uj

}
⎞

⎠ − P

⎛

⎝
n⋂

j=1

{
ηj ≤ uj

}
⎞

⎠

≤ 1
2π

∑

1≤i<j≤n

(
arcsin

(
r1ij

)
− arcsin

(
r0ij

))+
exp

(

−
u2
i + u2

j

2
(
1 + ρij

)

)

,

(3.2)

for any real numbers ui, i = 1, 2, . . . , n.
(2) Let {ξn;n ≥ 1} be standard Gaussian variables with rij = Cov(ξi, ξj). Then

∣
∣
∣
∣
∣
∣
P

⎛

⎝
n⋂

j=1

{
ξj ≤ uj

}
⎞

⎠ −
n∏

j=1

P
(
ξj ≤ uj

)
∣
∣
∣
∣
∣
∣
≤ 1

4

∑

1≤i<j≤n

∣
∣rij
∣
∣ exp

(

−
u2
i + u2

j

2
(
1 +
∣
∣rij
∣
∣
)

)

, (3.3)

for any real numbers ui, i = 1, 2, . . . , n.

Lemma 3.3. Let {Xn} be a sequence of standard Gaussian variables and satisfy the conditions of
Theorem 2.1, then for 1 ≤ k < n, one has

P

(
n⋂

i=k+1

{Xi ≤ uni}, Sn

σn
≤ y

)

− P

(
n⋂

i=1

{Xi ≤ uni}, Sn

σn
≤ y

)

≤ k

n
+

C
(
log logn

)1+ε (3.4)

for any y ∈ R.

Proof. By the conditions of Theorem 2.1, we have

σn =
√

n + 2
∑

1≤i<j≤n
rij ≥

√
n, (3.5)

then, for 1 ≤ i ≤ n, by sups≥n
∑s−1

i=s−n ρi 	 (logn)1/2/(log logn)1+ε, ε > 0, it follows that

Cov
(

Xi,
Sn

σn

)

≤ 1√
n
+

1√
n

n∑

k=1

ρk 	
(
logn

)1/2

√
n
(
log logn

)1+ε . (3.6)

Then, there exist numbers δ, n0, such that, for any n > n0, we have

sup
1≤i≤n

Cov
(

Xi,
Sn

σn

)

< δ <
1
2
. (3.7)
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We can write that

L := P

(
n⋂

i=k+1

{Xi ≤ uni}, Sn

σn
≤ y

)

− P

(
n⋂

i=1

{Xi ≤ uni}, Sn

σn
≤ y

)

≤
∣
∣
∣
∣
∣
P

(
n⋂

i=k+1

{Xi ≤ uni}, Sn

σn
≤ y

)

− P

(
n⋂

i=k+1

{Xi ≤ uni}
)

P
(
Yn ≤ y

)
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
P

(
n⋂

i=1

{Xi ≤ uni}, Sn

σn
≤ y

)

− P

(
n⋂

i=1

{Xi ≤ uni}
)

P
(
Yn ≤ y

)
∣
∣
∣
∣
∣

+

(

P

(
n⋂

i=k+1

{Xi ≤ uni}
)

− P

(
n⋂

i=1

{Xi ≤ uni}
))

=: L1 + L2 + L3,

(3.8)

where {Yn} is a random variable, which has the same distribution as {Sn/σn}, but it
is independent of (X1, X2, . . . , Xn). For L1, L2, apply Lemma 3.2 (1) with (ξi = Xi, i =
1, . . . , n; ξn+1 = Sn/σn), (ηj = Xj, j = 1, . . . , n; ηn+1 = Yn). Then r1ij = r0ij = rij for 1 ≤ i < j ≤ n

and r1ij = Cov(Xi, Sn/σn), r0ij = 0 for 1 ≤ i ≤ n, j = n + 1. Thus, we have (for i = 1, 2)

Li 	
n∑

i=1

Cov
(

Xi,
Sn

σn

)

exp

(

− u2
ni + y2

2(1 + Cov(Xi, Sn/σn))

)

. (3.9)

Since (3.5), (3.7) hold, we obtain

Li 	
(
logn

)1/2

√
n
(
log log n

)1+ε

n∑

i=1

exp

(

− u2
ni

2(1 + δ)

)

. (3.10)

