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We propose a new projection algorithm for generalized variational inequality with multivalued
mapping. Our method is proven to be globally convergent to a solution of the variational
inequality problem, provided that the multivalued mapping is continuous and pseudomonotone
with nonempty compact convex values. Preliminary computational experience is also reported.

1. Introduction

We consider the following generalized variational inequality. To find x∗ ∈ C and ξ ∈ F(x∗)
such that

〈
ξ, y − x∗〉 ≥ 0, ∀y ∈ C, (1.1)

where C is a nonempty closed convex set in R
n, F is a multivalued mapping from C into

R
n with nonempty values, and 〈·, ·〉 and ‖ · ‖ denote the inner product and norm in R

n,
respectively.

Theory and algorithm of generalized variational inequality have been much studied
in the literature [1–9]. Various algorithms for computing the solution of (1.1) are proposed.
The well-known proximal point algorithm [10] requires the multivalued mapping F to be
monotone. Relaxing the monotonicity assumption, [1] proved if the set C is a box and
F is order monotone, then the proximal point algorithm still applies for problem (1.1).
Assume that F is pseudomonotone, and [11] described a combined relaxation method for
solving (1.1); see also [12, 13]. Projection-type algorithms have been extensively studied in
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the literature; see [14–17] and the references therein. Recently, [15] proposes a projection
algorithm for generalized variational inequality with pseudomonotone mapping. In [15],
choosing ξi ∈ F(xi) needs solving a single-valued variational inequality and hence is
computationally expensive; see expression (2.1) in [15]. In this paper, we introduce a different
projection algorithm for generalized variational inequality. In our method, ξi ∈ F(xi) can
be taken arbitrarily. Moreover, the main difference of our method from that of [15] is the
procedure of Armijo-type linesearch; see expression (2.2) in [15] and expression (2.2) in the
next section.

Let S be the solution set of (1.1), that is, those points x∗ ∈ C satisfying (1.1).
Throughout this paper, we assume that the solution set S of problem (1.1) is nonempty and F
is continuous on C with nonempty compact convex values satisfying the following property:

〈
ζ, y − x

〉 ≥ 0, ∀y ∈ C, ζ ∈ F
(
y
)
, ∀x ∈ S. (1.2)

Property (1.2) holds if F is pseudomonotone on C in the sense of Karamardian [18]. In
particular, if F is monotone, then (1.2) holds.

The organization of this paper is as follows. In the next section, we recall the definition
of continuousmultivaluedmapping, present the algorithm details, and prove the preliminary
result for convergence analysis in Section 3. Numerical results are reported in the last section.

2. Algorithms

Let us recall the definition of continuous multivalued mapping. F is said to be upper
semicontinuous at x ∈ C if for every open set V containing F(x), there is an open set U
containing x such that F(y) ⊂ V for all y ∈ C ∩ U. F is said to be lower semicontinuous
at x ∈ C, if we give any sequence xk converging to x and any y ∈ F(x), there exists a
sequence yk ∈ F(xk) that converges to y. F is said to be continuous at x ∈ C if it is both
upper semicontinuous and lower semicontinuous at x. If F is single valued, then both upper
semicontinuity and lower semicontinuity reduce to the continuity of F.

Let ΠC denote the projector onto C and let μ > 0 be a parameter.

Proposition 2.1. x ∈ C and ξ ∈ F(x) solve problem (1.1) if and only if

rμ(x, ξ) := x −ΠC

(
x − μξ

)
= 0. (2.1)

Algorithm 2.2. Choose x0 ∈ C and three parameters σ > 0, 0 < μ < min{1, 1/σ}, and γ ∈ (0, 1).
Set i = 0.

Step 1. If rμ(xi, ξ) = 0 for some ξ ∈ F(xi), stop; else take arbitrarily ξi ∈ F(xi).

Step 2. Let ki be the smallest nonnegative integer satisfying

〈
ξi − yi, rμ(xi, ξi)

〉 ≤ σ
∥∥rμ(xi, ξi)

∥∥2
, (2.2)

where yi = ΠF(xi−γki rμ(xi,ξi))(ξi). Set ηi = γki .
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Step 3. Compute xi+1 := ΠCi(xi),where Ci := {x ∈ C : hi(x) ≤ 0}, and

hi(x) :=
〈
yi + ηirμ(xi, ξi), x − xi

〉
+ ηi

〈
yi − μξi + rμ(xi, ξi), rμ(xi, ξi)

〉
. (2.3)

Let i := i + 1 and go to Step 1.

