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In this paper, the exponential stability analysis problem is considered for a class of recurrent
neural networks (RNNs) with random delay and Markovian switching. The evolution of the
delay is modeled by a continuous-time homogeneous Markov process with a finite number of
states. The main purpose of this paper is to establish easily verifiable conditions under which the
random delayed recurrent neural network with Markovian switching is exponentially stable. The
analysis is based on the Lyapunov-Krasovskii functional and stochastic analysis approach, and the
conditions are expressed in terms of linear matrix inequalities, which can be readily checked by
using some standard numerical packages such as the Matlab LMI Toolbox. A numerical example
is exploited to show the usefulness of the derived LMI-based stability conditions.

1. Introduction

In recent years, the neural networks (NNs) have been extensively studied because of their
immense application potentials, such as signal processing, pattern recognition, static image
processing, associative memory, and combinatorial optimization. In practice, time delays
are frequently encountered in dynamical systems and are often a source of oscillation and
instability. Thus, the stability problem of delayed neural networks has become a topic of
great theoretic and practical importance. Numerous important results have been reported
for neural networks with time delays (see, e.g., [1–23]).
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On the other hand, it can be seen from the existing references that only the deter-
ministic time-delay case was concerned, and the stability criteria were derived based only
on the information of variation range of the time delay. In practice, the delay in some NNs
is due to multiple factors (e.g., synaptic transmission delay, neuroaxon transmission delay);
one natural paradigm for treating it is to use a probabilistic description (see, e.g., [17, 18, 24,
25]). For example, to control and propagate the stochastic signals through universal learning
networks (ULNs), a probabilistic universal learning network (PULN) was proposed in [25].
In a PULN, the output signal of the node is transferred to another node by multibranches
with arbitrary time delay which is random and its probabilistic characteristic can often be
measured by the statistical methods. For this case, if some values of the time delay are very
large but the probabilities of the delay taking such large values are very small, it may result
in a more conservative result if only the information of variation range of the time delay
is considered. In many situations, the delay process can be modeled as a Markov process
with a finite number of states (see, e.g., [26, 27]). References [26, 27] argue in favor of such
representation of the delay in communication networks. The discrete values of the delay may
correspond to “low”, “medium”, and “high” network loads.

In practice, sometimes a neural network has finite state representations (also called
modes, patterns, or clusters), and the modes may switch (or jump) from one to another at
different times [19–23]. Recently, it has been revealed in [19] that switching (or jumping)
between different neural networks modes can be governed by a Markov chain. Specifically,
the class of neural networks with Markovian switching has two components in the state
vector. The first one, which carries continuously, is referred to be the continuous state of the
neural networks, and the second one, which varies discretely, is referred to be the mode of the
neural networks. For a specific mode, the dynamics of the neural networks is continuous, but
the switchings among different modes may be seen as discrete events. It should be pointed
out that neural networks with Markovian switching have been a subject of great significance
in modeling a class of neural networks with finite network modes and were studied by
several researchers, for example, [19–23, 28], despite their practical importance. However,
to the best of the authors’ knowledge, so far, the stability analysis of RNNs with random
delay and Markovian switching has received little attention in the literature. This situation
motivates our present investigation.

Motivated by the above discussions, the aim of this paper is to investigate the
exponential stability of RNNs with random delay and Markovian switching in mean square.
By using a Markov chain with a finite number of states, we propose a new model of RNNs
with random delay and Markovian switching. The analysis is based on the Lyapunov-
Krasovskii functional and stochastic analysis approach, and the conditions for the stability
criteria are expressed in terms of linear matrix inequalities which can be readily checked
by using some standard numerical packages. A simple example has been provided to
demonstrate the effectiveness and applicability of the proposed testing criteria.

Notations

The notations are quite standard. Throughout this paper, R
n and R

n×m denote, respectively,
the n-dimensional Euclidean space and the set of all n ×m real matrices. The superscript “T”
denotes the transpose and the notation X ≥ Y (resp., X > Y ), where X and Y are symmetric
matrices, means that X − Y is positive semidefinite (resp., positive definite). I is the identity
matrix with compatible dimension. For h > 0, C([−h, 0];Rn) denotes the family of continuous
functions ϕ from [−h, 0] to R

n with the norm ‖ϕ‖ = sup−h≤θ≤0|ϕ(θ)|, where | · | is the Euclidean
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norm in R
n. If A is a matrix, denote by ‖A‖ its operator norm, that is, ‖A‖ = sup{|Ax| :

|x| = 1} =
√
λmax(ATA), where λmax(·) (resp., λmin(·)) means the largest (resp., smallest)

eigenvalue ofA. Moreover, let (Ω,F, {Ft}t≥0,P) be complete probability space with a filtration
{Ft}t≥0 (i.e., it is right continuous and F0 contains all P-null sets). Denote by Cb