Now define un by 1 −Φ(un) = 1/n. By the well-known fact

1 −Φ(x) ∼ φ(x)
x

, x −→ ∞, (3.11)

it is easy to see that

exp

(

−u
2
n

2

)

∼
√
2πun

n
, un ∼

√
2 logn. (3.12)
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Thus, according to the assumptionmin1≤i≤nuni ≥ c(logn)1/2, we have uni ≥ cun for some c > 0.
Hence

Li ≤
(
logn

)1/2

√
n
(
log log n

)1+ε

∑

1≤i≤n
exp

(

− u2
ni

2(1 + δ)

)

≤
√
n
(
logn

)1/2

(
log log n

)1+ε exp

(

− u2
n

2(1 + δ)

)

	
√
n
(√

2 logn
)(2+δ)/(1+δ)

n1/(1+δ)
(
log log n

)1+ε

	

(√
logn

)(2+δ)/(1+δ)

n1/(1+δ)−(1/2)

	 1
nδ′ , δ′ > 0.

(3.13)

Now, we are in a position to estimate L3. Observe that

L3 = P

(
n⋂

i=k+1

{Xi ≤ uni}
)

− P

(
n⋂

i=1

{Xi ≤ uni}
)

≤
∣
∣
∣
∣
∣
P

(
n⋂

i=k+1

{Xi ≤ uni}
)

−
n∏

i=k+1

Φ(uni)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
P

(
n⋂

i=1

{Xi ≤ uni}
)

−
n∏

i=1

Φ(uni)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

n∏

i=k+1

Φ(uni) −
n∏

i=1

Φ(uni)

∣
∣
∣
∣
∣

=: L31 + L32 + L33.

(3.14)

For L33, it follows that

L33 =
n∏

i=k+1

Φ(uni)

(

1 −
k∏

i=1

Φ(uni)

)

	 1 −Φk(un)

= 1 −
(

1 − 1
n

)k

≤ k

n
.

(3.15)

By Lemma 3.2 (2), we have

L3i ≤ 1
4

∑

1≤i<j≤n
rij exp

(

−
u2
ni + u2

nj

2
(
1 + rij

)

)

, i = 1, 2. (3.16)

Thus by Lemma 3.1 we obtain the desired result.
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Lemma 3.4. Let {Xn} be a sequence of standard Gaussian variables satisfying the conditions of
Theorem 2.1, then for 1 ≤ k < n, any y ∈ R, one has

∣
∣
∣
∣
∣
Cov

(

I

(
k⋂

i=1

{Xi ≤ uki}, Sk

σk
≤ y

)

, I

(
n⋂

i=k+1

{Xi ≤ uni}, Sn

σn
≤ y

))∣
∣
∣
∣
∣

	
√

k

n

(
logn

)1/2

(
log logn

)1+ε +
1

(
log logn

)1+ε .

(3.17)

Proof. Apply Lemma 3.2 (1) with (ξi = Xi, 1 ≤ i ≤ k, ξk+1 = Sk/σk, ξi+1 = Xi, k + 1 ≤ i ≤
n, ξn+2 = Sn/σn), (ηj = ξj , 1 ≤ j ≤ k + 1, ηj = ξj , k + 2 ≤ j ≤ n + 2), where (ξk+2, . . . , ξn+2) has
the same distribution as (ξk+2, . . . , ξn+2), but it is independent of (ξk+2, . . . , ξn+2). Then,

r1ij = r0ij for 1 ≤ i < j ≤ k + 1 or k + 2 ≤ i < j ≤ n + 2;

r1ij = ri(j−1), r0ij = 0 for 1 ≤ i ≤ k, k + 2 ≤ j ≤ n + 1;

r1ij = Cov
(

Xi,
Sn

σn

)

, r0ij = 0 for 1 ≤ i ≤ k, j = n + 2;

r1ij = Cov
(

Xi,
Sk

σk

)

, r0ij = 0 for k + 1 ≤ i ≤ n, j = k + 1;

r1ij = Cov
(
Sk

σk
,
Sn

σn

)

, r0ij = 0 for i = k + 1, j = n + 2.