Remark 2.3. Since F has compact convex values, F has closed convex values. Therefore, yi in
Step 2 is uniquely determined by ki.

Remark 2.4. If F is a single-valued mapping, the Armijo-type linesearch procedure (2.2)
becomes that of Algorithm 2.2 in [14].

We show that Algorithm 2.2 is well defined and implementable.

Proposition 2.5. If xi is not a solution of problem (1.1), then there exists a nonnegative integer ki
satisfying (2.2).

Proof. Suppose that for all k, we have

〈
ξi − yk, rμ(xi, ξi)

〉
> σ

∥∥rμ(xi, ξi)
∥∥2
, (2.4)

where yk = ΠF(xi−γkrμ(xi,ξi))(ξi). Since F is lower semicontinuous, ξi ∈ F(xi), and xi −
γkrμ(xi, ξi) → xi as k → ∞, for each k, there is uk ∈ F(xi − γkrμ(xi, ξi)) such that
limk→∞uk = ξi. Since yk = ΠF(xi−γkrμ(xi,ξi))(ξi),

∥∥yk − ξi
∥∥ ≤ ‖uk − ξi‖ −→ 0, as k −→ ∞. (2.5)

So limk→∞yk = ξi. Let k → ∞ in (2.4), we have 0 = ‖ξi − ξi‖ ≥ σ‖rμ(xi, ξi)‖ > 0. This
contradiction completes the proof.

Lemma 2.6. For every x ∈ C and ξ ∈ F(x),

〈
ξ, rμ(x, ξ)

〉 ≥ μ−1∥∥rμ(x, ξ)
∥∥2

. (2.6)

Proof. See [15, Lemma 2.3].

Lemma 2.7. Let C be a closed convex set in R
n, h a real-valued function on R

n, and K the set
{x ∈ C : h(x) ≤ 0}. If K is nonempty and h is Lipschitz continuous on C with modulus θ > 0, then

dist(x,K) ≥ θ−1 max{h(x), 0}, ∀x ∈ C, (2.7)

where dist(x,K) denotes the distance from x to K.

Proof. See [14, Lemma 2.3].

Lemma 2.8. Let x∗ solve the variational inequality (1.1) and let the function hi be defined by (2.3).
Then hi(xi) ≥ ηi(μ−1 − σ)‖rμ(xi, ξi)‖2 and hi(x∗) ≤ 0. In particular, if rμ(xi, ξi)/= 0, then hi(xi) > 0.
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Proof. It follows from (2.3) that

hi(xi) = ηi
〈
yi − μξi + rμ(xi, ξi), rμ(xi, ξi)

〉

= ηi
〈
yi, rμ(xi, ξi)

〉 − μηi
〈
ξi, rμ(xi, ξi)

〉
+ ηi

∥
∥rμ(xi, ξi)

∥
∥2

≥ ηi
(
1 − μ

)〈
ξi, rμ(xi, ξi)

〉
+ ηi(1 − σ)

∥
∥rμ(xi, ξi)

∥
∥2

≥
(
μ−1 − σ

)
ηi
∥∥rμ(xi, ξi)

∥∥2
,

(2.8)

where the first inequality follows from (2.2) and the last one follows from Lemma 2.6 and
μ < 1. If rμ(xi, ξi)/= 0, then hi(xi) > 0 because μ < 1/σ. It remains to be proved that hi(x∗) ≤ 0.
Since rμ(xi, ξi) = xi −ΠC(xi − μξi), we have

〈
rμ(xi, ξi) − μξi, x

∗ − xi + rμ(xi, ξi)
〉 ≤ 0, (2.9)

on the other hand, assumption (1.2) implies that

〈
μξi, x

∗ − xi

〉
= μ〈ξi, x∗ − xi〉 ≤ 0. (2.10)

Adding the last two expressions, we obtain that

〈
rμ(xi, ξi), x∗ − xi

〉 ≤ 〈
rμ(xi, ξi), μξi − rμ(xi, ξi)

〉
. (2.11)