F0
([−h, 0];Rn)

the family of all bounded, F0-measurable, C([−h, 0];Rn)-valued random variables. For p > 0
and h > 0, denote by L

p

F0
([−h, 0];Rn) the family of all F0-measurable, C([−h, 0];Rn)-valued

random variables φ = {φ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0E|φ(θ)|p < ∞, where E stands
for the mathematical expectation operator with respect to the given probability measure P.
In symmetric block matrices, we use an asterisk “∗” to represent a term that is induced by
symmetry and diag{· · · } stands for a block-diagonal matrix. Sometimes, the arguments of a
function will be omitted in the analysis when no confusion can arise.

2. Problem Formulation

In this section, we will introduce the model of recurrent neural networks with random
delay and Markovian switching, give the definition of stability related, and put forward the
problem to be dealt with in this paper.

Let {η(t), t ≥ 0} be a right-continuous Markov process on the probability space which
takes values in the finite space S = {η1, η2, . . . , ηN} satisfying 0 ≤ η1, η2, . . . , ηN ≤ h and its
generator Γ = (γij)N×N is given by

P
{
η(t + Δ) = ηj | η(t) = ηi

}
=

⎧
⎨

⎩

γijΔ + o(Δ) if ηi /=ηj ,

1 + γii + o(Δ) if ηi = ηj ,
(2.1)

where Δ > 0 and limΔ→ 0o(Δ)/Δ = 0, γij ≥ 0 is the transition rate from ηi to ηj if ηi /=ηj , and

γii = −
∑

ηj /=ηi

γij . (2.2)

Consider the following recurrent neural network with constant delay model described
by

u̇(t) = −Au(t) +W0f0(u(t)) +W1f1(u(t − h)) + V, (2.3)

where u(t) = (u1(t), u2(t), . . . , un(t))
T ∈ R

n is the states vector with the n neurons; the diagonal
matrix A = diag (a1, a2, . . . , an) has positive entries ai > 0; W0 = (W0

ij)n×n ∈ R
n×n and W1 =

(W1
ij)n×n ∈ R

n×n are the connection weight matrix and delayed connection weight matrix,

respectively; fk(u(t)) = (fk1(u1(t)), . . . , fkn(un(t)))
T (k = 0, 1) denotes the neuron activation

function with fk(0) = 0; V = [V1, V2, . . . , Vn]
T is a constant external input vector; h > 0, which

may be unknown, denotes the time delay.
Throughout this paper, we make the following assumptions.
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Assumption 2.1. For i ∈ {1, 2, . . . , n}, the neuron activation functions in (2.3) satisfy

0 ≤ f0i(x) − f0i
(
y
)

x − y
≤ k0, (2.4)

0 ≤ f1i(x) − f1i
(
y
)

x − y
≤ k1, (2.5)

for any x, y ∈ R, x /=y, where k0 and k1 are positive constants.

Remark 2.2. It is obvious that the conditions in Assumption 2.1 are more general than the
usual sigmoid functions and the recently commonly used Lipschitz conditions; see, for
example, [3–7].

Let u∗ = (u∗
1, u

∗
2, . . . , u

∗
n) be the equilibrium point of network (2.3). For the purpose of

simplicity, we can shift the intended equilibrium points u∗ to the origin. The transformation,
that is, x(t) = u(t) − u∗, puts system (2.3) into the following form:

ẋ(t) = −Ax(t) +W0g0(x(t)) +W1g1(x(t − h)), (2.6)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ R

n is the state vector of transformed system,
gk(x(·)) = (gk1(xk1(·)), gk2(xk2(·)), . . . , gkn(xkn(·)))T , and gk(x(·)) = fk(x(·) + u∗) − fk(u∗)(k =
0, 1). Obviously, Assumption 2.1 implies that gki(·) (k = 0, 1) satisfy the following condition:

0 ≤ g0i(xi)
xi

≤ k0, ∀xi /= 0, i = 1, 2, . . . , n,

0 ≤ g1i(xi)
xi

≤ k1, ∀xi /= 0, i = 1, 2, . . . , n,

(2.7)

and from (2.7), we have

g0i(xi)
(
g0i(xi) − k0xi

) ≤ 0, i = 1, 2, . . . , n,

g1i(xi)
(
g1i(xi) − k1xi

) ≤ 0, i = 1, 2, . . . , n.
(2.8)

Now we consider the following recurrent neural network with random delay and
Markovian switching, which is actually a modification of (2.6):

ẋ(t) = −A(η(t))x(t) +W0
(
η(t)

)
g0(x(t)) +W1

(
η(t)

)
g1
(
x
(
t − η(t)

))
, (2.9)

where η(t) is a Markov process taking values in a finite state space S = {η1, η2, . . . , ηN}.
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Assumption 2.3. The neuron activation function in (2.9), g1, satisfies the following condition:

g1j
(
x1j
(
t − ηi

))
x1j
(
t − ηi

) ≤ ρ
(
x1j
(
t − ηi

))2
, j = 1, 2, . . . , n, 0 ≤ ηi ≤ h, (2.10)

where ρ is a positive constant.

Now we will work on the network mode η(t) = ηi, for all ηi ∈ S. Let x(t; ξ) denote the
state trajectory from the initial data x(θ) = ξ(θ) on −h ≤ θ ≤ 0 in L2

F0
([−h, 0];Rn). According to

[26, 29], for any initial value ξ, (2.9) has only a globally continuous state. Clearly, the network
(2.9) admits an equilibrium point (trivial solution) x(t; 0) ≡ 0 corresponding to the initial data
ξ = 0.

Remark 2.4. It is noted that the introduction of random delay modeled by a continuous-time
homogeneous Markov process with a finite number of states was first introduced in [26, 27].
Unlike the common assumptions on the delay in the published literature, the probability
distribution of the delay taking some values is assumed to be known in advance in this paper,
and then a new model of the neural system (2.9) has been derived, which can be seen as an
extension of the common neural system (2.6).

For convenience, each possible value of η(t) is denoted by ηi, ηi ∈ S in the sequel.
Then we have

Ai := A
(
η(t) = ηi

)
, W0i := W0

(
η(t) = ηi

)
, W1i := W1

(
η(t) = ηi

)
, (2.11)

where Ai,W0i,W1i for any ηi ∈ S are known constant matrices of appropriate dimensions.
The following stability concept is needed in this paper.

Definition 2.5. For system (2.9) and every ξ ∈ L2
F0
([−h, 0],Rn), η(0) = ηi0 ∈ S, the trivial

solution is exponentially stable in the mean-square if there exists a pair of positive constants
α and β such that

E
∣∣x
(
t, ξ, ηi0

)∣∣2 ≤ αe−βt sup
−h≤θ≤0

E|ξ(θ)|2, t ≥ 0, (2.12)

where x(t, ξ, ηi0) is the solution of system (2.9) at time t under the initial state ξ and initial
mode ηi0 .

3. Main Results and Proofs

To establish a more general result, we need more notations. Let C2,1(Rn × R+ × S;R+) denote
the family of all nonnegative functions V (x, t, ηi) on R

n×R+×S, which are continuously twice
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differentiable in x and differentiable in t. If V ∈ C2,1(Rn × R+ × S;R+), define an operator LV
from R

n × R+ × S to R by

LV
(
x(t), t, ηi

)
= Vt

(
x(t), t, ηi

)
+ Vx

(
x(t), t, ηi

)

× [−Aix(t) +W0ig0(x(t)) +W1ig1
(
x
(
t − ηi

))]

+
N∑

j=1

γijV
(
x(t), t, ηj

)
,

(3.1)

where

Vt

(
x, t, ηi

)
=

∂V
(
x, t, ηi

)

∂t
,

Vx

(
x, t, ηi

)
=

(
∂V
(
x, t, ηi

)

∂x1
, . . . ,

∂V
(
x, t, ηi

)

∂xn

)

.

(3.2)

The main result of this paper is given in the following theorem.

Theorem 3.1. Let ε be a fixed constant. Then under Assumptions 2.1 and 2.3, the recurrent
neural network (2.9) with random delay and Markovian switching is exponentially stable in the
mean square if there exist symmetric positive matrices Pi, Q and positive diagonal matrices Di =
diag(d1i, d2i, . . . , dni), Ri, Λ = diag(λ1, λ2, . . . , λn) such that the following LMIs holds

M1 :=

⎡

⎢⎢
⎣

(1.1) PiW0i −AiDi PiW1i

∗ −Ri +DiW0i +WT
0iDi DiW1i

∗ ∗ −2Λ

⎤

⎥⎥
⎦ < 0,

−e−2εηiQ + 2k1ρΛ ≤ 0,

(1.1) = 2εPi + 2εk0Di + k2
0Ri − (PiAi +AiPi) +

N∑

j=1

γijPj .

