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We investigate the general solution of the quadratic functional equation f(2x + y) + 3f(2x − y) =
4f(x − y) + 12f(x), in the class of all functions between quasi-β-normed spaces, and then we
prove the generalized Hyers-Ulam stability of the equation by using direct method and fixed point
method.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

Let G1 be a group and let G2 be a metric group with metric ρ(·, ·). Given ε > 0, does there
exist a δ > 0 such that if f : G1 → G2 satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then a
homomorphism h : G1 → G2 exists with ρ(f(x), h(x)) < ε for all x ∈ G1?

In 1941, the first result concerning the stability of functional equations was presented
by Hyers [2]. And then Aoki [3] and Bourgin [4] have investigated the stability theorems
of functional equations with unbounded Cauchy differences. In 1978, Th. M. Rassias [5]
provided a generalization of Hyers’ Theorem which allows the Cauchy difference to be
unbounded. It was shown by Gajda [6] as well as by Th. M. Rassias and Šemrl [7] that one
cannot prove the Rassias’ type theorem when p = 1. Găvruta [8] obtained generalized result
of Th. M. Rassias’ Theorem which allow the Cauchy difference to be controlled by a general
unbounded function. J. M. Rassias [9, 10] established a similar stability theorem linear and
nonlinear mappings with the unbounded Cauchy difference.

Let E1 and E2 be real vector spaces. A function f : E1 → E2 is called a quadratic
function if and only if f is a solution function of the quadratic functional equation:

f
(
x + y

)
+ f
(
x − y) = 2f(x) + 2f

(
y
)
. (1.1)
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It is well known that a function f between real vector spaces is quadratic if and only if there
exists a unique symmetric biadditive function B such that f(x) = B(x, x) for all x, where
the mapping B is given by B(x, y) = (1/4)(f(x + y) − f(x − y)). See [11, 12] for the details.
The Hyers-Ulam stability of the quadratic functional (1.1) was first proved by Skof [13] for
functions f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa [14]
demonstrated that Skof’s theorem is also valid if E1 is replaced by an abelian group. Czerwik
[15] proved the Hyers-Ulam stability of quadratic functional (1.1) by the similar way to Th.
M. Rassias control function [5]. According to the theorem of Borelli and Forti [16], we obtain
the following generalization of stability theorem for the quadratic functional (1.1): let G be
an abelian group and E a Banach space; let f : G → E be a mapping with f(0) = 0 satisfying
the inequality

∥
∥f
(
x + y

)
+ f
(
x − y) − 2f(x) − 2f

(
y
)∥∥ ≤ ϕ(x, y) (1.2)

for all x, y ∈ G. Assume that one of the following conditions

Φ
(
x, y
)
:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

k=0

1
22(k+1)

ϕ
(
2kx, 2ky

)
<∞,

∞∑

k=0

22kϕ
(

x

2(k+1)
,

y

2(k+1)

)
<∞

(1.3)

holds for all x, y ∈ G, then there exists a unique quadratic function Q : G → E such that

∥∥f(x) −Q(x)
∥∥ ≤ Φ(x, x) (1.4)

for all x ∈ G. The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem [17–23].

In this paper, we consider a new quadratic functional equation

f
(
2x + y

)
+ 3f

(
2x − y) = 4f

(
x − y) + 12f(x), (1.5)

for all vectors in quasi-β-normed spaces. First, we note that a function f is a solution of the
functional (1.5) in the class of all functions between vector spaces if and only if the function
f is quadratic. Further, we investigate the generalized Hyers-Ulam stability of (1.5) by using
direct method and fixed point method. As a result of the paper, we have a much better
possible estimation of approximate quadratic mappings by quadratic mappings than that
of Czerwik [15] and Skof [13].

2. Stability of (1.5)

Now, we consider some basic concepts concerning quasi-β-normed spaces and some
preliminary results. We fix a realnumber β with 0 < β ≤ 1 and let K denote either R or C.
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Let X be a linear space over K. A quasi- β-norm ‖ · ‖ is a real-valued function on X satisfying
the following.

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ|β · ‖x‖ for all λ ∈ K and all x ∈ X.