It follows that

〈
yi + ηirμ(xi, ξi), x∗ − xi

〉
=
〈
yi, x

∗ − xi

〉
+ ηi

〈
rμ(xi, ξi), x∗ − xi

〉

≤ 〈
yi, x

∗ − xi

〉
+ ηi

〈
rμ(xi, ξi), μξi − rμ(xi, ξi)

〉

=
〈
yi, x

∗ − xi + ηirμ(xi, ξi)
〉 − ηi

〈
yi − μξi + rμ(xi, ξi), rμ(xi, ξi)

〉

≤ −ηi
〈
yi − μξi + rμ(xi, ξi), rμ(xi, ξi)

〉
,

(2.12)

where the second inequality follows from assumption (1.2) and yi ∈ F(xi − ηirμ(xi, ξi)). Thus
hi(x∗) ≤ 0 is verified.

3. Main Results

Theorem 3.1. If F : C → 2R
n
is continuous with nonempty compact convex values on C and

condition (1.2) holds, then either Algorithm 2.2 terminates in a finite number of iterations or generates
an infinite sequence {xi} converging to a solution of (1.1).
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Proof. Let x∗ be a solution of the variational inequality problem. By Lemma 2.8, x∗ ∈ Ci. We
assume that Algorithm 2.2 generates an infinite sequence {xi}. In particular, rμ(xi, ξi)/= 0 for
every i. By Step 3, it follows from Lemma 2.4 in [14] that

‖xi+1 − x∗‖2 ≤ ‖xi − x∗‖2 − ‖xi+1 − xi‖2 ≤ ‖xi − x∗‖2 − dist2(xi, Ci), (3.1)

where the last inequality is due to xi+1 ∈ Ci. It follows that the squence {‖xi+1 − x∗‖2} is
nonincreasing, and hence is a convergent sequence. Therefore, {xi} is bounded and

lim
i→∞

dist2(xi, Ci) = 0. (3.2)

By the boundedness of {xi}, there exists a convergent subsequence {xij} converging to x.
If x is a solution of problem (1.1), we show next that the whole sequence {xi}

converges to x. Replacing x∗ by x in the preceding argument, we obtain that the sequence
{‖xi − x‖} is nonincreasing and hence converges. Since x is an accumulation point of {xi},
some subsequence of {‖xi − x‖} converges to zero. This shows that the whole sequence
{‖xi − x‖} converges to zero, hence limi→∞xi = x.

Suppose now that x is not a solution of problem (1.1). We show first that ki in
Algorithm 2.2 cannot tend to∞. Since F is continuous with compact values, Proposition 3.11
in [19] implies that {F(xi) : i ∈ N} is a bounded set, and so the sequence {ξi} is bounded.
Therefore, there exists a subsequence {ξij} converging to ξ. Since F is upper semicontinuous
with compact values, Proposition 3.7 in [19] implies that F is closed, and so ξ ∈ F(x). By the
definition of ki, we have

〈
ξi − ui, rμ(xi, ξi)

〉
> σ

∥∥rμ(xi, ξi)
∥∥2
, ∀ui = ΠF(xi−γki−1rμ(xi,ξi))(ξi). (3.3)

If kij → ∞, then xij − γ
kij −1rμ(xij , ξij ) → x. The lower continuity of F, in turn, implies

the existence of ξij ∈ F(xij − γ
kij −1rμ(xij , ξij )) such that ξij converges to ξ. Since uij =

Π
F(xij

−γkij −1rμ(xij
,ξij ))

(ξij ), uij ∈ F(xij − γ
kij −1rμ(xij , ξij )), and ‖uij − ξij‖ ≤ ‖ξij − ξij‖. Therefore

limj→∞uij = ξ and

〈
ξij − uij , rμ

(
xij , ξij

)〉
> σ

∥∥∥rμ
(
xij , ξij

)∥∥∥
2
. (3.4)

Letting j → ∞, we obtain the contradiction

0 ≥ σ
∥∥∥rμ

(
x, ξ

)∥∥∥
2
> 0, (3.5)

with rμ(·, ·) being continuous. Therefore, {ki} is bounded and so is {ηi}.
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It follows from (2.3) that

∥
∥hi(x) − hi

(
y
)∥∥ =

∥
∥〈yi + ηirμ(xi, ξi), x − y

〉∥∥ ≤ (∥∥yi

∥
∥ +

∥
∥ηirμ(xi, ξi)

∥
∥)

