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Let {Xn, n ≥ 1} be a sequence of positive independent and identically distributed random variables
with common Pareto-type distribution function F(x) = 1 − x−1/γ lF(x) as γ > 0, where lF(x)
represents a slowly varying function at infinity. In this note we study the strong convergence
bound of a kind of right censored Pareto index estimator under second-order regularly varying
conditions.

1. Introduction

A distribution F is said to be of Pareto-type if there exists a positive constant γ such that

1 − F(x) = x−1/γ lF(x), (1.1)

where lF(x) is a slowly varying function at infinity, that is,

lim
t→∞

lF(tx)
lF(t)

= 1 ∀x > 0. (1.2)

The parameter γ is called the Pareto index.
Estimating the Pareto index γ is very important in theoretical analysis and practical

applications of extreme value theory; for example, Embrechts et al. [1], Reiss and Thomas [2]
and references therein. For recent work on estimating extreme value index, see Beirlant and
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Guillou [3], Fraga Alves [4, 5], Gomes et al. [6], Gomes and Henriques Rodrigues [7], and Li
et al. [8, 9].

Suppose that {Xn, n ≥ 1} is a sequence of positive independent and identically
distributed (i.i.d.) random variables with common distribution function F, and let X1,n ≤
X2,n ≤ · · · ≤ Xn,n denote the order statistics of X1, X2, . . . , Xn. By using maximum likelihood
method, Hill [10] introduced the following well-known estimator of γ , that is,

Hk,n =
1
k

k∑

j=1

logXn−j+1,n − logXn−k,n. (1.3)

Mason [11] proved weak consistency of Hk,n for any sequence k = k(n) → ∞, k(n)/n →
0(n → ∞) and Deheuvels et al. [12] proved its strong consistency for any sequence k(n)
with k(n)/n → 0, k(n)/ log logn → ∞(n → ∞). The strong convergence bounds of the
Hill estimator Hk,n have been considered by Peng and Nadarajah [13] under second-order
regularly varying conditions.

Recently Beirlant and Guillou [3] proposed a new kind of Hill estimator in case of the
sample being right censored. In actuarial setting, most insurance policies limit the claim size
and reinsure the large claim size exceeding the given level. So the observed claim size series
are right censored. Suppose that X1,n ≤ X2,n ≤ · · · ≤ XN,n are the first N (= N(n)) ascending
order statistics of X1, X2, . . . , Xn,where N is an integer random variable. Define

γ(k, n) =
1

k − n +N

⎧
⎨

⎩

k∑

j=n−N+1

log
Xn−j+1,n
Xn−k,n

+ (n −N) log
XN,n

Xn−k,n

⎫
⎬

⎭ (1.4)

as the estimator of γ , where k = n−N+1, . . . , n−1. This estimator reduces to the Hill estimator
in the absence of censoring. Beirlant and Guillou [3] provedweak and strong consistency, and
asymptotic normality of γ(k, n). In this paper, we consider the strong convergence bound of
this Pareto index estimator γ(k, n) under second-order regularly varying conditions.

2. Main Results

Denote U(x) = (1/(1 − F))←(x) = inf{t : F(t) ≥ 1 − 1/x} (x > 1); then (1.1) is equivalent to

lim
t→∞

U(tx)
U(t)

= xγ . (2.1)

In order to investigate the strong convergence bound of γ(k, n), we require knowing the
convergence rate of (2.1). For this reason, we need the following second-order regular
condition.

Suppose that there exists a measurable function A(t) satisfying limt→∞A(t) = 0, and a
function H(x)/= cxγ such that for all x > 0,

lim
t→∞

1
A(t)

{
U(tx)
U(t)

− xγ

}
= H(x). (2.2)
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Then H(x) must be of the form xγ((xρ − 1)/ρ) for some ρ ≤ 0 (xγ((xρ − 1)/ρ) =: xγ logx as
ρ = 0), and ρ is the regularly varying index of A(t), that is, A(t) ∈ RVρ; for example, de Haan
and Stadtmüller [14]. (2.2) holds if and only if for all x > 0,

lim
t→∞

logU(tx) − logU(t) − γ logx
A(t)

=
xρ − 1

ρ
. (2.3)

In order to obtain the strong convergence bound of γ(k, n), we give the following two
results firstly.

