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We establish some necessary and sufficient conditions for oscillation of the solutions of the
following two-dimensional difference system: Δxn = f(n, yn), Δyn = −g(n, xn), where f(n, u)
and g(n, u) are strongly superlinear or sublinear functions.

1. Introduction

We consider the following two-dimensional nonlinear difference system as follows:

Δxn = f
(
n, yn

)
,

Δyn = −g(n, xn),
(1.1)

where Δxn = xn+1 − xn, Δyn = yn+1 − yn, f(n, u) and g(n, u) are strongly superlinear or
sublinear functions.

Now we pose some conditions on functions f and g:

(H1): uf(n, u) > 0 and ug(n, u) > 0 for u/= 0;

(H2): f(n, u) and g(n, u) are continuous real-valued functions, and nondecreasing with
respect to u;
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(H3): it is

∞∑

n=n0

f(n,±c) = ±∞ (1.2)

for each c > 0.

Definition 1.1. Suppose that f, g : N × R → R are real-valued functions. α and β are the
quotients of positive odd numbers.

(1) f and g are said to be strongly superlinear if there exist constants α > 0 and β > 0
with αβ > 1, such that f(n, u)/|u|α sgnu and g(n, u)/|u|β sgnu are nondecreasing with respect
to |u| for each fixed n ∈ N.

(2) f and g are said to be strongly sublinear if there exist constants α > 0 and β > 0
with αβ < 1, such that f(n, u)/|u|α sgnu and g(n, u)/|u|β sgnu are nonincreasing with respect
to |u| for each fixed n ∈ N.

The solutions of (1.1) are said to be nonoscillatory if {xn} or {yn} is eventually positive
or negative. Otherwise the solutions are called oscillatory.

Some oscillation results for the difference system (1.1) in the case of g(n, xn) = anx
β
n

with an > 0 have been established by many authors. In particular, if f(n, yn) = bnyn and
bn > 0, then the difference system (1.1) is reduced to the well-known second-order nonlinear
difference equation:

Δ
(

1
bn

Δxn

)
+ anx

β
n = 0. (1.3)

Also, if bn = 1, then (1.3) becomes

Δ2xn + anx
β
n = 0. (1.4)

Furthermore, if f(n, yn) = bny
α
n and α is a ratio of odd positive integers, then (1.1) reduces to

the well-known quasilinear difference equation:

Δ

(
1

b1/αn

(Δxn)1/α
)

+ anx
β
n = 0. (1.5)

For (1.4), the following well-known TheoremAwas established by Hooker and Patula
[1, 2].
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Theorem A. For (1.4), the following statements are true.
(1) If 0 < β < 1, then every solution of (1.4) oscillates if and only if

∞∑

n=1

nβan = ∞. (1.6)

(2) If β > 1, then every solution of (1.4) oscillates if and only if

∞∑

n=1

nan = ∞. (1.7)

For (1.3), if one denotes

Bn =
n−1∑

s=0

bs (1.8)

and assumes that

lim
n→∞

Bn =
∞∑

s=0

bs = ∞, (1.9)

then the following theorem is proved in [3].

Theorem B. If (1.9) holds, then the following statements are true.
(1) If 0 < β < 1, then every solution of (1.3) oscillates if and only if

∞∑

n=1

B
β
nan = ∞. (1.10)

(2) If β > 1, then every solution of (1.3) oscillates if and only if

∞∑

n=1

Bnan = ∞. (1.11)

The problem of oscillation of second-order nonlinear difference equations has attracted
the attention of many mathematicians because of its physical applications [2, 4]. For some
results regarding the growth of solutions of some equations related to the above mentioned
see book [5], as well as the following papers [6–8]. It is an interesting problem to extend
oscillation criteria for second-order nonlinear difference equations to the case of nonlinear
two-dimensional difference systems since such systems include, in particular, the second-
order nonlinear, half-linear, and quasilinear difference equations that are the special cases of
the nonlinear two-dimensional difference systems [5, 9, 10].