(3) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on X. The
smallest possible K is called the modulus of concavity of ‖ · ‖. A quasi-β-Banach space is a
complete quasi-β-normed space. A quasi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if

∥
∥x + y

∥
∥p ≤ ‖x‖p + ∥∥y∥∥p (2.1)

for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach space. We can refer
to [24, 25] for the concept of quasinormed spaces and p-Banach spaces. Given a p-norm, the
formula d(x, y) := ‖x−y‖p gives us a translation invariant metric onX. By the Aoki-Rolewicz
theorem [25] (see also [24]), each quasinorm is equivalent to some p-norm. In [26], Tabor has
investigated a version of the D. H. Hyers, Th. M. Rassias, and Z. Gajda theorem (see [5, 6])
in quasibanach spaces. Recently, J. M. Rassias and Kim [27] have obtained stability results of
general additive equations in quasi-β-normed spaces.

From now on, let X be a quasi-α-normed space with norm ‖ · ‖α and let Y be a (β, p)-
Banach space with norm ‖ · ‖β unless we give any specific reference. Now, we are ready to
investigate the generalized Hyers-Ulam stability problem for the functional (1.5) using direct
method.

Theorem 2.1. Assume that a function f : X → Y satisfies

∥∥Df(x, y) := f(2x + y) + 3f(2x − y) − 4f(x − y) − 12f(x)
∥∥
β ≤ ϕ

(
x, y
)

(2.2)

for all x, y ∈ X and that ϕ satisfies the following control conditions

Φ1(x) :=
∞∑

i=0

ϕ
(
3ix, 3ix

)p

9ipβ
<∞, lim

n→∞
ϕ
(
3nx, 3ny

)p

9npβ
= 0 (2.3)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥∥∥f(x) +
f(0)
2

−Q(x)
∥∥∥∥
β

≤ 1
9β

p

√
Φ1(x) (2.4)

for all x ∈ X, where ‖f(0)‖β ≤ ϕ(0, 0)/12β. The function Q is defined as

Q(x) = lim
k→∞

f
(
3kx
)

32k
(2.5)

for all x ∈ X.
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Proof. Putting x, y := 0 in (2.2), we get ‖f(0)‖β ≤ ϕ(0, 0)/12β. Replacing y by x in (2.2), we
obtain

∥
∥f(3x) − 9f(x) − 4f(0)

∥
∥
β ≤ ϕ(x, x) (2.6)

for all x ∈ X. Dividing (2.6) by 9β, we get

∥
∥
∥
∥
1
9
f(3x) − f(x)

∥
∥
∥
∥
β

≤ 1
9β
ϕ(x, x) (2.7)

for all x ∈ X where f(x) = f(x) + f(0)/2, x ∈ X. Now letting x := 3ix and dividing 32ipβ in
(2.7), we have

∥∥∥∥
1

32(i+1)
f(3i+1x) − 1

32i
f(3ix)

∥∥∥∥

p

β

≤ 1
9(i+1)pβ

ϕ
(
3ix, 3ix

)p
(2.8)

for all x ∈ X. Therefore we prove from the inequality (2.8) that for any integers m, n with
m > n ≥ 0

∥∥∥∥
1

32m
f(3mx) − 1

32n
f(3nx)

∥∥∥∥

p

β

≤
m−1∑

i=n

∥∥∥∥∥
f(3i+1x)
32(i+1)

− f(3ix)
32i

∥∥∥∥∥

p

β

≤
m−1∑

i=n

1
9(i+1)pβ

ϕ
(
3ix, 3ix

)p
.