(3.3)

Proof. In order to establish the stability conditions, we define a Lyapunov functional
candidate V (x(t), t, η(t) = ηi) := V (x(t), t, ηi) ∈ C2,1(Rn × R+ × S;R+) by

V
(
x(t), t, η(t) = ηi

)
= e2εtxT (t)Pix(t) + 2e2εt

n∑

k=1

dki

∫xk(t)

0
g0(s)ds

+
∫ t

t−η(t)
e2εsxT (s)Qx(s)ds.

(3.4)
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It is known (see [26, 29]) that {x(t), η(t)} is a C([−h, 0];Rn)×S-valued Markov process. From
(2.9), (3.1), and (3.4), the weak infinitesimal operator L (see [30]) of the stochastic process
{x(t), η(t)} is given by

LV
(
x(t), t, η(t) = ηi

)
:

= lim
Δ→ 0+

1
Δ
[
E
{
V
(
x(t + Δ), η(t + Δ)

) | x(t), η(t) = ηi
} − V

(
x(t), η(t) = ηi

)]

= 2εe2εtxT (t)Pix(t) + 4εe2εt
n∑

k=1

dki

∫xk(t)

0
g0(s)ds

+ 2e2εtxT (t)Pi

[−Aix(t) +W0ig0(x(t)) +W1ig1
(
x
(
t − ηi

))]

+ 2e2εtgT
0 (x(t))Di

[−Aix(t) +W0ig0(x(t)) +W1ig1
(
x
(
t − ηi

))]

+ e2εtxT (t)Qx(t) + e2εt
N∑

j=1

γijx
T (t)Pjx(t)

− e2ε(t−ηi)xT(t − ηi
)
Qx
(
t − ηi

)
.

(3.5)

By using (2.7), we have

∫xk(t)

0
g0(s)ds ≤ k0

2
x2
k(t). (3.6)

It is easy to see that

n∑

k=1

dki

∫xk(t)

0
g0(s)ds ≤ k0

2
xT (t)Dix(t). (3.7)

Substituting (2.8), (2.10), and (3.7) into (3.5) leads to

LV
(
x(t), t, η(t) = ηi

) ≤ e2εt

⎧
⎨

⎩
2εxT (t)Pix(t) + gT

0 (x(t))Rig0(x(t)) − gT
0 (x(t))Rig0(x(t))

− 2xT (t)PiAix(t) + 2xT (t)PiW0ig0(x(t))

+ 2xT (t)PiW1ig1
(
x
(
t − ηi

))

+ 2εxT (t)k0Dix(t) − 2gT
0 (x(t))DiAix(t)

+ 2gT
0 (x(t))DiW0ig0(x(t))

+ 2gT
0 (x(t))DiW1ig1

(
x
(
t − ηi

))

+
N∑

j=1

γijx
T (t)Pjx(t) + xT (t)Qx(t) − e−2εηixT(t − ηi

)
Qx
(
t − ηi

)
⎫
⎬

⎭
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≤ e2εt

⎧
⎨

⎩
2εxT (t)Pix(t) + gT

0 (x(t))Rig0(x(t)) − gT
0 (x(t))Rig0(x(t))

− 2xT (t)PiAix(t) + 2xT (t)PiW0ig0(x(t))

+ 2xT (t)PiW1ig1
(
x
(
t − ηi

))

+ 2εxT (t)k0Dix(t) − 2gT
0 (x(t))DiAix(t)

+ 2gT
0 (x(t))DiW0ig0(x(t))

+ 2gT
0 (x(t))DiW1ig1

(
x
(
t − ηi

))
+

N∑

j=1

γijx
T (t)Pjx(t)

+ xT (t)Qx(t) − e−2εηixT(t − ηi
)
Qx
(
t − ηi

)

−2
∑

j

λjg1
(
xj

(
t − ηi

))(
g1
(
xj

(
t − ηi

)) − k1xj

(
t − ηi

))
⎫
⎬

⎭

≤ e2εt

⎧
⎪⎪⎨

⎪⎪⎩

[
xT (t) gT

0 (x(t)) g
T
1

(
x
(
t − ηi

))]
M1

⎡

⎢⎢
⎣

x(t)

g0(x(t))

g1
(
x
(
t − ηi

))

⎤

⎥⎥
⎦

+xT(t − ηi
)(−e−2εηiQ + 2k1ρΛ

)
x
(
t − ηi

)

⎫
⎪⎪⎬

⎪⎪⎭
.