Themain purpose of this paper is to establish some necessary and sufficient conditions
for oscillation of the nonlinear two-dimensional difference systems.
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2. Main Results

In order to establish our main results, we need the following lemma.

Lemma 2.1. Suppose that conditions (H1)–(H3) are satisfied. If {xn} and {yn} are nonoscillatory
solutions of (1.1) for n > n0, then

sgnxn = sgnyn. (2.1)

Proof. Without loss of generality, we assume that xn is eventually positive; that is, xn > 0 for
n > n0 > 0. From (1.1), we clearly see that Δyn < 0, then we know that either yn > 0 or yn < 0
eventually holds.

If yn < yN1 < 0 for n > N1 > n0, then we have

Δxn = f
(
n, yn

) ≤ f
(
n, yN

)
< 0, (2.2)

summing up fromN1 to n, and by (1.2) of (H3), we get

xn − xN1 ≤
n−1∑

s=N1

f
(
s, yN

) −→ −∞ (n −→ ∞). (2.3)

This contradiction completes the proof of the lemma.

Theorem 2.2. If f and g are strongly sublinear (i.e., 0 < αβ < 1), then a necessary and sufficient
condition for (1.1) to oscillate is that

∞∑

n=n1

g

(

n,
n−1∑

s=n0

f(s, c)

)

= +∞ (2.4)

for every c > 0, where n1 > n0.

Proof. Sufficiency. If (1.1) has a nonoscillatory solution xn, then without loss of generality, we
assume that xn is eventually positive. Then, by Lemma 2.1, for n0 sufficiently large,

yn > 0, Δxn > 0, Δyn < 0, for n ≥ n0. (2.5)

Since {yn} is decreasing, hence there exists c > 0 such that

yn ≤ yN ≤ c, for N ≥ n0. (2.6)

Summing up

Δxn = f
(
n, yn

)
(2.7)
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from s = n0 to n − 1, we obtain

xn − xn0 =
n−1∑

s=n0

f
(
s, ys

) ≥ yα
n

n−1∑

s=n0

f
(
s, ys

)

yα
s

≥ yα
n

n−1∑

s=n0

f(s, c)
cα

,

xn ≥ c−αyα
n

n−1∑

s=n0

f(s, c),

(2.8)

and so

g(n, xn) ≥ g

(

n, c−αyα
n

n−1∑

s=n0

f(s, c)

)

. (2.9)

Therefore

−Δyn = g(n, xn) ≥ g

(

n, c−αyα
n

n−1∑

s=n0

f(s, c)

)

. (2.10)

Since

c−αyα
n

n−1∑

s=n0

f(s, c) ≤
n−1∑

s=n0

f(s, c), (2.11)

we have

−Δyn ≥ g

(

n, c−αyα
n

n−1∑

s=n0

f(s, c)

)

=
g
(
n, c−αyα

n

∑n−1
s=n0

f(s, c)
)

(
c−αyα

n

∑n−1
s=n0

f(s, c)
)β

(

c−αyα
n

n−1∑

s=n0

f(s, c)

)β

≥
g
(
n,

∑n−1
s=n0

f(s, c)
)

(∑n−1
s=n0

f(s, c)
)β

(

c−αyα
n

n−1∑

s=n0

f(s, c)

)β

=
(
yn

)αβ
c−αβg

(

n,
n−1∑

s=n0

f(s, c)

)

,

− Δyn
(
yn

)αβ ≥ c−αβg

(

n,
n−1∑

s=n0

f(s, c)

)

,

(2.12)

and let n1 > n0, we have

n−1∑

i=n1

(

− Δyi
(
yi

)αβ

)

≥ c−αβ
n−1∑

i=n1

g

(

i,
i−1∑

s=n0

f(s, c)

)

. (2.13)
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From

∫yn

yn+1

1
uαβ

du =
1
ξαβ

(
yn − yn+1

) ≥ − Δyn
(
yn

)αβ , yn+1 < ξ < yn, (2.14)

we get

∞∑

i=n1

∫yi

yi+1

1
uαβ

du ≥
∞∑

i=n1

− Δyi
(
yi

)αβ ≥ c−αβ
∞∑

i=n1

g

(

i,
i−1∑

s=n0

f(s, c)