(3.18)

Thus, combined with (3.5), (3.7), it follows that

∣
∣
∣
∣
∣
Cov

(

I

(
k⋂

i=1

{Xi ≤ uki}, Sk

σk
≤ y

)

, I

(
n⋂

i=k+1

{Xi ≤ uni}, Sn

σn
≤ y

))∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
P

(
k⋂

i=1

{Xi ≤ uki},
n⋂

i=k+1

{Xi ≤ uni}, Sk

σk
≤ y,

Sn

σn
≤ y

)

−P
(

k⋂

i=1

{Xi ≤ uki}, Sk

σk
≤ y

)

P

(
n⋂

i=k+1

{Xi ≤ uni}, Sn

σn
≤ y

)∣
∣
∣
∣
∣

≤ 1
4

∑

1≤i≤k

∑

k+1≤j≤n
rij exp

(

−
u2
ki
+ u2

nj

2
(
1 + rij

)

)

+
1
4

k∑

i=1

Cov
(

Xi,
Sn

σn

)

exp

(

− u2
ki
+ y2

2(1 + Cov(Xi, Sn/σn))

)

+
1
4

n∑

i=k+1

Cov
(

Xi,
Sk

σk

)

exp

(

− u2
ni + y2

2(1 + Cov(Xi, Sk/σk))

)

+
1
4
Cov

(
Sk

σk
,
Sn

σn

)

≤ 1
4

∑

1≤i≤k

∑

k+1≤j≤n
rij exp

(

−
u2
ki
+ u2

nj

2
(
1 + rij

)

)

+
1
4

k∑

i=1

Cov
(

Xi,
Sn

σn

)

exp

(

− u2
ki

2(1 + δ)

)

+
1
4

n∑

i=k+1

Cov
(

Xi,
Sk

σk

)

exp

(

− u2
ni

2(1 + δ)

)

+
1
4
Cov

(
Sk

σk
,
Sn

σn

)

=: T1 + T2 + T3 + T4.

(3.19)
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Using Lemma 3.1, we have

T1 ≤ C
(
log log n

)1+ε , ε > 0. (3.20)

By the similar technique that was applied to prove (3.10), we obtain

T2 	 1
nα

, α > 0. (3.21)

For T3, by sups≥n
∑s−1

i=s−n ρi 	 (logn)1/2/(log log n)1+ε, ε > 0, and (3.12), we have

T3 	 exp

(

− u2
n

2(1 + δ)

)
n∑

i=k+1

Cov
(

Xi,
Sk

σk

)

	 1
n1/(1+δ)

n∑

i=k+1

Cov
(

Xi,
Sk

σk

)

	 1
n1/(1+δ)

1√
k

n∑

i=k+1

Cov(Xi, Sk)

	 1
n1/(1+δ)

1√
k

k∑

j=1

n∑

i=k+1

Cov
(
Xi,Xj

)

	 1
n1/(1+δ)

1√
k

k∑

j=1

n∑

i=1

ρi

	
√
k

n1/(1+δ)

(
logn

)1/2

(
log log n

)1+ε

	 1
nβ

, β > 0.

(3.22)

As to T4, by (3.5) and (3.6), we have

T4 	 1
σk

k∑

i=1

Cov
(

Xi,
Sn

σn

)

	
√

k

n

(
logn

)1/2

(
log log n

)1+ε . (3.23)

Thus the proof of this lemma is completed.

Proof of Theorem 2.1. First, by assumptions and Theorem 6.1.3 in Leadbetter et al. [10], we
have

P

{
n⋂

i=1

(Xi ≤ uni)

}

−→ e−τ . (3.24)
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Let Yn denote a random variable which has the same distribution as Sn/σn, but it is
independent of (X1, X2, . . . , Xn), then by (3.10), we derive

P

{
n⋂

i=1

(Xi ≤ uni),
Sn

σn
≤ y

}

− P

{
n⋂

i=1

(Xi ≤ uni)

}

P
{
Yn ≤ y

} −→ 0, as n −→ ∞. (3.25)

Thus, by the standard normal property of Yn, we have

lim
n→∞

P

{
n⋂

i=1

(Xi ≤ uni),
Sn

σn
≤ y

}

= e−τΦ
(
y
)
, y ∈ R. (3.26)

Hence, to complete the proof, it is sufficient to show

lim
n→∞

1
logn

n∑

k=1

1
k

(

I

{
k⋂

i=1

(Xi ≤ uki),
Sk

σk
≤ x

}

− P

{
k⋂

i=1

(Xi ≤ uki),
Sk

σk
≤ x

})

= 0 a.s. (3.27)

In order to show this, by Lemma 3.1 in Csáki and Gonchigdanzan [5], we only need to prove