Theorem 2.1. Suppose that (2.2) holds, and further assume that k/n ∼ pn ↓ 0, k/(logn)δ → ∞
for some δ > 0,

√
k/(2 log logn)A(n/k) → β ∈ [0,∞), and (n −N)/

√
2k log logn → 0 a.s.

as n → ∞, where 0 < N < n. Then

lim sup
n→∞

1
√
2k log logn

∣∣∣∣∣∣

k∑

j=n−N+1

(
logXn−j+1,n − logXn−k,n − γ

)
∣∣∣∣∣∣
≤
(√

2 + 1
)
γ +

β

1 − ρ a.s. (2.4)

Theorem 2.2. Suppose that (2.2) holds, and further assume that k/n ∼ pn ↓ 0, (n−N)/ log logn ↑
∞,

√
k/(2 log logn)A(n/k) → β ∈ [0,∞), and (n −N)(2k log logn)−1/2 log[(n −N)/k] →

0 a.s. as n → ∞, where 0 < N < n. Then

lim sup
n→∞

n −N
√
2k log logn

∣∣logXN,n − logXn−k,n
∣∣ = 0 a.s. (2.5)

By using Theorems 2.1 and 2.2, we can deduce the following theorem easily.

Theorem 2.3. Suppose that (2.2) holds and assume that k/n∼pn ↓ 0,
√
k/(2 log logn) A(n/k)→

β ∈ [0,∞), k/(logn)δ → ∞ for some δ > 0, (n−N)(2k log logn)−1/2 log[(n−N)/k] → 0, and
(n −N)(log logn)−1 ↑ ∞ a.s. as n → ∞ where 0 < N < n; then

lim sup
n→∞

√
k

2 log logn
∣∣γ(k, n) − γ∣∣ ≤

(√
2 + 1

)
γ +

β

1 − ρ a.s. (2.6)

3. Proofs

Suppose that Y1, Y2, . . . , Yn are independent and identically distributed random variables with
common distribution function P(Y1 ≤ x) = 1 − 1/x (x ≥ 1). Let Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n denote

the order statistics of Y1, Y2, . . . , Yn. It is easy to see that (U(Y1), U(Y2), . . .)
d= (X1, X2, . . .). For

the sake of simplicity, define γ(k, n) as

γ(k, n) =
1

k − n +N

⎧
⎨

⎩

k∑

j=n−N+1

log
U
(
Yn−j+1,n

)

U(Yn−k,n)
+ (n −N) log

U(YN,n)
U(Yn−k,n)

⎫
⎬

⎭. (3.1)
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The following auxiliary results are necessary for the proofs of the main results. The
first two results are correct due to Wellner [15].

Lemma 3.1. If k/n → 0 and k/ log logn → ∞, then

lim
n→∞

k

n
Yn−k,n = 1 a.s. (3.2)

Lemma 3.2. Suppose that k → ∞, k/n ∼ pn ↓ 0, and npn/ log logn → ∞. Then

lim sup
n→∞

k
∣∣logn − log k − logYn−k,n

∣∣
√
2k log logn

= 1 a.s. (3.3)

Proof. Applying Lemma 3.1, we find

k
(
logn − log k − logYn−k,n

)
=
(

n

Yn−k,n
− k

)
(1 + o(1)) a.s. (3.4)

Notice that 1/Yi is uniformly distributed on (0, 1); the result follows fromWellner [15].

Lemma 3.3. Let k → ∞, k/n ∼ pn ↓ 0 and k/ log logn → ∞. Then

lim sup
n→∞

∣∣∣
∑k

i=1 logYn−i+1,n − k
(
logn − log k + 1

)∣∣∣
√
2k log logn

=
√
2 a.s. (3.5)

Proof. The result follows from Deheuvels and Mason [16].

The following bound of (2.3) is from Drees [17]; for example, Theorem B.2.18 of de
Haan and Ferreira [18].

Lemma 3.4. If (2.2) holds, then for every ε > 0, there exists t0 > 0 such that for t ≥ t0 and x ≥ 1,

∣∣∣∣
logU(tx) − logU(t) − γ logx

A(t)
− xρ − 1

ρ

∣∣∣∣ ≤ εxρ+ε. (3.6)

Lemma 3.5. Assume that k/n → 0, k/(logn)δ → ∞ for some δ > 0 and (n −N)/k → 0 a.s.
as n → ∞ where 0 < N < n. Suppose ξ1,n ≤ ξ2,n ≤ · · · ≤ ξn,n are order statistics from parent ξ with
distribution function F(x) = xα(0 < x < 1) for some α > 0. Then

lim
n→∞

1
k − n +N

k∑

j=n−N+1

ξj,n

ξk+1,n
=

α

α + 1
a.s. (3.7)

Proof. The proof is similar to the proof of Lemma 2.3(i) in Dekkers et al. [19]; for example,
Lemma 1 of Beirlant and Guillou [3].
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Based on the above lemmas, we prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. We only prove the case for ρ < 0. For the case for ρ = 0, the proof is
similar. Clearly,

k∑

j=n−N+1

[
logU

(
Yn−j+1,n

) − logU(Yn−k,n) − γ
]

=
k∑

j=n−N+1

Dj(n)A(Yn−k,n) +
A(Yn−k,n)