)

,

∞∑

i=n1

g

(

i,
i−1∑

s=n0

f(s, c)

)

≤ cαβ
∫yn1

c

1
uαβ

du < +∞,

(2.15)

which leads to a contradiction.
Necessity. If

∞∑

n=n1

g

(

n,
n−1∑

s=n0

f(s, c)

)

< +∞ (2.16)

for some c > 0, then there exist M > n0 > 0 and c/2 > d > 0, such that

∞∑

n=M

g

(

n,
n−1∑

s=n0

f(s, c)

)

< d. (2.17)

Let X be the Banach space of all the real-valued sequences {xn}with the norm

‖x‖ = sup
n≥M

|xn|
∑n−1

s=n0
f(s, c)

, (2.18)

let Ψ be the subset of X defined by

Ψ =

{

{xn} ∈ X :
n−1∑

s=n0

f(s, d) ≤ xn ≤
n−1∑

s=n0

f(s, 2d)

}

(2.19)

and let F : Ψ → X be the operator defined by

(Fx)n =
n−1∑

s=n0

f

(

s, d +
∞∑

i=s

g(i, xi)

)

. (2.20)
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Then the mapping F satisfies the assumptions of Knaster’s fixed-point theorem (see
[11, page 8]): F maps Ψ into itself and F is increasing. The latter statement is easy to see, and
the former statement follows from

(Fx)n ≥
n−1∑

n=n0

f(s, d),

(Fx)n =
n−1∑

s=n0

f

(

s, d +
∞∑

i=s

g(i, xi)

)

≤
n−1∑

s=n0

f

(

s, d +
∞∑

i=s

g

(

i,
i−1∑

s=n0

f(s, 2d)

))

≤
n−1∑

s=n0

f

(

s, d +
∞∑

i=s

g

(

i,
i−1∑

s=n0

f(s, c)

))

≤
n−1∑

s=n0

f(s, 2d)

(2.21)

for any {xn} ∈ Ψ. From Knaster’s fixed-point theorem, we know that there exists {xn} ∈ Ψ
such that xn = (Fx)n. Let

yn = d +
∞∑

s=n
g(s, xs), (2.22)

then limn→∞yn = d and Δyn = −g(n, xn). On the other hand, we have

xn = (Fx)n =
n−1∑

i=n0

f
(
i, yi

)
. (2.23)

Then by (1.2) and the continuity of function f , we have that limn→∞xn = ∞ and Δxn =
f(n, xn),which leads to a contradiction and the proof of Theorem 2.2 is completed.

Example 2.3. Considering the difference system,

Δxn = 2(n + 1)1/3y1/3
n ,

Δyn = − 2n + 3
(n + 1)(n + 2)

x5/3
n , n ≥ n0.

(2.24)

Here α = 1/3, β = 5/3, and f and g are strongly sublinear. It is easy to verify that the
conditions of Theorem 2.2 are satisfied and hence all solutions are oscillatory. In fact, we
clearly see that the sequence {(xn, yn)} = {((−1)n, (−1)n+1/(n + 1))} is such a solution for
the difference system.

Example 2.4. Considering the difference system,

Δxn =
(

n

n + 1

)1/3

y1/3
n ,

Δyn = − 1
n5/3

1
n(n + 1)

x5/3
n , n ≥ n0.

(2.25)
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Here α = 1/3, β = 5/3, and f and g are strong sublinear. We clearly see that the conditions
of Theorem 2.2 are not satisfied and hence there exists a nonoscillatory solution. In fact, the
sequence {(xn, yn)} = {(n, (n + 1)/n)} is such a solution.

Theorem 2.5. If f and g are strongly superlinear (i.e., αβ > 1), then a necessary and sufficient
condition for (1.1) to oscillate is that

∞∑

n=1

f

(

n,
∞∑

s=n
g(s, c)

)

= +∞ (2.26)

for every c > 0.