(3.8)

Using the conditions of Theorem 3.1, we have

LV
(
x(t), t, η(t) = ηi

)
< 0. (3.9)

Hence

EV
(
x(t), t, η(t) = ηi

) ≤ EV
(
x(0), 0, η(0)

)
, (3.10)

where

EV
(
x(0), 0, η(0)

)
= E

{

xT (0)Pix(0) + 2
n∑

k=1

dki

∫xk(t)

0
g0(s)ds +

∫0

−η(0)
e2εsxT (s)Qx(s)ds

}

≤
{

λmax(Pi) + 2k0 max
1≤k≤n

dki + λmax(Q)
1 − e−2εη(0)

2ε

}

E‖ξ‖2.

(3.11)
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Moreover

EV
(
x(t), t, η(t) = ηi

) ≥ λmin(Pi)e2εtE|x(t)|2. (3.12)

Combining (3.10)–(3.12), we have

λmin(Pi)e2εtE|x(t)|2 ≤ EV
(
x(t), t, η(t) = ηi

)

≤
{

λmax(Pi) + 2k0 max
1≤k≤n

dki + λmax(Q)
1 − e−2εη(0)

2ε

}

E‖ξ‖2.
(3.13)

Hence

E|x(t)|2 ≤ αe−2εtE‖ξ‖2, (3.14)

where

α =
λmax(Pi) + 2k0max1≤k≤ndki + λmax(Q)

((
1 − e−2εη(0)

)
/2ε

)

λmin(Pi)
, (3.15)

which implies that system (2.9) is exponentially stable in the mean square sense. The proof is
completed.

4. A Numerical Example

In this section, a numerical example is presented to demonstrate the effectiveness and
applicability of the developed method on the exponential stability in the mean square sense
of the recurrent neural network (2.9) with random delay and Markovian switching.

Example 4.1. Consider a two-neuron neural network (2.9) with two modes. The network
parameters are given as follows:

A1 =

[
1.6 0

0 1.8

]

, A2 =

[
2.2 0

0 1.5

]

, W01 =

[
1.2 −1.5
−1.7 1.2

]

,

W02 =

[−0.6 0.1

0.1 0.2

]

, W11 =

[−1.1 0.5

0.5 0.8

]

, W12 =

[
0.8 0.2

0.2 0.3

]

,

Γ =

[−6 6

1 −1

]

, k0 = k1 = 1, ε = 0.3, ρ = 1.5, η1 = 0.5, η2 = 0.3.

(4.1)
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By using the Matlab LMI toolbox [31], we solve the LMIs in Theorem 3.1 and obtain

P1 =

[
41.7575 3.5729

3.5729 39.7220

]

> 0, P2 =

[
22.6299 8.5934

8.5934 24.7458

]

> 0,

D1 =

[
1.7450 0

0 1.7300

]

> 0, D2 =

[
1.5125 0

0 3.7358

]

> 0,

Q =

[
276.3824 0

0 194.9230

]

> 0, Λ =

[
50.0866 0

0 34.2662

]

> 0,

R1 =

[
106.8949 0

0 96.6521

]

> 0, R2 =

[
16.7054 0

0 12.5835

]

> 0.

(4.2)

Therefore, it follows from Theorem 3.1 that the recurrent neural network (2.9) with random
delay and Markovian switching is exponentially stable in the mean square.

5. Conclusions

The analysis problem of an exponential stability in the mean square sense for a class of RNNs
with random delay and Markovian switching has been studied. By utilizing a Markov chain
to describe discrete delay, a new neural network model has been presented. The Lyapunov-
Krasovskii stability theory and the differential rule have been employed to establish sufficient
conditions for the recurrent neural network with random delay and Markovian switching to
be exponentially stable. These conditions are expressed in terms of the feasibility to a set
of linear matrix inequalities, and therefore the exponentially stable of the recurrent neural
network with random delay and Markovian switching can be easily checked by utilizing the
numerically efficient Matlab LMI toolbox. A simple example has been exploited to show the
usefulness of the derived LMI-based stability conditions.
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