(2.9)

Since the right-hand side of (2.9) tends to zero as n → ∞, the sequence {(1/32n)f(3nx)} is
Cauchy for all x ∈ X and thus converges by the completeness of Y . Define Q : X → Y by

Q(x) = lim
n→∞

1
32n

(
f(3nx) +

f(0)
2

)
= lim

n→∞
f(3nx)
32n

, x ∈ X. (2.10)

Letting x := 3nx, y := 3ny in (2.2), respectively, and dividing both sides by 32npβ and after
then taking the limit in the resulting inequality, we have

∥∥Q(2x + y) + 3Q(2x − y) − 4Q(x − y) − 12Q(x)
∥∥p
β

= lim
n→∞

∥∥f(3n(2x + y)) + 3f(3n(2x − y)) − 4f(3n(x − y)) − 12f(3nx)
∥∥p
β

9npβ

≤ lim
n→∞

1
9npβ

ϕy(3nx, 3n)p = 0,

(2.11)

and so the function Q is quadratic.
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Taking the limit in (2.9) with n = 0 asm → ∞, we obtain that

∥
∥
∥
∥f(x) +

f(0)
2

−Q(x)
∥
∥
∥
∥

p

β

≤ 1
9pβ

∞∑

i=0

ϕ
(
3ix, 3ix

)p

9ipβ
, (2.12)

which yields the estimation (2.4).
To prove the uniqueness of the quadratic functionQ subject to (2.4), let us assume that

there exists a quadratic function Q′ : X → Y which satisfies (1.5) and the inequality (2.4).
Obviously, we obtain that

Q(x) = 3−2nQ(3nx), Q′(x) = 3−2nQ′(3nx) (2.13)

for all x ∈ X. Hence it follows from (2.4) that

∥∥Q(x) −Q′(x)
∥∥p
β
≤ 1

32npβ

(∥∥∥∥Q(3nx) − f(3nx) − f(0)
2

∥∥∥∥

p

β

+
∥∥∥∥f(3

nx) +
f(0)
2

−Q′(3nx)
∥∥∥∥

p

β

)

≤ 2
9pβ

∞∑

i=0

1
32(n+i)pβ

ϕ
(
3n+ix, 3n+ix

)p
=

2
9pβ

∞∑

j=n

1
32jpβ

ϕ
(
3jx, 3jx

)p

(2.14)

for all n ∈ N. Therefore letting n → ∞, one hasQ(x)−Q′(x) = 0 for all x ∈ X, completing the
proof of uniqueness.

Theorem 2.2. Assume that a function f : X → Y satisfies

∥∥Df(x, y)
∥∥
β ≤ ϕ

(
x, y
)

(2.15)

for all x, y ∈ X and that ϕ satisfies conditions

Φ2(x) :=
∞∑

i=1

9ipβϕ
(
x

3i
,
x

3i

)p
<∞, lim

n→∞
9npβϕ

(
x

3n
,
y

3n

)p
= 0 (2.16)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥p
β
≤ 1

9β
p

√
Φ2(x) (2.17)

for all x ∈ X. The function Q is given by

Q(x) = lim
n→∞

32nf
(
x

3n

)
(2.18)

for all x ∈ X.
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Proof. In this case, f(0) = 0 since
∑∞

i=1(1/9
i)ϕ(0, 0) <∞ and so ϕ(0, 0) = 0 by assumption.

Replacing x by x/3 in (2.6), we obtain

∥
∥
∥
∥f(x) − 9f

(
x

3

)∥∥
∥
∥
β

≤ ϕ
(
x

3
,
x

3

)

(2.19)

for x ∈ X. Therefore we prove from inequality (2.19) that for any integersm,nwithm > n ≥ 0

∥
∥
∥
∥9

mf

(
x

3m

)
− 9nf

(
x

3n

)∥∥
∥
∥

p

β

≤
m−1∑

i=n

∥
∥
∥
∥9

if

(
x

3i

)
− 9i+1f

(
x

3i+1

)∥∥
∥
∥

p

β

≤
m−1∑

i=n

9ipβϕ
(

x

3i+1
,
x

3i+1

)p

=
1
9pβ

m−1∑

i=n

9(i+1)pβϕ
(

x

3i+1
,
x

3i+1

)p

(2.20)

for all x ∈ X. Since the right-hand side of (2.20) tends to zero as n → ∞, the sequence
{32nf(x/3n)} is Cauchy for all x ∈ X and thus converges by the completeness of Y . Define
Q : X → Y by

Q(x) = lim
n→∞

32nf
(
x

3n

)
(2.21)

for all x ∈ X.
Thereafter, applying the same argument as in the proof of Theorem 2.1, we obtain the

desired result.