Proof. Sufficiency. If (1.1) has a nonoscillatory solution xn, then without loss of generality, we
may assume that xn is eventually positive. Then by Lemma 2.1, we have for N1 sufficiently
large,

xn > 0, Δxn > 0, Δyn < 0, for n > N1. (2.27)

Since {xn} is increasing, hence there exists c > 0 such that

xn ≥ yN ≥ c, for N > n0. (2.28)

Summing up

Δyn = −g(n, xn) (2.29)

from s = n to∞, we have

−yn ≤ y∞ − yn = −
∞∑

s=n
g(s, xs),

yn ≥
∞∑

s=n
g(s, xs) ≥

∞∑

s=n+1

g(s, xs)

x
β
s

x
β
s ≥ x

β

n+1

∞∑

s=n+1

g(s, c)
cβ

= c−βxβ

n+1

∞∑

s=n+1

g(s, c).

(2.30)

Therefore

Δxn = f
(
n, yn

) ≥ f

(

n, c−βxβ

n+1

∞∑

s=n+1

g(s, c)

)

. (2.31)
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From xn ≥ c and c−βxβ

n+1

∑∞
s=n+1 g(s, c) ≥

∑∞
s=n+1 g(s, c), we get

Δxn ≥
f
(
n, c−βxβ

n+1

∑∞
s=n+1 g(s, c)

)

(
c−βxβ

n+1

∑∞
s=n+1 g(s, c)

)α

(

c−βxβ

n+1

∞∑

s=n+1

g(s, c)

)α

≥ f
(
n,

∑∞
s=n+1 g(s, c)

)

(∑∞
s=n+1 g(s, c)

)α

(

c−βxβ

n+1

∞∑

s=n+1

g(s, c)

)α

= x
αβ

n+1c
−αβf

(

n,
∞∑

s=n+1

g(s, c)

)

,

Δxn

x
αβ

n+1

≥ c−αβf

(

n,
∞∑

s=n+1

g(s, c)

)

,

∞∑

i=n

Δxi

x
αβ

i+1

≥ c−αβ
∞∑

i=n

f

(

i,
∞∑

s=i+1

g(s, c)

)

.

(2.32)

But

∫xn+1

xn

1
uαβ

du =
1
ξαβ

(xn+1 − xn) ≥ Δxn

(xn+1)αβ
, xn < ξ < xn+1,

∞∑

s=n

∫xs+1

xs

1
uαβ

du ≥
∞∑

s=n

Δxs

(xs+1)αβ
≥ c−αβ

∞∑

s=n
f

(

s,
∞∑

t=s+1

g(t, c)

)

.

(2.33)

Therefore

∞∑

s=N1

f

(

s,
∞∑

t=s+1

g(t, c)

)

≤ cαβ
∫∞

xN1

1
uαβ

du < +∞, (2.34)

which leads to a contradiction.
Necessity. If

∞∑

n=1

f

(

n,
∞∑

s=n
g(s, c)

)

< +∞ (2.35)

for some c > 0, then there exists M > 0 large enough, such that

∞∑

n=M

f

(

n,
∞∑

s=n
g(s, c)

)

<
c

2
. (2.36)
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Let X be the set of all bounded and real-valued sequences {xn}with the norm

‖x‖ = sup
n≥M

|xn| (2.37)

and Ψ be the subset of X defined by

Ψ =
{
{xn} ∈ X :

c

2
≤ xn ≤ c

}
, (2.38)

then Ψ is a bounded, convex, and closed subset of X. Let F : Ψ → X be the operator defined
by

(Fx)n = c −
∞∑

i=n

f

(

i,
∞∑

s=i

g(s, xs)

)

. (2.39)

Then F maps Ψ into Ψ. In fact, if {xn} ∈ Ψ, then

c ≥ (Fx)n ≥ c −
∞∑

i=n

f

(

i,
∞∑

s=i

g(s, c)

)

≥ c −
∞∑

i=M

f

(

i,
∞∑

s=i

g(s, c)

)

≥ c

2
.