∥
∥x − y

∥
∥. (3.6)

Since {xi} and {ξi} are bounded, we have the sequence {rμ(xi, ξi)} and hence the sequence
{F(xi − ηirμ(xi, ξi))} is bounded. Thus, for some M > 0,

∥
∥yi

∥
∥ +

∥
∥ηirμ(xi, ξi)

∥
∥ ≤ sup

ζ∈F(xi−ηirμ(xi,ξi))
‖ζ‖ + ∥

∥ηirμ(xi, ξi)
∥
∥ ≤ M, ∀ i. (3.7)

Therefore, each function hi is Lipschitz continuous on Cwith modulusM. Noting that xi /∈Ci

and applying Lemma 2.7, we obtain that

dist(xi, Ci) ≥ M−1hi(xi), ∀ i. (3.8)

It follows from (3.8) and Lemma 2.8 that

dist(xi, Ci) ≥ M−1hi(xi) ≥ M−1
(
μ−1 − σ

)
ηi
∥∥rμ(xi, ξi)

∥∥2
. (3.9)

Then (3.2) implies that

lim
i→∞

ηi
∥∥rμ(xi, ξi)

∥∥2 = 0. (3.10)

By the boundedness of {ηi}, we obtain that limi→∞‖rμ(xi, ξi)‖ = 0. Since rμ(·, ·) is continuous
and the sequences {xi} and {ξi} are bounded, there exists an accumulation point (x, ξ) of
{(xi, ξi)} such that rμ(x, ξ) = 0. This implies that x solves the variational inequality (1.1).
Similar to the preceding proof, we obtain that limi→∞xi = x.

4. Numerical Experiments

In this section, we present some numerical experiments for the proposed algorithm. The
MATLAB codes are run on a PC (with CPU Intel P-T2390) under MATLAB Version
7.0.1.24704(R14) Service Pack 1. We compare the performance of our Algorithm 2.2 and [15,
Algorithm 1]. In the Tables 1 and 2, “It.” denotes number of iteration, and “CPU” denotes the
CPU time in seconds. The tolerance ε means when ‖r(x, ξ)‖ ≤ ε, the procedure stops.

Example 4.1. Let n = 3,

C :=

{

x ∈ R
n
+ :

n∑

i=1

xi = 1

}

, (4.1)

and let F : C → 2R
n
be defined by

F(x) := {(t, t − x1, t − x2) : t ∈ [0, 1]}. (4.2)
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Table 1: Example 4.1.

Algorithm 2.2 [15, Algorithm 1]
ε It. (num.) CPU (sec.) It. (num.) CPU (sec.)
10−7 55 0.625 74 0.984375
10−5 39 0.546875 51 0.75
10−3 23 0.4375 27 0.5

Table 2: Example 4.2.

Algorithm 2.2 [15, Algorithm 1]
Initial point ε It. (num.) CPU (sec.) It. (num.) CPU (sec.)
(0,0,0,1) 10−7 53 0.75 61 0.90625
(0,0,1,0) 10−7 47 0.625 79 1.28125
(0.5,0,0.5,0) 10−7 42 0.53125 76 1.28125
(0,0,0,1) 10−5 42 0.625 43 0.671875
(0,0,1,0) 10−5 35 0.53125 56 0.921875
(0.5,0,0.5,0) 10−5 31 0.5 53 0.890625

Then the set C and the mapping F satisfy the assumptions of Theorem 3.1 and (0,0,1) is a
solution of the generalized variational inequality. Example 4.1 is tested in [15]. We choose
σ = 0.5, γ = 0.8, and μ = 1 for our algorithm; σ = 0.8, γ = 0.6, and μ = 1 for Algorithm 1 in
[15]. We use x0 = (0.3, 0.4, 0.3) as the initial point.

Example 4.2. Let n = 4,

C :=

{

x ∈ R
n
+ :

n∑

i=1

xi = 1

}

, (4.3)

and F : C → 2R
n
be defined by

F(x) = {(t, t + 2x2, t + 3x3, t + 4x4) : t ∈ [0, 1]}. (4.4)

Then the set C and the mapping F satisfy the assumptions of Theorem 3.1 and (1,0,0,0) is a
solution of the generalized variational inequality. We choose σ = 0.5, γ = 0.8, and μ = 1 for
the two algorithms.
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