We now introduce a fundamental result of fixed point theory. We refer to [28] for the
proof of it, and the reader is referred to papers [29–31].

Theorem 2.3. Let (Ω, d) be a generalized complete metric space (i.e., d may assume infinite values).
Assume that Λ : Ω → Ω is a strictly contractive operator with the Lipschitz constant 0 < L < 1.
Then for a given element x ∈ Ω one of the following assertions is true:

(A1) d(Λk+1x,Λkx) = ∞ for all k ≥ 0;

(A2) there exists a nonnegative integer n0 such that

(A2.1) d(Λn+1x,Λnx) <∞ for all n ≥ n0;
(A2.2) the sequence {Λnx} converges to a fixed point x∗ of Λ;
(A2.3) x∗ is the unique fixed point of Λ in the set Δ = {y ∈ Ω : d(Λn0x, y) <∞};
(A2.4) d(y, x∗) ≤ (1/1 − L)d(y,Λy) for all y ∈ Δ.

For an extensive theory of fixed point theorems and other nonlinear methods, the
reader is referred to the book of Hyers et al. [32]. In 1996, Isac and Th. M. Rassias [33] applied
the stability theory of functional equations to prove fixed point theorems and study some new
applications in nonlinear analysis. Cădariu and Radu [29, 31] and Radu [34] applied the fixed
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point theorem of alternative to the investigation of Cauchy and Jensen functional equations.
Recently, Jung et al. [35–40] and Jung and Rassias [41] have obtained the generalized Hyers-
Ulam stability of functional equations via the fixed point method.

Nowwe are ready to investigate the generalized Hyers-Ulam stability problem for the
functional (1.5) using the fixed point method.

Theorem 2.4. Let f : X → Y be a function with f(0) = 0 for which there exists a function ϕ :
X2 → [0,∞) such that there exists a constant L, 0 < L < 1, satisfying the inequalities

∥
∥Df(x, y)

∥
∥
β ≤ ϕ

(
x, y
)
, (2.22)

ϕ
(
3x, 3y

) ≤ 9βLϕ
(
x, y
)

(2.23)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y defined by
limk→∞(f(3kx)/32k) = Q(x) such that

∥∥f(x) −Q(x)
∥∥
β ≤

1
9β(1 − L)ϕ(x, x) (2.24)

for all x ∈ X.

Proof. Let us define Ω to be the set of all functions g : X → Y and introduce a generalized
metric d on Ω as follows:

d
(
g, h
)
= inf

{
C ∈ [0,∞] :

∥∥g(x) − h(x)∥∥β ≤ Cϕ(x, x), ∀x ∈ X
}
. (2.25)

Then it is easy to show that (Ω, d) is complete (see [37, Proof of Theorem 3.1]). Nowwe define
an operator Λ : Ω → Ω by

Λg(x) =
g(3x)

9
, g ∈ Ω (2.26)

for all x ∈ X. First, we assert thatΛ is strictly contractive with constant L onΩ. Given g, h ∈ Ω,
let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C, that is, ‖g(x) − h(x)‖β ≤ Cϕ(x, x).
Then it follows from (2.23) that

∥∥Λg(x) −Λh(x)
∥∥
β =

1
9β
∥∥g(3x) − h(3x)∥∥β ≤

1
9β
Cϕ(3x, 3x)

≤ LCϕ(x, x)
(2.27)

for all x ∈ X, that is, d(Λg,Λh) ≤ LC for any C ∈ [0,∞] with d(g, h) ≤ C. Thus we see that
d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ Ω and so Λ is strictly contractive with constant L on Ω.
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Next, if we put (x, y) := (x, x) in (2.22) and we divide both sides by 9, then we get

∥
∥
∥
∥
f(3x)

9
− f(x)

∥
∥
∥
∥
β

=
1
9β
∥
∥f(3x) − 9f(x)

∥
∥
β

≤ 1
9β
ϕ(x, x)