Var

(
1

logn

n∑

k=1

1
k
I

{
k⋂

i=1

(Xi ≤ uki),
Sk

σk
≤ x

})

	 1
(
log log n

)1+ε , (3.28)

for ε > 0 and any x ∈ R. Let ηk = I{⋂k
i=1(Xi ≤ uki), Sk/σk ≤ x}−P{⋂k

i=1(Xi ≤ uki), Sk/σk ≤ x}.
Then

Var

(
1

logn

n∑

k=1

1
k
I

{
k⋂

i=1

(Xi ≤ uki),
Sk

σk
≤ x

})

= E

(
1

logn

n∑

k=1

1
k
ηk

)2

=
1

log2n

n∑

k=1

1
k2

E
∣
∣ηk
∣
∣2 +

2

log2n

∑

1≤k<l≤n

∣
∣E
(
ηkηl

)∣
∣

kl

=: S1 + S2.

(3.29)

Since |ηk| ≤ 2, it follows that

S1 	 1

log2n
. (3.30)
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Now, we turn to estimate S2. Observe that for l > k

∣
∣E
(
ηkηl

)∣
∣ =

∣
∣
∣
∣
∣
Cov

(

I

(
k⋂

i=1

{Xi ≤ uki}, Sk

σk
≤ x

)

, I

(
l⋂

i=1

{Xi ≤ uli}, Sl

σl
≤ x

))∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
Cov

(

I

(
k⋂

i=1

{Xi ≤ uki}, Sk

σk
≤ x

)

, I

(
l⋂

i=1

{Xi ≤ uli}, Sl

σl
≤ x

)

−I
(

l⋂

i=k+1

{Xi ≤ uli}, Sl

σl
≤ x

))∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

I

(
k⋂

i=1

{Xi ≤ uki}, Sk

σk
≤ x

)

, I

(
l⋂

i=k+1

{Xi ≤ uli}, Sl

σl
≤ x

))∣
∣
∣
∣
∣

≤ E

∣
∣
∣
∣
∣
I

(
l⋂

i=1

{Xi ≤ uli}, Sl

σl
≤ x

)

− I

(
l⋂

i=k+1

{Xi ≤ uli}, Sl

σl
≤ x

)∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
Cov

(

I

(
k⋂

i=1

{Xi ≤ uki}, Sk

σk
≤ x

)

, I

(
l⋂

i=k+1

{Xi ≤ uli}, Sl

σl
≤ x

))∣
∣
∣
∣
∣

=: S21 + S22.

(3.31)

By Lemma 3.3, we have

S21 ≤ k

l
+

C
(
log log l

)1+ε . (3.32)

Using Lemma 3.4, it follows that

S22 ≤
√

k

l

(
log l

)1/2

(
log log l

)1+ε +
C

(
log log l

)1+ε . (3.33)

Hence for l > k, we have

∣
∣E
(
ηkηl

)∣
∣ ≤ k

l
+

C
(
log log l

)1+ε +

√
k

l

(
log l

)1/2

(
log log l

)1+ε . (3.34)
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Consequently

S2 	 1

log2n

⎛

⎝
∑

1≤k<l≤n

1
kl

⎛

⎝k

l
+

√
k

l

(
log l

)1/2

(
log log l

)1+ε

⎞

⎠

⎞

⎠ +
∑

1≤k<l≤n

1

kl
(
log log l

)1+ε

	 1

log2n

∑

1≤k<l≤n

1
l2

+
1

log2n

(
logn

)1/2

(
log log n

)1+ε

n∑

l=2

1
l3/2

l−1∑

k=1

1√
k

+
1

log2n

n∑

l=3

1

l
(
log log l

)1+ε

l−1∑

k=1

1
k

	 1
logn

+
1

√
logn

(
log log n

)1+ε
+
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(3.35)

Thus, we complete the proof of (3.28) by (3.30) and (3.35). Further, our main result is proved.
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[5] E. Csáki and K. Gonchigdanzan, “Almost sure limit theorems for the maximum of stationary
Gaussian sequences,” Statistics & Probability Letters, vol. 58, no. 2, pp. 195–203, 2002.

[6] S. Chen and Z. Lin, “Almost sure max-limits for nonstationary Gaussian sequence,” Statistics &
Probability Letters, vol. 76, no. 11, pp. 1175–1184, 2006.
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