(2.40)

Next, we show that F is continuous. Let {x(j)
n } be a convergent sequence in Ψ such that

limi→∞‖x(j)
n − xn‖ = 0, then from that Ψ is closed ({xn} ∈ Ψ) and the definition of F, we

have

∣∣∣
(
Fxj

)

n
− (Fx)n

∣∣∣ =

∣∣∣∣∣

∞∑

i=n

f

(

i,
∞∑

s=i

g
(
s, x

j
s

))

−
∞∑

i=n

f

(

i,
∞∑

s=i

g(s, xs)

)∣∣∣∣∣

≤
∞∑

i=n

∣∣∣∣∣
f

(

i,
∞∑

s=i

g
(
s, x

j
s

))

− f

(

i,
∞∑

s=i

g(s, xs)

)∣∣∣∣∣
.

(2.41)

Since
∑∞

i=n f(i,
∑∞

s=i g(s, xs)) <
∑∞

i=n f(i,
∑∞

s=i g(s, c)) < ∞, now from the continuity of f and
g together with the well-known Lebesgue’s dominated convergence theorem (see [11, page
263]), we know that limj→∞‖(Fxj)n − (Fx)n‖ = 0 for ‖x(j) − x‖ → 0.
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Finally, we show that FΨ is precompact. Let {xm} ∈ Ψ, {xn} ∈ Ψ, then for large enough
m > n we have

|(Fx)m − (Fx)n| =
∣
∣∣
∣
∣

∞∑

i=m

f

(

i,
∞∑

s=i

g(s, xs)

)

−
∞∑

i=n

f

(

i,
∞∑

s=i

g(s, xs)

)∣
∣∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

i=n

f

(

i,
∞∑

s=i

g(s, xs)

)∣
∣
∣
∣
∣

≤
m∑

i=n

f

(

i,
∞∑

s=i

g(s, c)

)

< ε

(2.42)

for any ε > 0. From Schauder’s fixed-point theorem (see [11]), we know that there exists
{xn} ∈ Ψ such that xn = (Fx)n.

Let

yn =
∞∑

s=n
g(s, xs), (2.43)

then limn→∞yn = 0 and Δyn = −g(n, xn). On the other hand, we have

xn = (Fx)n = c −
∞∑

s=n
f
(
s, ys

)
. (2.44)

Therefore, limn→∞xn = c and Δxn = f(n, yn), which leads to a contradiction. The proof of
Theorem 2.5 is completed.

Example 2.6. Considering the difference system,

Δxn = 23n+1y3
n,

Δyn = − 3
2n

x3
n, n ≥ n0.

(2.45)

Here α = 3, β = 3, and f and g are strongly suplinear. We clearly see that the conditions
of Theorem 2.5 are satisfied and hence all solutions are oscillatory. In fact, the sequence
{(xn, yn)} = {((−1)n, (−1)n+1/2n)} is such a solution.

Example 2.7. Considering the difference system,

Δxn =
(

n

n + 1

)2/3

y2/3
n ,

Δyn = − 1
n5/3

1
n(n + 1)

x5/3
n , n ≥ n0.

(2.46)
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Here α = 2/3, β = 5/3, and f and g are strong sublinear. However, it is easy to see that the
conditions of Theorem 2.5 are not satisfied and hence there exists a nonoscillatory solution.
In fact, the sequence {(xn, yn)} = {(n, (n + 1)/n)} is such a solution.

If we set f(n, yn) = bny
α
n, g(n, xn) = anx

β
n, then the difference system (1.1) is reduced

to (1.5). From Theorems 2.2 and 2.5, we get the following results for (1.5).

Corollary 2.8. If 0 < αβ < 1, then every solution of (1.5) oscillation if and only if

∞∑

n=n1

an

(
n−1∑

s=n0

bs

)β

= ∞, (2.47)

where n1 > n0.

Corollary 2.9. If αβ > 1, then every solution of (1.5) oscillation if and only if

∞∑

n=1

bn

( ∞∑

s=n
as

)α

= ∞. (2.48)

Remark 2.10. It is easy to see that Theorems A and B are the special cases of our Corollaries
2.8 and 2.9, respectively.
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