(2.28)

for all x ∈ X,which implies d(Λf, f) ≤ 1/9β <∞.
Thus applying Theorem 2.3 to the complete generalized metric space (Ω, d) with

contractive constant L, we see from (A2.2) of Theorem 2.3 that there exists a functionQ : X →
Y which is a fixed point of Λ, that is, Q(x) = ΛQ(x) = Q(3x)/9, such that d(Λkf,Q) → 0 as
k → ∞. By mathematical induction we know that

ΛkQ(x) =
Q
(
3kx
)

32k
= Q(x) (2.29)

for all k ∈ N.
Since d(Λkf,Q) → 0 as k → ∞ by (A2.3) of Theorem 2.3, there exists a sequence {Ck}

such that Ck → 0 as k → ∞, and d(Λkf,Q) ≤ Ck for every k ∈ N. Hence, it follows from the
definition of d that

∥∥∥Λkf(x) −Q(x)
∥∥∥
β
≤ Ckϕ(x, x) (2.30)

for all x ∈ X. This implies

lim
k→∞

∥∥∥Λkf(x) −Q(x)
∥∥∥
β
= 0, i.e., lim

k→∞
f
(
3kx
)

32k
= Q(x) (2.31)

for all x ∈ X.
In turn, it follows from (2.22) and (2.23) that

∥∥DQ(x, y)
∥∥
β = lim

k→∞
1

32kβ

∥∥∥Df(3kx, 3ky)
∥∥∥
β

≤ lim
k→∞

1
32kβ

ϕ
(
3kx, 3ky

)
≤ lim

k→∞
Lkϕ
(
x, y
)

= 0

(2.32)

for all x, y ∈ X, which implies thatQ is a solution of (1.5) and so the mappingQ is quadratic.
By (A2.4) of Theorem 2.3, we obtain

d
(
f,Q
) ≤ 1

1 − Ld
(
Λf, f

) ≤ 1
9β(1 − L) , (2.33)

which yields the inequality (2.24).



Journal of Inequalities and Applications 9

To prove the uniqueness of Q, assume now that Q1 : X → Y is another quadratic
mapping satisfying the inequality (2.24). Then Q1 is a fixed point of Λ with d(f,Q1) < ∞ in
view of the inequality (2.24). This implies thatQ1 ∈ Δ = {g ∈ Ω : d(f, g) <∞} and soQ = Q1

by (A2.3) of Theorem 2.3. The proof is complete.

By a similar way, one can prove the following theorem using the fixed point method.

Theorem 2.5. Let f : X → Y be a function with f(0) = 0 for which there exists a function ϕ :
X2 → [0,∞) such that there exists a constant L, 0 < L < 1, satisfying the inequalities

∥
∥Df(x, y)

∥
∥
β ≤ ϕ

(
x, y
)
, (2.34)

ϕ
(
x, y
) ≤ L

9β
ϕ
(
3x, 3y

)
(2.35)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y defined by
limk→∞32kf(x/3k) = Q(x) such that

∥∥f(x) −Q(x)
∥∥
β ≤

L

9β(1 − L)ϕ(x, x) (2.36)

for all x ∈ X.

Proof. We use the same notations for Ω and d as in the proof of Theorem 2.4. Thus (Ω, d) is a
complete generalized metric space. Let us define an operator Λ : Ω → Ω by

Λg(x) = 9g
(
x

3

)
, g ∈ Ω (2.37)

for all x ∈ X. Then it follows from (2.35) that

∥∥Λg(x) −Λh(x)
∥∥
β = 9β

∥∥∥∥g
(
x

3

)
− h
(
x

3

)∥∥∥∥
β

≤ 9βCϕ
(
x

3
,
x

3

)
≤ LCϕ(x, x) (2.38)

for all x ∈ X, that is, d(Λg,Λh) ≤ LC. Thus we see that d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ Ω
and so Λ is strictly contractive with constant L on Ω.

Next, if we put (x, y) := (x/3, x/3) in (2.34) and we divide both sides by 1/9, then we
get by virtue of (2.35)

∥∥∥∥f(x) − 9f
(
x

3

)∥∥∥∥
β

= ϕ
(
x

3
,
x

3

)
≤ L

9β
ϕ(x, x) (2.39)

for all x ∈ X,which implies d(f,Λf) ≤ L/9β <∞. Thereafter, applying the same argument as
in the proof of Theorem 2.4, we obtain the desired results.
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3. Applications of Main Results

In the following corollary, we have a stability result of (1.5) in the sense of Th. M. Rassias.