ρ

k∑

j=n−N+1

[(
Yn−j+1,n
Yn−k,n

)ρ

− 1
]

+ γ
k∑

j=n−N+1

(
logYn−j+1,n − logYn−k,n − 1

)
,

(3.8)

where

Dj(n) =
logU

(
Yn−j+1,n

) − logU(Yn−k,n) − γ log
(
Yn−j+1,n/Yn−k,n

)

A(Yn−k,n)

−
(
Yn−j+1,n/Yn−k,n

)ρ − 1
ρ

(3.9)

for j = n −N + 1, . . . , k. By using Lemmas 3.1 and 3.4, for sufficiently large n, we have

∣∣∣∣∣∣

k∑

j=n−N+1

Dj(n)

∣∣∣∣∣∣
≤ ε

k∑

j=n−N+1

(
Yn−j+1,n
Yn−k,n

)ρ+ε

. (3.10)

Noting that P(Yρ+ε
i ≤ x) = x−1/(ρ+ε) for i = 1, . . . , n and by using Lemma 3.5 we find

lim
n→∞

1
k

k∑

j=n−N+1

(
Yn−j+1,n
Yn−k,n

)ρ+ε

=
1

1 − ρ − ε a.s. (3.11)

Since A(t) ∈ RVρ and
√
k/2 log lognA(n/k) → β, by (3.10), and (3.11), and Lemma 3.1, it

follows that

lim
n→∞

1
√
2k log logn

∣∣∣∣∣∣

k∑

j=n−N+1

Dj(n)A(Yn−k,n)

∣∣∣∣∣∣
= 0 a.s. (3.12)

by letting ε → 0. Similarly,

lim
n→∞

1
√
2k log logn

A(Yn−k,n)
ρ

k∑

j=n−N+1

[(
Yn−j+1,n
Yn−k,n

)ρ

− 1
]
=

β

1 − ρ a.s. (3.13)
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From Lemmas 3.2, and 3.3, and the conditions provided by Theorem 2.1, we have

lim sup
n→∞

γ
√
2k log logn

∣∣∣∣∣∣

k∑

j=n−N+1

(
logYn−j+1,n − logYn−k,n − 1

)
∣∣∣∣∣∣

≤ lim sup
n→∞

γ
√
2k log logn

∣∣∣∣∣∣

k∑

j=n−N+1

logYn−j+1,n − (k − n +N)
[
logn − log(k − n +N) + 1

]
∣∣∣∣∣∣

+ lim sup
n→∞

γ
√
2k log logn

(k − n +N)
∣∣logn − log k − logYn−k,n

∣∣

+ lim sup
n→∞

γ
√
2k log logn

(k − n +N)
∣∣log k − log(k − n +N)

∣∣

≤
(√

2 + 1
)
γ a.s.

(3.14)

Combining (3.12), (3.13)with (3.14), we complete the proof.

Proof of Theorem 2.2. We only prove the case of ρ < 0. Clearly,

logU(YN,n) − logU(Yn−k,n)

= G(n)A(Yn−k,n) +A(Yn−k,n)
(YN,n/Yn−k,n)

ρ − 1
ρ

+ γ
(
logYN,n − logYn−k,n

)
,

(3.15)

where

G(n) =
logU(YN,n) − logU(Yn−k,n) − γ log(YN,n/Yn−k,n)

A(Yn−k,n)
− (YN,n/Yn−k,n)

ρ − 1
ρ

. (3.16)

By using Lemmas 3.1 and 3.4, for sufficiently large n, we have

|G(n)| ≤ ε

(
YN,n

Yn−k,n

)ρ+ε

. (3.17)

SinceA(t) ∈ RVρ, by using Lemma 3.1 and the conditions provided by this theorem, we have

lim sup
n→∞

n −N
√
2k log logn

|G(n)A(Yn−k,n)| = 0 a.s. (3.18)
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Similarly,

lim sup
n→∞

n −N
√
2k log logn

∣∣∣∣A(Yn−k,n)
(YN,n/Yn−k,n)

ρ − 1
ρ

∣∣∣∣ = 0 a.s. (3.19)

By using Lemma 3.2 and the conditions of Theorem 2.2, it follows that

lim sup
n→∞

n −N
√
2k log logn

∣∣γ
(
logYN,n − logYn−k,n

)∣∣

≤ lim sup
n→∞

n −N
√
2k log logn

γ
∣∣ logn − log k − logYn−k,n

∣∣

+ lim sup
n→∞

n −N
√
2k log logn

γ
∣∣ logn − log(n −N) − logYN,n

∣∣

+ lim sup
n→∞

n −N
√
2k log logn

γ
∣∣log k − log(n −N)

∣∣ = 0 a.s.

(3.20)

Combining (3.18), (3.19)with (3.20), we complete the proof.
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