Corollary 3.1. Let ri and εi be real numbers such that α(max{ri : i = 1, 2}) < 2β and εi ≥ 0 for
i = 1, 2. Assume that a function f : X → Y satisfies the inequality

∥
∥Df(x, y)

∥
∥
β ≤ ε1‖x‖r1α + ε2

∥
∥y
∥
∥r2
α (3.1)

for all x, y ∈ X, and for all x, y ∈ X \ {0} if r1, r2 < 0. Then there exists a unique quadratic function
Q : X → Y which satisfies the inequality

∥
∥
∥
∥f(x) +

f(0)
2

−Q(x)
∥
∥
∥
∥
β

≤
[

ε
p

1‖x‖
pr1
α

3p2β − 3pαr1
+

ε
p

2‖x‖
pr2
α

3p2β − 3pαr1

]1/p
(3.2)

for all x ∈ X, and for all x ∈ X \ {0} if r1, r2 < 0. The function Q is given by

Q(x) = lim
n→∞

f(3nx)
32n

, (3.3)

for all x ∈ X, where f(0) = 0 if r1, r2 > 0.

Proof. If r1, r2 > 0, then we get f(0) = 0 by putting x, y := 0 in (3.1). Letting ϕ(x, y) :=
ε1‖x‖r1α + ε2‖y‖r2α for all x, y ∈ X and then applying Theorem 2.1 we obtain easily the desired
results.

Corollary 3.2. Let ri and εi be real numbers such that α(min{ri : i = 1, 2}) > 2β and εi ≥ 0 for
i = 1, 2. Assume that a function f : X → Y satisfies the inequality

∥∥Df(x, y)
∥∥
β ≤ ε1‖x‖r1α + ε2

∥∥y
∥∥r2
α (3.4)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥∥f(x) −Q(x)
∥∥
β ≤
[

ε
p

1‖x‖
pr1
α

3pαr1 − 3p2β
+

ε
p

2‖x‖
pr2
α

3pαr1 − 3p2β

]1/p
(3.5)

for all x ∈ X. The function Q is given by

Q(x) = lim
n→∞

32nf
(
x

3n

)
(3.6)

for all x ∈ X.
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In the following corollary, we have a stability result of (1.5) in the sense of Hyers.

Corollary 3.3. Let δ be a nonnegative real number. Assume that a function f : X → Y satisfies the
inequality

∥
∥Df(x, y)

∥
∥
β ≤ δ (3.7)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y , defined by Q(x) =
limn→∞(f(3nx)/32n), which satisfies the inequality

∥
∥
∥∥f(x) +

f(0)
2

−Q(x)
∥
∥
∥∥
β

≤ δ

9pβ − 1
(3.8)

for all x ∈ X.

In the next corollary, we get a stability result of (1.5) in the sense of J. M. Rassias.

Corollary 3.4. Let ε, r1, r2 be real numbers such that ε ≥ 0 and αr /= 2β, where r := r1 + r2. Suppose
that a function f : X → Y satisfies

∥∥Df(x, y)
∥∥
β ≤ ε‖x‖r1α

∥∥y
∥∥r2
α (3.9)

for all x, y ∈ X, and for all x, y ∈ X \ {0} if r1, r2 < 0. Then there exists a unique quadratic function
Q : X → Y which satisfies the inequality

∥∥∥∥f(x) +
f(0)
2

−Q(x)
∥∥∥∥
β

≤ ε‖x‖rα
p

√∣∣3pαr − 3p2β
∣∣ (3.10)

for all x ∈ X and all x, y ∈ X \ {0} if r1, r2 < 0, where f(0) = 0 if r1, r2 > 0.

Proof. Letting ϕ(x, y) := ε‖x‖r1α ‖y‖r2α and applying Theorems 2.1 and 2.2, we get the re-
sults.
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